xref: /openbmc/linux/drivers/net/ethernet/sis/sis900.c (revision 63dc02bd)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] __devinitconst =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 	{0,}
115 };
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
117 
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
119 
120 static const struct mii_chip_info {
121 	const char * name;
122 	u16 phy_id0;
123 	u16 phy_id1;
124 	u8  phy_types;
125 #define	HOME 	0x0001
126 #define LAN	0x0002
127 #define MIX	0x0003
128 #define UNKNOWN	0x0
129 } mii_chip_table[] = {
130 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
131 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
132 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
133 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
134 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
135 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
136 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
137 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
138 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
139 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
140 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
141 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
142 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
143 	{NULL,},
144 };
145 
146 struct mii_phy {
147 	struct mii_phy * next;
148 	int phy_addr;
149 	u16 phy_id0;
150 	u16 phy_id1;
151 	u16 status;
152 	u8  phy_types;
153 };
154 
155 typedef struct _BufferDesc {
156 	u32 link;
157 	u32 cