1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux. 2 Copyright 1999 Silicon Integrated System Corporation 3 Revision: 1.08.10 Apr. 2 2006 4 5 Modified from the driver which is originally written by Donald Becker. 6 7 This software may be used and distributed according to the terms 8 of the GNU General Public License (GPL), incorporated herein by reference. 9 Drivers based on this skeleton fall under the GPL and must retain 10 the authorship (implicit copyright) notice. 11 12 References: 13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support, 14 preliminary Rev. 1.0 Jan. 14, 1998 15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support, 16 preliminary Rev. 1.0 Nov. 10, 1998 17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution, 18 preliminary Rev. 1.0 Jan. 18, 1998 19 20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support 21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support 22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages 23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support 24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support 25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary 26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support 27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function 28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem 29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY 30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix 31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3 32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support 33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup 34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support 35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix 36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning 37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig 38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support 39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule 40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1 41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring 42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4 43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release 44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed 45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com) 46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release 47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx 48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support 49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/kernel.h> 55 #include <linux/sched.h> 56 #include <linux/string.h> 57 #include <linux/timer.h> 58 #include <linux/errno.h> 59 #include <linux/ioport.h> 60 #include <linux/slab.h> 61 #include <linux/interrupt.h> 62 #include <linux/pci.h> 63 #include <linux/netdevice.h> 64 #include <linux/init.h> 65 #include <linux/mii.h> 66 #include <linux/etherdevice.h> 67 #include <linux/skbuff.h> 68 #include <linux/delay.h> 69 #include <linux/ethtool.h> 70 #include <linux/crc32.h> 71 #include <linux/bitops.h> 72 #include <linux/dma-mapping.h> 73 74 #include <asm/processor.h> /* Processor type for cache alignment. */ 75 #include <asm/io.h> 76 #include <asm/irq.h> 77 #include <asm/uaccess.h> /* User space memory access functions */ 78 79 #include "sis900.h" 80 81 #define SIS900_MODULE_NAME "sis900" 82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006" 83 84 static const char version[] __devinitconst = 85 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n"; 86 87 static int max_interrupt_work = 40; 88 static int multicast_filter_limit = 128; 89 90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */ 91 92 #define SIS900_DEF_MSG \ 93 (NETIF_MSG_DRV | \ 94 NETIF_MSG_LINK | \ 95 NETIF_MSG_RX_ERR | \ 96 NETIF_MSG_TX_ERR) 97 98 /* Time in jiffies before concluding the transmitter is hung. */ 99 #define TX_TIMEOUT (4*HZ) 100 101 enum { 102 SIS_900 = 0, 103 SIS_7016 104 }; 105 static const char * card_names[] = { 106 "SiS 900 PCI Fast Ethernet", 107 "SiS 7016 PCI Fast Ethernet" 108 }; 109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = { 110 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900, 111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900}, 112 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016, 113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016}, 114 {0,} 115 }; 116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl); 117 118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex); 119 120 static const struct mii_chip_info { 121 const char * name; 122 u16 phy_id0; 123 u16 phy_id1; 124 u8 phy_types; 125 #define HOME 0x0001 126 #define LAN 0x0002 127 #define MIX 0x0003 128 #define UNKNOWN 0x0 129 } mii_chip_table[] = { 130 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN }, 131 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN }, 132 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN }, 133 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN }, 134 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN }, 135 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN }, 136 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME}, 137 { "ICS LAN PHY", 0x0015, 0xF440, LAN }, 138 { "ICS LAN PHY", 0x0143, 0xBC70, LAN }, 139 { "NS 83851 PHY", 0x2000, 0x5C20, MIX }, 140 { "NS 83847 PHY", 0x2000, 0x5C30, MIX }, 141 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN }, 142 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN }, 143 {NULL,}, 144 }; 145 146 struct mii_phy { 147 struct mii_phy * next; 148 int phy_addr; 149 u16 phy_id0; 150 u16 phy_id1; 151 u16 status; 152 u8 phy_types; 153 }; 154 155 typedef struct _BufferDesc { 156 u32 link; 157 u32 cmdsts; 158 u32 bufptr; 159 } BufferDesc; 160 161 struct sis900_private { 162 struct pci_dev * pci_dev; 163 164 spinlock_t lock; 165 166 struct mii_phy * mii; 167 struct mii_phy * first_mii; /* record the first mii structure */ 168 unsigned int cur_phy; 169 struct mii_if_info mii_info; 170 171 struct timer_list timer; /* Link status detection timer. */ 172 u8 autong_complete; /* 1: auto-negotiate complete */ 173 174 u32 msg_enable; 175 176 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */ 177 unsigned int cur_tx, dirty_tx; 178 179 /* The saved address of a sent/receive-in-place packet buffer */ 180 struct sk_buff *tx_skbuff[NUM_TX_DESC]; 181 struct sk_buff *rx_skbuff[NUM_RX_DESC]; 182 BufferDesc *tx_ring; 183 BufferDesc *rx_ring; 184 185 dma_addr_t tx_ring_dma; 186 dma_addr_t rx_ring_dma; 187 188 unsigned int tx_full; /* The Tx queue is full. */ 189 u8 host_bridge_rev; 190 u8 chipset_rev; 191 }; 192 193 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>"); 194 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver"); 195 MODULE_LICENSE("GPL"); 196 197 module_param(multicast_filter_limit, int, 0444); 198 module_param(max_interrupt_work, int, 0444); 199 module_param(sis900_debug, int, 0444); 200 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses"); 201 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt"); 202 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level"); 203 204 #ifdef CONFIG_NET_POLL_CONTROLLER 205 static void sis900_poll(struct net_device *dev); 206 #endif 207 static int sis900_open(struct net_device *net_dev); 208 static int sis900_mii_probe (struct net_device * net_dev); 209 static void sis900_init_rxfilter (struct net_device * net_dev); 210 static u16 read_eeprom(long ioaddr, int location); 211 static int mdio_read(struct net_device *net_dev, int phy_id, int location); 212 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val); 213 static void sis900_timer(unsigned long data); 214 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy); 215 static void sis900_tx_timeout(struct net_device *net_dev); 216 static void sis900_init_tx_ring(struct net_device *net_dev); 217 static void sis900_init_rx_ring(struct net_device *net_dev); 218 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb, 219 struct net_device *net_dev); 220 static int sis900_rx(struct net_device *net_dev); 221 static void sis900_finish_xmit (struct net_device *net_dev); 222 static irqreturn_t sis900_interrupt(int irq, void *dev_instance); 223 static int sis900_close(struct net_device *net_dev); 224 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd); 225 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision); 226 static void set_rx_mode(struct net_device *net_dev); 227 static void sis900_reset(struct net_device *net_dev); 228 static void sis630_set_eq(struct net_device *net_dev, u8 revision); 229 static int sis900_set_config(struct net_device *dev, struct ifmap *map); 230 static u16 sis900_default_phy(struct net_device * net_dev); 231 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy); 232 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr); 233 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr); 234 static void sis900_set_mode (long ioaddr, int speed, int duplex); 235 static const struct ethtool_ops sis900_ethtool_ops; 236 237 /** 238 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model 239 * @pci_dev: the sis900 pci device 240 * @net_dev: the net device to get address for 241 * 242 * Older SiS900 and friends, use EEPROM to store MAC address. 243 * MAC address is read from read_eeprom() into @net_dev->dev_addr and 244 * @net_dev->perm_addr. 245 */ 246 247 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev) 248 { 249 long ioaddr = pci_resource_start(pci_dev, 0); 250 u16 signature; 251 int i; 252 253 /* check to see if we have sane EEPROM */ 254 signature = (u16) read_eeprom(ioaddr, EEPROMSignature); 255 if (signature == 0xffff || signature == 0x0000) { 256 printk (KERN_WARNING "%s: Error EERPOM read %x\n", 257 pci_name(pci_dev), signature); 258 return 0; 259 } 260 261 /* get MAC address from EEPROM */ 262 for (i = 0; i < 3; i++) 263 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr); 264 265 /* Store MAC Address in perm_addr */ 266 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN); 267 268 return 1; 269 } 270 271 /** 272 * sis630e_get_mac_addr - Get MAC address for SiS630E model 273 * @pci_dev: the sis900 pci device 274 * @net_dev: the net device to get address for 275 * 276 * SiS630E model, use APC CMOS RAM to store MAC address. 277 * APC CMOS RAM is accessed through ISA bridge. 278 * MAC address is read into @net_dev->dev_addr and 279 * @net_dev->perm_addr. 280 */ 281 282 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev, 283 struct net_device *net_dev) 284 { 285 struct pci_dev *isa_bridge = NULL; 286 u8 reg; 287 int i; 288 289 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge); 290 if (!isa_bridge) 291 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge); 292 if (!isa_bridge) { 293 printk(KERN_WARNING "%s: Can not find ISA bridge\n", 294 pci_name(pci_dev)); 295 return 0; 296 } 297 pci_read_config_byte(isa_bridge, 0x48, ®); 298 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40); 299 300 for (i = 0; i < 6; i++) { 301 outb(0x09 + i, 0x70); 302 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71); 303 } 304 305 /* Store MAC Address in perm_addr */ 306 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN); 307 308 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40); 309 pci_dev_put(isa_bridge); 310 311 return 1; 312 } 313 314 315 /** 316 * sis635_get_mac_addr - Get MAC address for SIS635 model 317 * @pci_dev: the sis900 pci device 318 * @net_dev: the net device to get address for 319 * 320 * SiS635 model, set MAC Reload Bit to load Mac address from APC 321 * to rfdr. rfdr is accessed through rfcr. MAC address is read into 322 * @net_dev->dev_addr and @net_dev->perm_addr. 323 */ 324 325 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev, 326 struct net_device *net_dev) 327 { 328 long ioaddr = net_dev->base_addr; 329 u32 rfcrSave; 330 u32 i; 331 332 rfcrSave = inl(rfcr + ioaddr); 333 334 outl(rfcrSave | RELOAD, ioaddr + cr); 335 outl(0, ioaddr + cr); 336 337 /* disable packet filtering before setting filter */ 338 outl(rfcrSave & ~RFEN, rfcr + ioaddr); 339 340 /* load MAC addr to filter data register */ 341 for (i = 0 ; i < 3 ; i++) { 342 outl((i << RFADDR_shift), ioaddr + rfcr); 343 *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr); 344 } 345 346 /* Store MAC Address in perm_addr */ 347 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN); 348 349 /* enable packet filtering */ 350 outl(rfcrSave | RFEN, rfcr + ioaddr); 351 352 return 1; 353 } 354 355 /** 356 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model 357 * @pci_dev: the sis900 pci device 358 * @net_dev: the net device to get address for 359 * 360 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM 361 * is shared by 362 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first 363 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access 364 * by LAN, otherwise is not. After MAC address is read from EEPROM, send 365 * EEDONE signal to refuse EEPROM access by LAN. 366 * The EEPROM map of SiS962 or SiS963 is different to SiS900. 367 * The signature field in SiS962 or SiS963 spec is meaningless. 368 * MAC address is read into @net_dev->dev_addr and @net_dev->perm_addr. 369 */ 370 371 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev, 372 struct net_device *net_dev) 373 { 374 long ioaddr = net_dev->base_addr; 375 long ee_addr = ioaddr + mear; 376 u32 waittime = 0; 377 int i; 378 379 outl(EEREQ, ee_addr); 380 while(waittime < 2000) { 381 if(inl(ee_addr) & EEGNT) { 382 383 /* get MAC address from EEPROM */ 384 for (i = 0; i < 3; i++) 385 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr); 386 387 /* Store MAC Address in perm_addr */ 388 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN); 389 390 outl(EEDONE, ee_addr); 391 return 1; 392 } else { 393 udelay(1); 394 waittime ++; 395 } 396 } 397 outl(EEDONE, ee_addr); 398 return 0; 399 } 400 401 static const struct net_device_ops sis900_netdev_ops = { 402 .ndo_open = sis900_open, 403 .ndo_stop = sis900_close, 404 .ndo_start_xmit = sis900_start_xmit, 405 .ndo_set_config = sis900_set_config, 406 .ndo_set_rx_mode = set_rx_mode, 407 .ndo_change_mtu = eth_change_mtu, 408 .ndo_validate_addr = eth_validate_addr, 409 .ndo_set_mac_address = eth_mac_addr, 410 .ndo_do_ioctl = mii_ioctl, 411 .ndo_tx_timeout = sis900_tx_timeout, 412 #ifdef CONFIG_NET_POLL_CONTROLLER 413 .ndo_poll_controller = sis900_poll, 414 #endif 415 }; 416 417 /** 418 * sis900_probe - Probe for sis900 device 419 * @pci_dev: the sis900 pci device 420 * @pci_id: the pci device ID 421 * 422 * Check and probe sis900 net device for @pci_dev. 423 * Get mac address according to the chip revision, 424 * and assign SiS900-specific entries in the device structure. 425 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc. 426 */ 427 428 static int __devinit sis900_probe(struct pci_dev *pci_dev, 429 const struct pci_device_id *pci_id) 430 { 431 struct sis900_private *sis_priv; 432 struct net_device *net_dev; 433 struct pci_dev *dev; 434 dma_addr_t ring_dma; 435 void *ring_space; 436 long ioaddr; 437 int i, ret; 438 const char *card_name = card_names[pci_id->driver_data]; 439 const char *dev_name = pci_name(pci_dev); 440 441 /* when built into the kernel, we only print version if device is found */ 442 #ifndef MODULE 443 static int printed_version; 444 if (!printed_version++) 445 printk(version); 446 #endif 447 448 /* setup various bits in PCI command register */ 449 ret = pci_enable_device(pci_dev); 450 if(ret) return ret; 451 452 i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)); 453 if(i){ 454 printk(KERN_ERR "sis900.c: architecture does not support " 455 "32bit PCI busmaster DMA\n"); 456 return i; 457 } 458 459 pci_set_master(pci_dev); 460 461 net_dev = alloc_etherdev(sizeof(struct sis900_private)); 462 if (!net_dev) 463 return -ENOMEM; 464 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 465 466 /* We do a request_region() to register /proc/ioports info. */ 467 ioaddr = pci_resource_start(pci_dev, 0); 468 ret = pci_request_regions(pci_dev, "sis900"); 469 if (ret) 470 goto err_out; 471 472 sis_priv = netdev_priv(net_dev); 473 net_dev->base_addr = ioaddr; 474 net_dev->irq = pci_dev->irq; 475 sis_priv->pci_dev = pci_dev; 476 spin_lock_init(&sis_priv->lock); 477 478 pci_set_drvdata(pci_dev, net_dev); 479 480 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma); 481 if (!ring_space) { 482 ret = -ENOMEM; 483 goto err_out_cleardev; 484 } 485 sis_priv->tx_ring = ring_space; 486 sis_priv->tx_ring_dma = ring_dma; 487 488 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma); 489 if (!ring_space) { 490 ret = -ENOMEM; 491 goto err_unmap_tx; 492 } 493 sis_priv->rx_ring = ring_space; 494 sis_priv->rx_ring_dma = ring_dma; 495 496 /* The SiS900-specific entries in the device structure. */ 497 net_dev->netdev_ops = &sis900_netdev_ops; 498 net_dev->watchdog_timeo = TX_TIMEOUT; 499 net_dev->ethtool_ops = &sis900_ethtool_ops; 500 501 if (sis900_debug > 0) 502 sis_priv->msg_enable = sis900_debug; 503 else 504 sis_priv->msg_enable = SIS900_DEF_MSG; 505 506 sis_priv->mii_info.dev = net_dev; 507 sis_priv->mii_info.mdio_read = mdio_read; 508 sis_priv->mii_info.mdio_write = mdio_write; 509 sis_priv->mii_info.phy_id_mask = 0x1f; 510 sis_priv->mii_info.reg_num_mask = 0x1f; 511 512 /* Get Mac address according to the chip revision */ 513 sis_priv->chipset_rev = pci_dev->revision; 514 if(netif_msg_probe(sis_priv)) 515 printk(KERN_DEBUG "%s: detected revision %2.2x, " 516 "trying to get MAC address...\n", 517 dev_name, sis_priv->chipset_rev); 518 519 ret = 0; 520 if (sis_priv->chipset_rev == SIS630E_900_REV) 521 ret = sis630e_get_mac_addr(pci_dev, net_dev); 522 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) ) 523 ret = sis635_get_mac_addr(pci_dev, net_dev); 524 else if (sis_priv->chipset_rev == SIS96x_900_REV) 525 ret = sis96x_get_mac_addr(pci_dev, net_dev); 526 else 527 ret = sis900_get_mac_addr(pci_dev, net_dev); 528 529 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) { 530 eth_hw_addr_random(net_dev); 531 printk(KERN_WARNING "%s: Unreadable or invalid MAC address," 532 "using random generated one\n", dev_name); 533 } 534 535 /* 630ET : set the mii access mode as software-mode */ 536 if (sis_priv->chipset_rev == SIS630ET_900_REV) 537 outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr); 538 539 /* probe for mii transceiver */ 540 if (sis900_mii_probe(net_dev) == 0) { 541 printk(KERN_WARNING "%s: Error probing MII device.\n", 542 dev_name); 543 ret = -ENODEV; 544 goto err_unmap_rx; 545 } 546 547 /* save our host bridge revision */ 548 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL); 549 if (dev) { 550 sis_priv->host_bridge_rev = dev->revision; 551 pci_dev_put(dev); 552 } 553 554 ret = register_netdev(net_dev); 555 if (ret) 556 goto err_unmap_rx; 557 558 /* print some information about our NIC */ 559 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n", 560 net_dev->name, card_name, ioaddr, net_dev->irq, 561 net_dev->dev_addr); 562 563 /* Detect Wake on Lan support */ 564 ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27; 565 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0) 566 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name); 567 568 return 0; 569 570 err_unmap_rx: 571 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring, 572 sis_priv->rx_ring_dma); 573 err_unmap_tx: 574 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring, 575 sis_priv->tx_ring_dma); 576 err_out_cleardev: 577 pci_set_drvdata(pci_dev, NULL); 578 pci_release_regions(pci_dev); 579 err_out: 580 free_netdev(net_dev); 581 return ret; 582 } 583 584 /** 585 * sis900_mii_probe - Probe MII PHY for sis900 586 * @net_dev: the net device to probe for 587 * 588 * Search for total of 32 possible mii phy addresses. 589 * Identify and set current phy if found one, 590 * return error if it failed to found. 591 */ 592 593 static int __devinit sis900_mii_probe(struct net_device * net_dev) 594 { 595 struct sis900_private *sis_priv = netdev_priv(net_dev); 596 const char *dev_name = pci_name(sis_priv->pci_dev); 597 u16 poll_bit = MII_STAT_LINK, status = 0; 598 unsigned long timeout = jiffies + 5 * HZ; 599 int phy_addr; 600 601 sis_priv->mii = NULL; 602 603 /* search for total of 32 possible mii phy addresses */ 604 for (phy_addr = 0; phy_addr < 32; phy_addr++) { 605 struct mii_phy * mii_phy = NULL; 606 u16 mii_status; 607 int i; 608 609 mii_phy = NULL; 610 for(i = 0; i < 2; i++) 611 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS); 612 613 if (mii_status == 0xffff || mii_status == 0x0000) { 614 if (netif_msg_probe(sis_priv)) 615 printk(KERN_DEBUG "%s: MII at address %d" 616 " not accessible\n", 617 dev_name, phy_addr); 618 continue; 619 } 620 621 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) { 622 mii_phy = sis_priv->first_mii; 623 while (mii_phy) { 624 struct mii_phy *phy; 625 phy = mii_phy; 626 mii_phy = mii_phy->next; 627 kfree(phy); 628 } 629 return 0; 630 } 631 632 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0); 633 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1); 634 mii_phy->phy_addr = phy_addr; 635 mii_phy->status = mii_status; 636 mii_phy->next = sis_priv->mii; 637 sis_priv->mii = mii_phy; 638 sis_priv->first_mii = mii_phy; 639 640 for (i = 0; mii_chip_table[i].phy_id1; i++) 641 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) && 642 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){ 643 mii_phy->phy_types = mii_chip_table[i].phy_types; 644 if (mii_chip_table[i].phy_types == MIX) 645 mii_phy->phy_types = 646 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME; 647 printk(KERN_INFO "%s: %s transceiver found " 648 "at address %d.\n", 649 dev_name, 650 mii_chip_table[i].name, 651 phy_addr); 652 break; 653 } 654 655 if( !mii_chip_table[i].phy_id1 ) { 656 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n", 657 dev_name, phy_addr); 658 mii_phy->phy_types = UNKNOWN; 659 } 660 } 661 662 if (sis_priv->mii == NULL) { 663 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name); 664 return 0; 665 } 666 667 /* select default PHY for mac */ 668 sis_priv->mii = NULL; 669 sis900_default_phy( net_dev ); 670 671 /* Reset phy if default phy is internal sis900 */ 672 if ((sis_priv->mii->phy_id0 == 0x001D) && 673 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000)) 674 status = sis900_reset_phy(net_dev, sis_priv->cur_phy); 675 676 /* workaround for ICS1893 PHY */ 677 if ((sis_priv->mii->phy_id0 == 0x0015) && 678 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440)) 679 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200); 680 681 if(status & MII_STAT_LINK){ 682 while (poll_bit) { 683 yield(); 684 685 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit); 686 if (time_after_eq(jiffies, timeout)) { 687 printk(KERN_WARNING "%s: reset phy and link down now\n", 688 dev_name); 689 return -ETIME; 690 } 691 } 692 } 693 694 if (sis_priv->chipset_rev == SIS630E_900_REV) { 695 /* SiS 630E has some bugs on default value of PHY registers */ 696 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1); 697 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22); 698 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00); 699 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0); 700 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000); 701 } 702 703 if (sis_priv->mii->status & MII_STAT_LINK) 704 netif_carrier_on(net_dev); 705 else 706 netif_carrier_off(net_dev); 707 708 return 1; 709 } 710 711 /** 712 * sis900_default_phy - Select default PHY for sis900 mac. 713 * @net_dev: the net device to probe for 714 * 715 * Select first detected PHY with link as default. 716 * If no one is link on, select PHY whose types is HOME as default. 717 * If HOME doesn't exist, select LAN. 718 */ 719 720 static u16 sis900_default_phy(struct net_device * net_dev) 721 { 722 struct sis900_private *sis_priv = netdev_priv(net_dev); 723 struct mii_phy *phy = NULL, *phy_home = NULL, 724 *default_phy = NULL, *phy_lan = NULL; 725 u16 status; 726 727 for (phy=sis_priv->first_mii; phy; phy=phy->next) { 728 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 729 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 730 731 /* Link ON & Not select default PHY & not ghost PHY */ 732 if ((status & MII_STAT_LINK) && !default_phy && 733 (phy->phy_types != UNKNOWN)) 734 default_phy = phy; 735 else { 736 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL); 737 mdio_write(net_dev, phy->phy_addr, MII_CONTROL, 738 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE); 739 if (phy->phy_types == HOME) 740 phy_home = phy; 741 else if(phy->phy_types == LAN) 742 phy_lan = phy; 743 } 744 } 745 746 if (!default_phy && phy_home) 747 default_phy = phy_home; 748 else if (!default_phy && phy_lan) 749 default_phy = phy_lan; 750 else if (!default_phy) 751 default_phy = sis_priv->first_mii; 752 753 if (sis_priv->mii != default_phy) { 754 sis_priv->mii = default_phy; 755 sis_priv->cur_phy = default_phy->phy_addr; 756 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n", 757 pci_name(sis_priv->pci_dev), sis_priv->cur_phy); 758 } 759 760 sis_priv->mii_info.phy_id = sis_priv->cur_phy; 761 762 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL); 763 status &= (~MII_CNTL_ISOLATE); 764 765 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status); 766 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 767 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 768 769 return status; 770 } 771 772 773 /** 774 * sis900_set_capability - set the media capability of network adapter. 775 * @net_dev : the net device to probe for 776 * @phy : default PHY 777 * 778 * Set the media capability of network adapter according to 779 * mii status register. It's necessary before auto-negotiate. 780 */ 781 782 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy) 783 { 784 u16 cap; 785 u16 status; 786 787 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 788 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 789 790 cap = MII_NWAY_CSMA_CD | 791 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) | 792 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) | 793 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)| 794 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0); 795 796 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap); 797 } 798 799 800 /* Delay between EEPROM clock transitions. */ 801 #define eeprom_delay() inl(ee_addr) 802 803 /** 804 * read_eeprom - Read Serial EEPROM 805 * @ioaddr: base i/o address 806 * @location: the EEPROM location to read 807 * 808 * Read Serial EEPROM through EEPROM Access Register. 809 * Note that location is in word (16 bits) unit 810 */ 811 812 static u16 __devinit read_eeprom(long ioaddr, int location) 813 { 814 int i; 815 u16 retval = 0; 816 long ee_addr = ioaddr + mear; 817 u32 read_cmd = location | EEread; 818 819 outl(0, ee_addr); 820 eeprom_delay(); 821 outl(EECS, ee_addr); 822 eeprom_delay(); 823 824 /* Shift the read command (9) bits out. */ 825 for (i = 8; i >= 0; i--) { 826 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS; 827 outl(dataval, ee_addr); 828 eeprom_delay(); 829 outl(dataval | EECLK, ee_addr); 830 eeprom_delay(); 831 } 832 outl(EECS, ee_addr); 833 eeprom_delay(); 834 835 /* read the 16-bits data in */ 836 for (i = 16; i > 0; i--) { 837 outl(EECS, ee_addr); 838 eeprom_delay(); 839 outl(EECS | EECLK, ee_addr); 840 eeprom_delay(); 841 retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0); 842 eeprom_delay(); 843 } 844 845 /* Terminate the EEPROM access. */ 846 outl(0, ee_addr); 847 eeprom_delay(); 848 849 return retval; 850 } 851 852 /* Read and write the MII management registers using software-generated 853 serial MDIO protocol. Note that the command bits and data bits are 854 send out separately */ 855 #define mdio_delay() inl(mdio_addr) 856 857 static void mdio_idle(long mdio_addr) 858 { 859 outl(MDIO | MDDIR, mdio_addr); 860 mdio_delay(); 861 outl(MDIO | MDDIR | MDC, mdio_addr); 862 } 863 864 /* Syncronize the MII management interface by shifting 32 one bits out. */ 865 static void mdio_reset(long mdio_addr) 866 { 867 int i; 868 869 for (i = 31; i >= 0; i--) { 870 outl(MDDIR | MDIO, mdio_addr); 871 mdio_delay(); 872 outl(MDDIR | MDIO | MDC, mdio_addr); 873 mdio_delay(); 874 } 875 } 876 877 /** 878 * mdio_read - read MII PHY register 879 * @net_dev: the net device to read 880 * @phy_id: the phy address to read 881 * @location: the phy regiester id to read 882 * 883 * Read MII registers through MDIO and MDC 884 * using MDIO management frame structure and protocol(defined by ISO/IEC). 885 * Please see SiS7014 or ICS spec 886 */ 887 888 static int mdio_read(struct net_device *net_dev, int phy_id, int location) 889 { 890 long mdio_addr = net_dev->base_addr + mear; 891 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift); 892 u16 retval = 0; 893 int i; 894 895 mdio_reset(mdio_addr); 896 mdio_idle(mdio_addr); 897 898 for (i = 15; i >= 0; i--) { 899 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; 900 outl(dataval, mdio_addr); 901 mdio_delay(); 902 outl(dataval | MDC, mdio_addr); 903 mdio_delay(); 904 } 905 906 /* Read the 16 data bits. */ 907 for (i = 16; i > 0; i--) { 908 outl(0, mdio_addr); 909 mdio_delay(); 910 retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0); 911 outl(MDC, mdio_addr); 912 mdio_delay(); 913 } 914 outl(0x00, mdio_addr); 915 916 return retval; 917 } 918 919 /** 920 * mdio_write - write MII PHY register 921 * @net_dev: the net device to write 922 * @phy_id: the phy address to write 923 * @location: the phy regiester id to write 924 * @value: the register value to write with 925 * 926 * Write MII registers with @value through MDIO and MDC 927 * using MDIO management frame structure and protocol(defined by ISO/IEC) 928 * please see SiS7014 or ICS spec 929 */ 930 931 static void mdio_write(struct net_device *net_dev, int phy_id, int location, 932 int value) 933 { 934 long mdio_addr = net_dev->base_addr + mear; 935 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift); 936 int i; 937 938 mdio_reset(mdio_addr); 939 mdio_idle(mdio_addr); 940 941 /* Shift the command bits out. */ 942 for (i = 15; i >= 0; i--) { 943 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; 944 outb(dataval, mdio_addr); 945 mdio_delay(); 946 outb(dataval | MDC, mdio_addr); 947 mdio_delay(); 948 } 949 mdio_delay(); 950 951 /* Shift the value bits out. */ 952 for (i = 15; i >= 0; i--) { 953 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR; 954 outl(dataval, mdio_addr); 955 mdio_delay(); 956 outl(dataval | MDC, mdio_addr); 957 mdio_delay(); 958 } 959 mdio_delay(); 960 961 /* Clear out extra bits. */ 962 for (i = 2; i > 0; i--) { 963 outb(0, mdio_addr); 964 mdio_delay(); 965 outb(MDC, mdio_addr); 966 mdio_delay(); 967 } 968 outl(0x00, mdio_addr); 969 } 970 971 972 /** 973 * sis900_reset_phy - reset sis900 mii phy. 974 * @net_dev: the net device to write 975 * @phy_addr: default phy address 976 * 977 * Some specific phy can't work properly without reset. 978 * This function will be called during initialization and 979 * link status change from ON to DOWN. 980 */ 981 982 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr) 983 { 984 int i; 985 u16 status; 986 987 for (i = 0; i < 2; i++) 988 status = mdio_read(net_dev, phy_addr, MII_STATUS); 989 990 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET ); 991 992 return status; 993 } 994 995 #ifdef CONFIG_NET_POLL_CONTROLLER 996 /* 997 * Polling 'interrupt' - used by things like netconsole to send skbs 998 * without having to re-enable interrupts. It's not called while 999 * the interrupt routine is executing. 1000 */ 1001 static void sis900_poll(struct net_device *dev) 1002 { 1003 disable_irq(dev->irq); 1004 sis900_interrupt(dev->irq, dev); 1005 enable_irq(dev->irq); 1006 } 1007 #endif 1008 1009 /** 1010 * sis900_open - open sis900 device 1011 * @net_dev: the net device to open 1012 * 1013 * Do some initialization and start net interface. 1014 * enable interrupts and set sis900 timer. 1015 */ 1016 1017 static int 1018 sis900_open(struct net_device *net_dev) 1019 { 1020 struct sis900_private *sis_priv = netdev_priv(net_dev); 1021 long ioaddr = net_dev->base_addr; 1022 int ret; 1023 1024 /* Soft reset the chip. */ 1025 sis900_reset(net_dev); 1026 1027 /* Equalizer workaround Rule */ 1028 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1029 1030 ret = request_irq(net_dev->irq, sis900_interrupt, IRQF_SHARED, 1031 net_dev->name, net_dev); 1032 if (ret) 1033 return ret; 1034 1035 sis900_init_rxfilter(net_dev); 1036 1037 sis900_init_tx_ring(net_dev); 1038 sis900_init_rx_ring(net_dev); 1039 1040 set_rx_mode(net_dev); 1041 1042 netif_start_queue(net_dev); 1043 1044 /* Workaround for EDB */ 1045 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED); 1046 1047 /* Enable all known interrupts by setting the interrupt mask. */ 1048 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr); 1049 outl(RxENA | inl(ioaddr + cr), ioaddr + cr); 1050 outl(IE, ioaddr + ier); 1051 1052 sis900_check_mode(net_dev, sis_priv->mii); 1053 1054 /* Set the timer to switch to check for link beat and perhaps switch 1055 to an alternate media type. */ 1056 init_timer(&sis_priv->timer); 1057 sis_priv->timer.expires = jiffies + HZ; 1058 sis_priv->timer.data = (unsigned long)net_dev; 1059 sis_priv->timer.function = sis900_timer; 1060 add_timer(&sis_priv->timer); 1061 1062 return 0; 1063 } 1064 1065 /** 1066 * sis900_init_rxfilter - Initialize the Rx filter 1067 * @net_dev: the net device to initialize for 1068 * 1069 * Set receive filter address to our MAC address 1070 * and enable packet filtering. 1071 */ 1072 1073 static void 1074 sis900_init_rxfilter (struct net_device * net_dev) 1075 { 1076 struct sis900_private *sis_priv = netdev_priv(net_dev); 1077 long ioaddr = net_dev->base_addr; 1078 u32 rfcrSave; 1079 u32 i; 1080 1081 rfcrSave = inl(rfcr + ioaddr); 1082 1083 /* disable packet filtering before setting filter */ 1084 outl(rfcrSave & ~RFEN, rfcr + ioaddr); 1085 1086 /* load MAC addr to filter data register */ 1087 for (i = 0 ; i < 3 ; i++) { 1088 u32 w; 1089 1090 w = (u32) *((u16 *)(net_dev->dev_addr)+i); 1091 outl((i << RFADDR_shift), ioaddr + rfcr); 1092 outl(w, ioaddr + rfdr); 1093 1094 if (netif_msg_hw(sis_priv)) { 1095 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n", 1096 net_dev->name, i, inl(ioaddr + rfdr)); 1097 } 1098 } 1099 1100 /* enable packet filtering */ 1101 outl(rfcrSave | RFEN, rfcr + ioaddr); 1102 } 1103 1104 /** 1105 * sis900_init_tx_ring - Initialize the Tx descriptor ring 1106 * @net_dev: the net device to initialize for 1107 * 1108 * Initialize the Tx descriptor ring, 1109 */ 1110 1111 static void 1112 sis900_init_tx_ring(struct net_device *net_dev) 1113 { 1114 struct sis900_private *sis_priv = netdev_priv(net_dev); 1115 long ioaddr = net_dev->base_addr; 1116 int i; 1117 1118 sis_priv->tx_full = 0; 1119 sis_priv->dirty_tx = sis_priv->cur_tx = 0; 1120 1121 for (i = 0; i < NUM_TX_DESC; i++) { 1122 sis_priv->tx_skbuff[i] = NULL; 1123 1124 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma + 1125 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc); 1126 sis_priv->tx_ring[i].cmdsts = 0; 1127 sis_priv->tx_ring[i].bufptr = 0; 1128 } 1129 1130 /* load Transmit Descriptor Register */ 1131 outl(sis_priv->tx_ring_dma, ioaddr + txdp); 1132 if (netif_msg_hw(sis_priv)) 1133 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n", 1134 net_dev->name, inl(ioaddr + txdp)); 1135 } 1136 1137 /** 1138 * sis900_init_rx_ring - Initialize the Rx descriptor ring 1139 * @net_dev: the net device to initialize for 1140 * 1141 * Initialize the Rx descriptor ring, 1142 * and pre-allocate recevie buffers (socket buffer) 1143 */ 1144 1145 static void 1146 sis900_init_rx_ring(struct net_device *net_dev) 1147 { 1148 struct sis900_private *sis_priv = netdev_priv(net_dev); 1149 long ioaddr = net_dev->base_addr; 1150 int i; 1151 1152 sis_priv->cur_rx = 0; 1153 sis_priv->dirty_rx = 0; 1154 1155 /* init RX descriptor */ 1156 for (i = 0; i < NUM_RX_DESC; i++) { 1157 sis_priv->rx_skbuff[i] = NULL; 1158 1159 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma + 1160 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc); 1161 sis_priv->rx_ring[i].cmdsts = 0; 1162 sis_priv->rx_ring[i].bufptr = 0; 1163 } 1164 1165 /* allocate sock buffers */ 1166 for (i = 0; i < NUM_RX_DESC; i++) { 1167 struct sk_buff *skb; 1168 1169 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) { 1170 /* not enough memory for skbuff, this makes a "hole" 1171 on the buffer ring, it is not clear how the 1172 hardware will react to this kind of degenerated 1173 buffer */ 1174 break; 1175 } 1176 sis_priv->rx_skbuff[i] = skb; 1177 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE; 1178 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev, 1179 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1180 } 1181 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC); 1182 1183 /* load Receive Descriptor Register */ 1184 outl(sis_priv->rx_ring_dma, ioaddr + rxdp); 1185 if (netif_msg_hw(sis_priv)) 1186 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n", 1187 net_dev->name, inl(ioaddr + rxdp)); 1188 } 1189 1190 /** 1191 * sis630_set_eq - set phy equalizer value for 630 LAN 1192 * @net_dev: the net device to set equalizer value 1193 * @revision: 630 LAN revision number 1194 * 1195 * 630E equalizer workaround rule(Cyrus Huang 08/15) 1196 * PHY register 14h(Test) 1197 * Bit 14: 0 -- Automatically detect (default) 1198 * 1 -- Manually set Equalizer filter 1199 * Bit 13: 0 -- (Default) 1200 * 1 -- Speed up convergence of equalizer setting 1201 * Bit 9 : 0 -- (Default) 1202 * 1 -- Disable Baseline Wander 1203 * Bit 3~7 -- Equalizer filter setting 1204 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0 1205 * Then calculate equalizer value 1206 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0 1207 * Link Off:Set Bit 13 to 1, Bit 14 to 0 1208 * Calculate Equalizer value: 1209 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value. 1210 * When the equalizer is stable, this value is not a fixed value. It will be within 1211 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9) 1212 * 0 <= max <= 4 --> set equalizer to max 1213 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min 1214 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min 1215 */ 1216 1217 static void sis630_set_eq(struct net_device *net_dev, u8 revision) 1218 { 1219 struct sis900_private *sis_priv = netdev_priv(net_dev); 1220 u16 reg14h, eq_value=0, max_value=0, min_value=0; 1221 int i, maxcount=10; 1222 1223 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV || 1224 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) ) 1225 return; 1226 1227 if (netif_carrier_ok(net_dev)) { 1228 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1229 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1230 (0x2200 | reg14h) & 0xBFFF); 1231 for (i=0; i < maxcount; i++) { 1232 eq_value = (0x00F8 & mdio_read(net_dev, 1233 sis_priv->cur_phy, MII_RESV)) >> 3; 1234 if (i == 0) 1235 max_value=min_value=eq_value; 1236 max_value = (eq_value > max_value) ? 1237 eq_value : max_value; 1238 min_value = (eq_value < min_value) ? 1239 eq_value : min_value; 1240 } 1241 /* 630E rule to determine the equalizer value */ 1242 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV || 1243 revision == SIS630ET_900_REV) { 1244 if (max_value < 5) 1245 eq_value = max_value; 1246 else if (max_value >= 5 && max_value < 15) 1247 eq_value = (max_value == min_value) ? 1248 max_value+2 : max_value+1; 1249 else if (max_value >= 15) 1250 eq_value=(max_value == min_value) ? 1251 max_value+6 : max_value+5; 1252 } 1253 /* 630B0&B1 rule to determine the equalizer value */ 1254 if (revision == SIS630A_900_REV && 1255 (sis_priv->host_bridge_rev == SIS630B0 || 1256 sis_priv->host_bridge_rev == SIS630B1)) { 1257 if (max_value == 0) 1258 eq_value = 3; 1259 else 1260 eq_value = (max_value + min_value + 1)/2; 1261 } 1262 /* write equalizer value and setting */ 1263 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1264 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8); 1265 reg14h = (reg14h | 0x6000) & 0xFDFF; 1266 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h); 1267 } else { 1268 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1269 if (revision == SIS630A_900_REV && 1270 (sis_priv->host_bridge_rev == SIS630B0 || 1271 sis_priv->host_bridge_rev == SIS630B1)) 1272 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1273 (reg14h | 0x2200) & 0xBFFF); 1274 else 1275 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1276 (reg14h | 0x2000) & 0xBFFF); 1277 } 1278 } 1279 1280 /** 1281 * sis900_timer - sis900 timer routine 1282 * @data: pointer to sis900 net device 1283 * 1284 * On each timer ticks we check two things, 1285 * link status (ON/OFF) and link mode (10/100/Full/Half) 1286 */ 1287 1288 static void sis900_timer(unsigned long data) 1289 { 1290 struct net_device *net_dev = (struct net_device *)data; 1291 struct sis900_private *sis_priv = netdev_priv(net_dev); 1292 struct mii_phy *mii_phy = sis_priv->mii; 1293 static const int next_tick = 5*HZ; 1294 u16 status; 1295 1296 if (!sis_priv->autong_complete){ 1297 int uninitialized_var(speed), duplex = 0; 1298 1299 sis900_read_mode(net_dev, &speed, &duplex); 1300 if (duplex){ 1301 sis900_set_mode(net_dev->base_addr, speed, duplex); 1302 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1303 netif_start_queue(net_dev); 1304 } 1305 1306 sis_priv->timer.expires = jiffies + HZ; 1307 add_timer(&sis_priv->timer); 1308 return; 1309 } 1310 1311 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 1312 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 1313 1314 /* Link OFF -> ON */ 1315 if (!netif_carrier_ok(net_dev)) { 1316 LookForLink: 1317 /* Search for new PHY */ 1318 status = sis900_default_phy(net_dev); 1319 mii_phy = sis_priv->mii; 1320 1321 if (status & MII_STAT_LINK){ 1322 sis900_check_mode(net_dev, mii_phy); 1323 netif_carrier_on(net_dev); 1324 } 1325 } else { 1326 /* Link ON -> OFF */ 1327 if (!(status & MII_STAT_LINK)){ 1328 netif_carrier_off(net_dev); 1329 if(netif_msg_link(sis_priv)) 1330 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name); 1331 1332 /* Change mode issue */ 1333 if ((mii_phy->phy_id0 == 0x001D) && 1334 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000)) 1335 sis900_reset_phy(net_dev, sis_priv->cur_phy); 1336 1337 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1338 1339 goto LookForLink; 1340 } 1341 } 1342 1343 sis_priv->timer.expires = jiffies + next_tick; 1344 add_timer(&sis_priv->timer); 1345 } 1346 1347 /** 1348 * sis900_check_mode - check the media mode for sis900 1349 * @net_dev: the net device to be checked 1350 * @mii_phy: the mii phy 1351 * 1352 * Older driver gets the media mode from mii status output 1353 * register. Now we set our media capability and auto-negotiate 1354 * to get the upper bound of speed and duplex between two ends. 1355 * If the types of mii phy is HOME, it doesn't need to auto-negotiate 1356 * and autong_complete should be set to 1. 1357 */ 1358 1359 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy) 1360 { 1361 struct sis900_private *sis_priv = netdev_priv(net_dev); 1362 long ioaddr = net_dev->base_addr; 1363 int speed, duplex; 1364 1365 if (mii_phy->phy_types == LAN) { 1366 outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg); 1367 sis900_set_capability(net_dev , mii_phy); 1368 sis900_auto_negotiate(net_dev, sis_priv->cur_phy); 1369 } else { 1370 outl(EXD | inl(ioaddr + cfg), ioaddr + cfg); 1371 speed = HW_SPEED_HOME; 1372 duplex = FDX_CAPABLE_HALF_SELECTED; 1373 sis900_set_mode(ioaddr, speed, duplex); 1374 sis_priv->autong_complete = 1; 1375 } 1376 } 1377 1378 /** 1379 * sis900_set_mode - Set the media mode of mac register. 1380 * @ioaddr: the address of the device 1381 * @speed : the transmit speed to be determined 1382 * @duplex: the duplex mode to be determined 1383 * 1384 * Set the media mode of mac register txcfg/rxcfg according to 1385 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB 1386 * bus is used instead of PCI bus. When this bit is set 1, the 1387 * Max DMA Burst Size for TX/RX DMA should be no larger than 16 1388 * double words. 1389 */ 1390 1391 static void sis900_set_mode (long ioaddr, int speed, int duplex) 1392 { 1393 u32 tx_flags = 0, rx_flags = 0; 1394 1395 if (inl(ioaddr + cfg) & EDB_MASTER_EN) { 1396 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) | 1397 (TX_FILL_THRESH << TxFILLT_shift); 1398 rx_flags = DMA_BURST_64 << RxMXDMA_shift; 1399 } else { 1400 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) | 1401 (TX_FILL_THRESH << TxFILLT_shift); 1402 rx_flags = DMA_BURST_512 << RxMXDMA_shift; 1403 } 1404 1405 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) { 1406 rx_flags |= (RxDRNT_10 << RxDRNT_shift); 1407 tx_flags |= (TxDRNT_10 << TxDRNT_shift); 1408 } else { 1409 rx_flags |= (RxDRNT_100 << RxDRNT_shift); 1410 tx_flags |= (TxDRNT_100 << TxDRNT_shift); 1411 } 1412 1413 if (duplex == FDX_CAPABLE_FULL_SELECTED) { 1414 tx_flags |= (TxCSI | TxHBI); 1415 rx_flags |= RxATX; 1416 } 1417 1418 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 1419 /* Can accept Jumbo packet */ 1420 rx_flags |= RxAJAB; 1421 #endif 1422 1423 outl (tx_flags, ioaddr + txcfg); 1424 outl (rx_flags, ioaddr + rxcfg); 1425 } 1426 1427 /** 1428 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit. 1429 * @net_dev: the net device to read mode for 1430 * @phy_addr: mii phy address 1431 * 1432 * If the adapter is link-on, set the auto-negotiate enable/reset bit. 1433 * autong_complete should be set to 0 when starting auto-negotiation. 1434 * autong_complete should be set to 1 if we didn't start auto-negotiation. 1435 * sis900_timer will wait for link on again if autong_complete = 0. 1436 */ 1437 1438 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr) 1439 { 1440 struct sis900_private *sis_priv = netdev_priv(net_dev); 1441 int i = 0; 1442 u32 status; 1443 1444 for (i = 0; i < 2; i++) 1445 status = mdio_read(net_dev, phy_addr, MII_STATUS); 1446 1447 if (!(status & MII_STAT_LINK)){ 1448 if(netif_msg_link(sis_priv)) 1449 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name); 1450 sis_priv->autong_complete = 1; 1451 netif_carrier_off(net_dev); 1452 return; 1453 } 1454 1455 /* (Re)start AutoNegotiate */ 1456 mdio_write(net_dev, phy_addr, MII_CONTROL, 1457 MII_CNTL_AUTO | MII_CNTL_RST_AUTO); 1458 sis_priv->autong_complete = 0; 1459 } 1460 1461 1462 /** 1463 * sis900_read_mode - read media mode for sis900 internal phy 1464 * @net_dev: the net device to read mode for 1465 * @speed : the transmit speed to be determined 1466 * @duplex : the duplex mode to be determined 1467 * 1468 * The capability of remote end will be put in mii register autorec 1469 * after auto-negotiation. Use AND operation to get the upper bound 1470 * of speed and duplex between two ends. 1471 */ 1472 1473 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex) 1474 { 1475 struct sis900_private *sis_priv = netdev_priv(net_dev); 1476 struct mii_phy *phy = sis_priv->mii; 1477 int phy_addr = sis_priv->cur_phy; 1478 u32 status; 1479 u16 autoadv, autorec; 1480 int i; 1481 1482 for (i = 0; i < 2; i++) 1483 status = mdio_read(net_dev, phy_addr, MII_STATUS); 1484 1485 if (!(status & MII_STAT_LINK)) 1486 return; 1487 1488 /* AutoNegotiate completed */ 1489 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV); 1490 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR); 1491 status = autoadv & autorec; 1492 1493 *speed = HW_SPEED_10_MBPS; 1494 *duplex = FDX_CAPABLE_HALF_SELECTED; 1495 1496 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX)) 1497 *speed = HW_SPEED_100_MBPS; 1498 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX)) 1499 *duplex = FDX_CAPABLE_FULL_SELECTED; 1500 1501 sis_priv->autong_complete = 1; 1502 1503 /* Workaround for Realtek RTL8201 PHY issue */ 1504 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) { 1505 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX) 1506 *duplex = FDX_CAPABLE_FULL_SELECTED; 1507 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01) 1508 *speed = HW_SPEED_100_MBPS; 1509 } 1510 1511 if(netif_msg_link(sis_priv)) 1512 printk(KERN_INFO "%s: Media Link On %s %s-duplex\n", 1513 net_dev->name, 1514 *speed == HW_SPEED_100_MBPS ? 1515 "100mbps" : "10mbps", 1516 *duplex == FDX_CAPABLE_FULL_SELECTED ? 1517 "full" : "half"); 1518 } 1519 1520 /** 1521 * sis900_tx_timeout - sis900 transmit timeout routine 1522 * @net_dev: the net device to transmit 1523 * 1524 * print transmit timeout status 1525 * disable interrupts and do some tasks 1526 */ 1527 1528 static void sis900_tx_timeout(struct net_device *net_dev) 1529 { 1530 struct sis900_private *sis_priv = netdev_priv(net_dev); 1531 long ioaddr = net_dev->base_addr; 1532 unsigned long flags; 1533 int i; 1534 1535 if(netif_msg_tx_err(sis_priv)) 1536 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n", 1537 net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr)); 1538 1539 /* Disable interrupts by clearing the interrupt mask. */ 1540 outl(0x0000, ioaddr + imr); 1541 1542 /* use spinlock to prevent interrupt handler accessing buffer ring */ 1543 spin_lock_irqsave(&sis_priv->lock, flags); 1544 1545 /* discard unsent packets */ 1546 sis_priv->dirty_tx = sis_priv->cur_tx = 0; 1547 for (i = 0; i < NUM_TX_DESC; i++) { 1548 struct sk_buff *skb = sis_priv->tx_skbuff[i]; 1549 1550 if (skb) { 1551 pci_unmap_single(sis_priv->pci_dev, 1552 sis_priv->tx_ring[i].bufptr, skb->len, 1553 PCI_DMA_TODEVICE); 1554 dev_kfree_skb_irq(skb); 1555 sis_priv->tx_skbuff[i] = NULL; 1556 sis_priv->tx_ring[i].cmdsts = 0; 1557 sis_priv->tx_ring[i].bufptr = 0; 1558 net_dev->stats.tx_dropped++; 1559 } 1560 } 1561 sis_priv->tx_full = 0; 1562 netif_wake_queue(net_dev); 1563 1564 spin_unlock_irqrestore(&sis_priv->lock, flags); 1565 1566 net_dev->trans_start = jiffies; /* prevent tx timeout */ 1567 1568 /* load Transmit Descriptor Register */ 1569 outl(sis_priv->tx_ring_dma, ioaddr + txdp); 1570 1571 /* Enable all known interrupts by setting the interrupt mask. */ 1572 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr); 1573 } 1574 1575 /** 1576 * sis900_start_xmit - sis900 start transmit routine 1577 * @skb: socket buffer pointer to put the data being transmitted 1578 * @net_dev: the net device to transmit with 1579 * 1580 * Set the transmit buffer descriptor, 1581 * and write TxENA to enable transmit state machine. 1582 * tell upper layer if the buffer is full 1583 */ 1584 1585 static netdev_tx_t 1586 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 1587 { 1588 struct sis900_private *sis_priv = netdev_priv(net_dev); 1589 long ioaddr = net_dev->base_addr; 1590 unsigned int entry; 1591 unsigned long flags; 1592 unsigned int index_cur_tx, index_dirty_tx; 1593 unsigned int count_dirty_tx; 1594 1595 /* Don't transmit data before the complete of auto-negotiation */ 1596 if(!sis_priv->autong_complete){ 1597 netif_stop_queue(net_dev); 1598 return NETDEV_TX_BUSY; 1599 } 1600 1601 spin_lock_irqsave(&sis_priv->lock, flags); 1602 1603 /* Calculate the next Tx descriptor entry. */ 1604 entry = sis_priv->cur_tx % NUM_TX_DESC; 1605 sis_priv->tx_skbuff[entry] = skb; 1606 1607 /* set the transmit buffer descriptor and enable Transmit State Machine */ 1608 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev, 1609 skb->data, skb->len, PCI_DMA_TODEVICE); 1610 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len); 1611 outl(TxENA | inl(ioaddr + cr), ioaddr + cr); 1612 1613 sis_priv->cur_tx ++; 1614 index_cur_tx = sis_priv->cur_tx; 1615 index_dirty_tx = sis_priv->dirty_tx; 1616 1617 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++) 1618 count_dirty_tx ++; 1619 1620 if (index_cur_tx == index_dirty_tx) { 1621 /* dirty_tx is met in the cycle of cur_tx, buffer full */ 1622 sis_priv->tx_full = 1; 1623 netif_stop_queue(net_dev); 1624 } else if (count_dirty_tx < NUM_TX_DESC) { 1625 /* Typical path, tell upper layer that more transmission is possible */ 1626 netif_start_queue(net_dev); 1627 } else { 1628 /* buffer full, tell upper layer no more transmission */ 1629 sis_priv->tx_full = 1; 1630 netif_stop_queue(net_dev); 1631 } 1632 1633 spin_unlock_irqrestore(&sis_priv->lock, flags); 1634 1635 if (netif_msg_tx_queued(sis_priv)) 1636 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d " 1637 "to slot %d.\n", 1638 net_dev->name, skb->data, (int)skb->len, entry); 1639 1640 return NETDEV_TX_OK; 1641 } 1642 1643 /** 1644 * sis900_interrupt - sis900 interrupt handler 1645 * @irq: the irq number 1646 * @dev_instance: the client data object 1647 * 1648 * The interrupt handler does all of the Rx thread work, 1649 * and cleans up after the Tx thread 1650 */ 1651 1652 static irqreturn_t sis900_interrupt(int irq, void *dev_instance) 1653 { 1654 struct net_device *net_dev = dev_instance; 1655 struct sis900_private *sis_priv = netdev_priv(net_dev); 1656 int boguscnt = max_interrupt_work; 1657 long ioaddr = net_dev->base_addr; 1658 u32 status; 1659 unsigned int handled = 0; 1660 1661 spin_lock (&sis_priv->lock); 1662 1663 do { 1664 status = inl(ioaddr + isr); 1665 1666 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0) 1667 /* nothing intresting happened */ 1668 break; 1669 handled = 1; 1670 1671 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */ 1672 if (status & (RxORN | RxERR | RxOK)) 1673 /* Rx interrupt */ 1674 sis900_rx(net_dev); 1675 1676 if (status & (TxURN | TxERR | TxIDLE)) 1677 /* Tx interrupt */ 1678 sis900_finish_xmit(net_dev); 1679 1680 /* something strange happened !!! */ 1681 if (status & HIBERR) { 1682 if(netif_msg_intr(sis_priv)) 1683 printk(KERN_INFO "%s: Abnormal interrupt, " 1684 "status %#8.8x.\n", net_dev->name, status); 1685 break; 1686 } 1687 if (--boguscnt < 0) { 1688 if(netif_msg_intr(sis_priv)) 1689 printk(KERN_INFO "%s: Too much work at interrupt, " 1690 "interrupt status = %#8.8x.\n", 1691 net_dev->name, status); 1692 break; 1693 } 1694 } while (1); 1695 1696 if(netif_msg_intr(sis_priv)) 1697 printk(KERN_DEBUG "%s: exiting interrupt, " 1698 "interrupt status = 0x%#8.8x.\n", 1699 net_dev->name, inl(ioaddr + isr)); 1700 1701 spin_unlock (&sis_priv->lock); 1702 return IRQ_RETVAL(handled); 1703 } 1704 1705 /** 1706 * sis900_rx - sis900 receive routine 1707 * @net_dev: the net device which receives data 1708 * 1709 * Process receive interrupt events, 1710 * put buffer to higher layer and refill buffer pool 1711 * Note: This function is called by interrupt handler, 1712 * don't do "too much" work here 1713 */ 1714 1715 static int sis900_rx(struct net_device *net_dev) 1716 { 1717 struct sis900_private *sis_priv = netdev_priv(net_dev); 1718 long ioaddr = net_dev->base_addr; 1719 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC; 1720 u32 rx_status = sis_priv->rx_ring[entry].cmdsts; 1721 int rx_work_limit; 1722 1723 if (netif_msg_rx_status(sis_priv)) 1724 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d " 1725 "status:0x%8.8x\n", 1726 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status); 1727 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx; 1728 1729 while (rx_status & OWN) { 1730 unsigned int rx_size; 1731 unsigned int data_size; 1732 1733 if (--rx_work_limit < 0) 1734 break; 1735 1736 data_size = rx_status & DSIZE; 1737 rx_size = data_size - CRC_SIZE; 1738 1739 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 1740 /* ``TOOLONG'' flag means jumbo packet received. */ 1741 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE) 1742 rx_status &= (~ ((unsigned int)TOOLONG)); 1743 #endif 1744 1745 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) { 1746 /* corrupted packet received */ 1747 if (netif_msg_rx_err(sis_priv)) 1748 printk(KERN_DEBUG "%s: Corrupted packet " 1749 "received, buffer status = 0x%8.8x/%d.\n", 1750 net_dev->name, rx_status, data_size); 1751 net_dev->stats.rx_errors++; 1752 if (rx_status & OVERRUN) 1753 net_dev->stats.rx_over_errors++; 1754 if (rx_status & (TOOLONG|RUNT)) 1755 net_dev->stats.rx_length_errors++; 1756 if (rx_status & (RXISERR | FAERR)) 1757 net_dev->stats.rx_frame_errors++; 1758 if (rx_status & CRCERR) 1759 net_dev->stats.rx_crc_errors++; 1760 /* reset buffer descriptor state */ 1761 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1762 } else { 1763 struct sk_buff * skb; 1764 struct sk_buff * rx_skb; 1765 1766 pci_unmap_single(sis_priv->pci_dev, 1767 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE, 1768 PCI_DMA_FROMDEVICE); 1769 1770 /* refill the Rx buffer, what if there is not enough 1771 * memory for new socket buffer ?? */ 1772 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) { 1773 /* 1774 * Not enough memory to refill the buffer 1775 * so we need to recycle the old one so 1776 * as to avoid creating a memory hole 1777 * in the rx ring 1778 */ 1779 skb = sis_priv->rx_skbuff[entry]; 1780 net_dev->stats.rx_dropped++; 1781 goto refill_rx_ring; 1782 } 1783 1784 /* This situation should never happen, but due to 1785 some unknown bugs, it is possible that 1786 we are working on NULL sk_buff :-( */ 1787 if (sis_priv->rx_skbuff[entry] == NULL) { 1788 if (netif_msg_rx_err(sis_priv)) 1789 printk(KERN_WARNING "%s: NULL pointer " 1790 "encountered in Rx ring\n" 1791 "cur_rx:%4.4d, dirty_rx:%4.4d\n", 1792 net_dev->name, sis_priv->cur_rx, 1793 sis_priv->dirty_rx); 1794 dev_kfree_skb(skb); 1795 break; 1796 } 1797 1798 /* give the socket buffer to upper layers */ 1799 rx_skb = sis_priv->rx_skbuff[entry]; 1800 skb_put(rx_skb, rx_size); 1801 rx_skb->protocol = eth_type_trans(rx_skb, net_dev); 1802 netif_rx(rx_skb); 1803 1804 /* some network statistics */ 1805 if ((rx_status & BCAST) == MCAST) 1806 net_dev->stats.multicast++; 1807 net_dev->stats.rx_bytes += rx_size; 1808 net_dev->stats.rx_packets++; 1809 sis_priv->dirty_rx++; 1810 refill_rx_ring: 1811 sis_priv->rx_skbuff[entry] = skb; 1812 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1813 sis_priv->rx_ring[entry].bufptr = 1814 pci_map_single(sis_priv->pci_dev, skb->data, 1815 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1816 } 1817 sis_priv->cur_rx++; 1818 entry = sis_priv->cur_rx % NUM_RX_DESC; 1819 rx_status = sis_priv->rx_ring[entry].cmdsts; 1820 } // while 1821 1822 /* refill the Rx buffer, what if the rate of refilling is slower 1823 * than consuming ?? */ 1824 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) { 1825 struct sk_buff *skb; 1826 1827 entry = sis_priv->dirty_rx % NUM_RX_DESC; 1828 1829 if (sis_priv->rx_skbuff[entry] == NULL) { 1830 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) { 1831 /* not enough memory for skbuff, this makes a 1832 * "hole" on the buffer ring, it is not clear 1833 * how the hardware will react to this kind 1834 * of degenerated buffer */ 1835 if (netif_msg_rx_err(sis_priv)) 1836 printk(KERN_INFO "%s: Memory squeeze, " 1837 "deferring packet.\n", 1838 net_dev->name); 1839 net_dev->stats.rx_dropped++; 1840 break; 1841 } 1842 sis_priv->rx_skbuff[entry] = skb; 1843 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1844 sis_priv->rx_ring[entry].bufptr = 1845 pci_map_single(sis_priv->pci_dev, skb->data, 1846 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1847 } 1848 } 1849 /* re-enable the potentially idle receive state matchine */ 1850 outl(RxENA | inl(ioaddr + cr), ioaddr + cr ); 1851 1852 return 0; 1853 } 1854 1855 /** 1856 * sis900_finish_xmit - finish up transmission of packets 1857 * @net_dev: the net device to be transmitted on 1858 * 1859 * Check for error condition and free socket buffer etc 1860 * schedule for more transmission as needed 1861 * Note: This function is called by interrupt handler, 1862 * don't do "too much" work here 1863 */ 1864 1865 static void sis900_finish_xmit (struct net_device *net_dev) 1866 { 1867 struct sis900_private *sis_priv = netdev_priv(net_dev); 1868 1869 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) { 1870 struct sk_buff *skb; 1871 unsigned int entry; 1872 u32 tx_status; 1873 1874 entry = sis_priv->dirty_tx % NUM_TX_DESC; 1875 tx_status = sis_priv->tx_ring[entry].cmdsts; 1876 1877 if (tx_status & OWN) { 1878 /* The packet is not transmitted yet (owned by hardware) ! 1879 * Note: the interrupt is generated only when Tx Machine 1880 * is idle, so this is an almost impossible case */ 1881 break; 1882 } 1883 1884 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) { 1885 /* packet unsuccessfully transmitted */ 1886 if (netif_msg_tx_err(sis_priv)) 1887 printk(KERN_DEBUG "%s: Transmit " 1888 "error, Tx status %8.8x.\n", 1889 net_dev->name, tx_status); 1890 net_dev->stats.tx_errors++; 1891 if (tx_status & UNDERRUN) 1892 net_dev->stats.tx_fifo_errors++; 1893 if (tx_status & ABORT) 1894 net_dev->stats.tx_aborted_errors++; 1895 if (tx_status & NOCARRIER) 1896 net_dev->stats.tx_carrier_errors++; 1897 if (tx_status & OWCOLL) 1898 net_dev->stats.tx_window_errors++; 1899 } else { 1900 /* packet successfully transmitted */ 1901 net_dev->stats.collisions += (tx_status & COLCNT) >> 16; 1902 net_dev->stats.tx_bytes += tx_status & DSIZE; 1903 net_dev->stats.tx_packets++; 1904 } 1905 /* Free the original skb. */ 1906 skb = sis_priv->tx_skbuff[entry]; 1907 pci_unmap_single(sis_priv->pci_dev, 1908 sis_priv->tx_ring[entry].bufptr, skb->len, 1909 PCI_DMA_TODEVICE); 1910 dev_kfree_skb_irq(skb); 1911 sis_priv->tx_skbuff[entry] = NULL; 1912 sis_priv->tx_ring[entry].bufptr = 0; 1913 sis_priv->tx_ring[entry].cmdsts = 0; 1914 } 1915 1916 if (sis_priv->tx_full && netif_queue_stopped(net_dev) && 1917 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) { 1918 /* The ring is no longer full, clear tx_full and schedule 1919 * more transmission by netif_wake_queue(net_dev) */ 1920 sis_priv->tx_full = 0; 1921 netif_wake_queue (net_dev); 1922 } 1923 } 1924 1925 /** 1926 * sis900_close - close sis900 device 1927 * @net_dev: the net device to be closed 1928 * 1929 * Disable interrupts, stop the Tx and Rx Status Machine 1930 * free Tx and RX socket buffer 1931 */ 1932 1933 static int sis900_close(struct net_device *net_dev) 1934 { 1935 long ioaddr = net_dev->base_addr; 1936 struct sis900_private *sis_priv = netdev_priv(net_dev); 1937 struct sk_buff *skb; 1938 int i; 1939 1940 netif_stop_queue(net_dev); 1941 1942 /* Disable interrupts by clearing the interrupt mask. */ 1943 outl(0x0000, ioaddr + imr); 1944 outl(0x0000, ioaddr + ier); 1945 1946 /* Stop the chip's Tx and Rx Status Machine */ 1947 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr); 1948 1949 del_timer(&sis_priv->timer); 1950 1951 free_irq(net_dev->irq, net_dev); 1952 1953 /* Free Tx and RX skbuff */ 1954 for (i = 0; i < NUM_RX_DESC; i++) { 1955 skb = sis_priv->rx_skbuff[i]; 1956 if (skb) { 1957 pci_unmap_single(sis_priv->pci_dev, 1958 sis_priv->rx_ring[i].bufptr, 1959 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1960 dev_kfree_skb(skb); 1961 sis_priv->rx_skbuff[i] = NULL; 1962 } 1963 } 1964 for (i = 0; i < NUM_TX_DESC; i++) { 1965 skb = sis_priv->tx_skbuff[i]; 1966 if (skb) { 1967 pci_unmap_single(sis_priv->pci_dev, 1968 sis_priv->tx_ring[i].bufptr, skb->len, 1969 PCI_DMA_TODEVICE); 1970 dev_kfree_skb(skb); 1971 sis_priv->tx_skbuff[i] = NULL; 1972 } 1973 } 1974 1975 /* Green! Put the chip in low-power mode. */ 1976 1977 return 0; 1978 } 1979 1980 /** 1981 * sis900_get_drvinfo - Return information about driver 1982 * @net_dev: the net device to probe 1983 * @info: container for info returned 1984 * 1985 * Process ethtool command such as "ehtool -i" to show information 1986 */ 1987 1988 static void sis900_get_drvinfo(struct net_device *net_dev, 1989 struct ethtool_drvinfo *info) 1990 { 1991 struct sis900_private *sis_priv = netdev_priv(net_dev); 1992 1993 strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver)); 1994 strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version)); 1995 strlcpy(info->bus_info, pci_name(sis_priv->pci_dev), 1996 sizeof(info->bus_info)); 1997 } 1998 1999 static u32 sis900_get_msglevel(struct net_device *net_dev) 2000 { 2001 struct sis900_private *sis_priv = netdev_priv(net_dev); 2002 return sis_priv->msg_enable; 2003 } 2004 2005 static void sis900_set_msglevel(struct net_device *net_dev, u32 value) 2006 { 2007 struct sis900_private *sis_priv = netdev_priv(net_dev); 2008 sis_priv->msg_enable = value; 2009 } 2010 2011 static u32 sis900_get_link(struct net_device *net_dev) 2012 { 2013 struct sis900_private *sis_priv = netdev_priv(net_dev); 2014 return mii_link_ok(&sis_priv->mii_info); 2015 } 2016 2017 static int sis900_get_settings(struct net_device *net_dev, 2018 struct ethtool_cmd *cmd) 2019 { 2020 struct sis900_private *sis_priv = netdev_priv(net_dev); 2021 spin_lock_irq(&sis_priv->lock); 2022 mii_ethtool_gset(&sis_priv->mii_info, cmd); 2023 spin_unlock_irq(&sis_priv->lock); 2024 return 0; 2025 } 2026 2027 static int sis900_set_settings(struct net_device *net_dev, 2028 struct ethtool_cmd *cmd) 2029 { 2030 struct sis900_private *sis_priv = netdev_priv(net_dev); 2031 int rt; 2032 spin_lock_irq(&sis_priv->lock); 2033 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd); 2034 spin_unlock_irq(&sis_priv->lock); 2035 return rt; 2036 } 2037 2038 static int sis900_nway_reset(struct net_device *net_dev) 2039 { 2040 struct sis900_private *sis_priv = netdev_priv(net_dev); 2041 return mii_nway_restart(&sis_priv->mii_info); 2042 } 2043 2044 /** 2045 * sis900_set_wol - Set up Wake on Lan registers 2046 * @net_dev: the net device to probe 2047 * @wol: container for info passed to the driver 2048 * 2049 * Process ethtool command "wol" to setup wake on lan features. 2050 * SiS900 supports sending WoL events if a correct packet is received, 2051 * but there is no simple way to filter them to only a subset (broadcast, 2052 * multicast, unicast or arp). 2053 */ 2054 2055 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol) 2056 { 2057 struct sis900_private *sis_priv = netdev_priv(net_dev); 2058 long pmctrl_addr = net_dev->base_addr + pmctrl; 2059 u32 cfgpmcsr = 0, pmctrl_bits = 0; 2060 2061 if (wol->wolopts == 0) { 2062 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr); 2063 cfgpmcsr &= ~PME_EN; 2064 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr); 2065 outl(pmctrl_bits, pmctrl_addr); 2066 if (netif_msg_wol(sis_priv)) 2067 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name); 2068 return 0; 2069 } 2070 2071 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST 2072 | WAKE_BCAST | WAKE_ARP)) 2073 return -EINVAL; 2074 2075 if (wol->wolopts & WAKE_MAGIC) 2076 pmctrl_bits |= MAGICPKT; 2077 if (wol->wolopts & WAKE_PHY) 2078 pmctrl_bits |= LINKON; 2079 2080 outl(pmctrl_bits, pmctrl_addr); 2081 2082 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr); 2083 cfgpmcsr |= PME_EN; 2084 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr); 2085 if (netif_msg_wol(sis_priv)) 2086 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name); 2087 2088 return 0; 2089 } 2090 2091 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol) 2092 { 2093 long pmctrl_addr = net_dev->base_addr + pmctrl; 2094 u32 pmctrl_bits; 2095 2096 pmctrl_bits = inl(pmctrl_addr); 2097 if (pmctrl_bits & MAGICPKT) 2098 wol->wolopts |= WAKE_MAGIC; 2099 if (pmctrl_bits & LINKON) 2100 wol->wolopts |= WAKE_PHY; 2101 2102 wol->supported = (WAKE_PHY | WAKE_MAGIC); 2103 } 2104 2105 static const struct ethtool_ops sis900_ethtool_ops = { 2106 .get_drvinfo = sis900_get_drvinfo, 2107 .get_msglevel = sis900_get_msglevel, 2108 .set_msglevel = sis900_set_msglevel, 2109 .get_link = sis900_get_link, 2110 .get_settings = sis900_get_settings, 2111 .set_settings = sis900_set_settings, 2112 .nway_reset = sis900_nway_reset, 2113 .get_wol = sis900_get_wol, 2114 .set_wol = sis900_set_wol 2115 }; 2116 2117 /** 2118 * mii_ioctl - process MII i/o control command 2119 * @net_dev: the net device to command for 2120 * @rq: parameter for command 2121 * @cmd: the i/o command 2122 * 2123 * Process MII command like read/write MII register 2124 */ 2125 2126 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 2127 { 2128 struct sis900_private *sis_priv = netdev_priv(net_dev); 2129 struct mii_ioctl_data *data = if_mii(rq); 2130 2131 switch(cmd) { 2132 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2133 data->phy_id = sis_priv->mii->phy_addr; 2134 /* Fall Through */ 2135 2136 case SIOCGMIIREG: /* Read MII PHY register. */ 2137 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f); 2138 return 0; 2139 2140 case SIOCSMIIREG: /* Write MII PHY register. */ 2141 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); 2142 return 0; 2143 default: 2144 return -EOPNOTSUPP; 2145 } 2146 } 2147 2148 /** 2149 * sis900_set_config - Set media type by net_device.set_config 2150 * @dev: the net device for media type change 2151 * @map: ifmap passed by ifconfig 2152 * 2153 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig 2154 * we support only port changes. All other runtime configuration 2155 * changes will be ignored 2156 */ 2157 2158 static int sis900_set_config(struct net_device *dev, struct ifmap *map) 2159 { 2160 struct sis900_private *sis_priv = netdev_priv(dev); 2161 struct mii_phy *mii_phy = sis_priv->mii; 2162 2163 u16 status; 2164 2165 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) { 2166 /* we switch on the ifmap->port field. I couldn't find anything 2167 * like a definition or standard for the values of that field. 2168 * I think the meaning of those values is device specific. But 2169 * since I would like to change the media type via the ifconfig 2170 * command I use the definition from linux/netdevice.h 2171 * (which seems to be different from the ifport(pcmcia) definition) */ 2172 switch(map->port){ 2173 case IF_PORT_UNKNOWN: /* use auto here */ 2174 dev->if_port = map->port; 2175 /* we are going to change the media type, so the Link 2176 * will be temporary down and we need to reflect that 2177 * here. When the Link comes up again, it will be 2178 * sensed by the sis_timer procedure, which also does 2179 * all the rest for us */ 2180 netif_carrier_off(dev); 2181 2182 /* read current state */ 2183 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2184 2185 /* enable auto negotiation and reset the negotioation 2186 * (I don't really know what the auto negatiotiation 2187 * reset really means, but it sounds for me right to 2188 * do one here) */ 2189 mdio_write(dev, mii_phy->phy_addr, 2190 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); 2191 2192 break; 2193 2194 case IF_PORT_10BASET: /* 10BaseT */ 2195 dev->if_port = map->port; 2196 2197 /* we are going to change the media type, so the Link 2198 * will be temporary down and we need to reflect that 2199 * here. When the Link comes up again, it will be 2200 * sensed by the sis_timer procedure, which also does 2201 * all the rest for us */ 2202 netif_carrier_off(dev); 2203 2204 /* set Speed to 10Mbps */ 2205 /* read current state */ 2206 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2207 2208 /* disable auto negotiation and force 10MBit mode*/ 2209 mdio_write(dev, mii_phy->phy_addr, 2210 MII_CONTROL, status & ~(MII_CNTL_SPEED | 2211 MII_CNTL_AUTO)); 2212 break; 2213 2214 case IF_PORT_100BASET: /* 100BaseT */ 2215 case IF_PORT_100BASETX: /* 100BaseTx */ 2216 dev->if_port = map->port; 2217 2218 /* we are going to change the media type, so the Link 2219 * will be temporary down and we need to reflect that 2220 * here. When the Link comes up again, it will be 2221 * sensed by the sis_timer procedure, which also does 2222 * all the rest for us */ 2223 netif_carrier_off(dev); 2224 2225 /* set Speed to 100Mbps */ 2226 /* disable auto negotiation and enable 100MBit Mode */ 2227 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2228 mdio_write(dev, mii_phy->phy_addr, 2229 MII_CONTROL, (status & ~MII_CNTL_SPEED) | 2230 MII_CNTL_SPEED); 2231 2232 break; 2233 2234 case IF_PORT_10BASE2: /* 10Base2 */ 2235 case IF_PORT_AUI: /* AUI */ 2236 case IF_PORT_100BASEFX: /* 100BaseFx */ 2237 /* These Modes are not supported (are they?)*/ 2238 return -EOPNOTSUPP; 2239 break; 2240 2241 default: 2242 return -EINVAL; 2243 } 2244 } 2245 return 0; 2246 } 2247 2248 /** 2249 * sis900_mcast_bitnr - compute hashtable index 2250 * @addr: multicast address 2251 * @revision: revision id of chip 2252 * 2253 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast 2254 * hash table, which makes this function a little bit different from other drivers 2255 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits 2256 * multicast hash table. 2257 */ 2258 2259 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision) 2260 { 2261 2262 u32 crc = ether_crc(6, addr); 2263 2264 /* leave 8 or 7 most siginifant bits */ 2265 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV)) 2266 return (int)(crc >> 24); 2267 else 2268 return (int)(crc >> 25); 2269 } 2270 2271 /** 2272 * set_rx_mode - Set SiS900 receive mode 2273 * @net_dev: the net device to be set 2274 * 2275 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode. 2276 * And set the appropriate multicast filter. 2277 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0. 2278 */ 2279 2280 static void set_rx_mode(struct net_device *net_dev) 2281 { 2282 long ioaddr = net_dev->base_addr; 2283 struct sis900_private *sis_priv = netdev_priv(net_dev); 2284 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */ 2285 int i, table_entries; 2286 u32 rx_mode; 2287 2288 /* 635 Hash Table entries = 256(2^16) */ 2289 if((sis_priv->chipset_rev >= SIS635A_900_REV) || 2290 (sis_priv->chipset_rev == SIS900B_900_REV)) 2291 table_entries = 16; 2292 else 2293 table_entries = 8; 2294 2295 if (net_dev->flags & IFF_PROMISC) { 2296 /* Accept any kinds of packets */ 2297 rx_mode = RFPromiscuous; 2298 for (i = 0; i < table_entries; i++) 2299 mc_filter[i] = 0xffff; 2300 } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) || 2301 (net_dev->flags & IFF_ALLMULTI)) { 2302 /* too many multicast addresses or accept all multicast packet */ 2303 rx_mode = RFAAB | RFAAM; 2304 for (i = 0; i < table_entries; i++) 2305 mc_filter[i] = 0xffff; 2306 } else { 2307 /* Accept Broadcast packet, destination address matchs our 2308 * MAC address, use Receive Filter to reject unwanted MCAST 2309 * packets */ 2310 struct netdev_hw_addr *ha; 2311 rx_mode = RFAAB; 2312 2313 netdev_for_each_mc_addr(ha, net_dev) { 2314 unsigned int bit_nr; 2315 2316 bit_nr = sis900_mcast_bitnr(ha->addr, 2317 sis_priv->chipset_rev); 2318 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf)); 2319 } 2320 } 2321 2322 /* update Multicast Hash Table in Receive Filter */ 2323 for (i = 0; i < table_entries; i++) { 2324 /* why plus 0x04 ??, That makes the correct value for hash table. */ 2325 outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr); 2326 outl(mc_filter[i], ioaddr + rfdr); 2327 } 2328 2329 outl(RFEN | rx_mode, ioaddr + rfcr); 2330 2331 /* sis900 is capable of looping back packets at MAC level for 2332 * debugging purpose */ 2333 if (net_dev->flags & IFF_LOOPBACK) { 2334 u32 cr_saved; 2335 /* We must disable Tx/Rx before setting loopback mode */ 2336 cr_saved = inl(ioaddr + cr); 2337 outl(cr_saved | TxDIS | RxDIS, ioaddr + cr); 2338 /* enable loopback */ 2339 outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg); 2340 outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg); 2341 /* restore cr */ 2342 outl(cr_saved, ioaddr + cr); 2343 } 2344 } 2345 2346 /** 2347 * sis900_reset - Reset sis900 MAC 2348 * @net_dev: the net device to reset 2349 * 2350 * reset sis900 MAC and wait until finished 2351 * reset through command register 2352 * change backoff algorithm for 900B0 & 635 M/B 2353 */ 2354 2355 static void sis900_reset(struct net_device *net_dev) 2356 { 2357 struct sis900_private *sis_priv = netdev_priv(net_dev); 2358 long ioaddr = net_dev->base_addr; 2359 int i = 0; 2360 u32 status = TxRCMP | RxRCMP; 2361 2362 outl(0, ioaddr + ier); 2363 outl(0, ioaddr + imr); 2364 outl(0, ioaddr + rfcr); 2365 2366 outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr); 2367 2368 /* Check that the chip has finished the reset. */ 2369 while (status && (i++ < 1000)) { 2370 status ^= (inl(isr + ioaddr) & status); 2371 } 2372 2373 if( (sis_priv->chipset_rev >= SIS635A_900_REV) || 2374 (sis_priv->chipset_rev == SIS900B_900_REV) ) 2375 outl(PESEL | RND_CNT, ioaddr + cfg); 2376 else 2377 outl(PESEL, ioaddr + cfg); 2378 } 2379 2380 /** 2381 * sis900_remove - Remove sis900 device 2382 * @pci_dev: the pci device to be removed 2383 * 2384 * remove and release SiS900 net device 2385 */ 2386 2387 static void __devexit sis900_remove(struct pci_dev *pci_dev) 2388 { 2389 struct net_device *net_dev = pci_get_drvdata(pci_dev); 2390 struct sis900_private *sis_priv = netdev_priv(net_dev); 2391 struct mii_phy *phy = NULL; 2392 2393 while (sis_priv->first_mii) { 2394 phy = sis_priv->first_mii; 2395 sis_priv->first_mii = phy->next; 2396 kfree(phy); 2397 } 2398 2399 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring, 2400 sis_priv->rx_ring_dma); 2401 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring, 2402 sis_priv->tx_ring_dma); 2403 unregister_netdev(net_dev); 2404 free_netdev(net_dev); 2405 pci_release_regions(pci_dev); 2406 pci_set_drvdata(pci_dev, NULL); 2407 } 2408 2409 #ifdef CONFIG_PM 2410 2411 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state) 2412 { 2413 struct net_device *net_dev = pci_get_drvdata(pci_dev); 2414 long ioaddr = net_dev->base_addr; 2415 2416 if(!netif_running(net_dev)) 2417 return 0; 2418 2419 netif_stop_queue(net_dev); 2420 netif_device_detach(net_dev); 2421 2422 /* Stop the chip's Tx and Rx Status Machine */ 2423 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr); 2424 2425 pci_set_power_state(pci_dev, PCI_D3hot); 2426 pci_save_state(pci_dev); 2427 2428 return 0; 2429 } 2430 2431 static int sis900_resume(struct pci_dev *pci_dev) 2432 { 2433 struct net_device *net_dev = pci_get_drvdata(pci_dev); 2434 struct sis900_private *sis_priv = netdev_priv(net_dev); 2435 long ioaddr = net_dev->base_addr; 2436 2437 if(!netif_running(net_dev)) 2438 return 0; 2439 pci_restore_state(pci_dev); 2440 pci_set_power_state(pci_dev, PCI_D0); 2441 2442 sis900_init_rxfilter(net_dev); 2443 2444 sis900_init_tx_ring(net_dev); 2445 sis900_init_rx_ring(net_dev); 2446 2447 set_rx_mode(net_dev); 2448 2449 netif_device_attach(net_dev); 2450 netif_start_queue(net_dev); 2451 2452 /* Workaround for EDB */ 2453 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED); 2454 2455 /* Enable all known interrupts by setting the interrupt mask. */ 2456 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr); 2457 outl(RxENA | inl(ioaddr + cr), ioaddr + cr); 2458 outl(IE, ioaddr + ier); 2459 2460 sis900_check_mode(net_dev, sis_priv->mii); 2461 2462 return 0; 2463 } 2464 #endif /* CONFIG_PM */ 2465 2466 static struct pci_driver sis900_pci_driver = { 2467 .name = SIS900_MODULE_NAME, 2468 .id_table = sis900_pci_tbl, 2469 .probe = sis900_probe, 2470 .remove = __devexit_p(sis900_remove), 2471 #ifdef CONFIG_PM 2472 .suspend = sis900_suspend, 2473 .resume = sis900_resume, 2474 #endif /* CONFIG_PM */ 2475 }; 2476 2477 static int __init sis900_init_module(void) 2478 { 2479 /* when a module, this is printed whether or not devices are found in probe */ 2480 #ifdef MODULE 2481 printk(version); 2482 #endif 2483 2484 return pci_register_driver(&sis900_pci_driver); 2485 } 2486 2487 static void __exit sis900_cleanup_module(void) 2488 { 2489 pci_unregister_driver(&sis900_pci_driver); 2490 } 2491 2492 module_init(sis900_init_module); 2493 module_exit(sis900_cleanup_module); 2494 2495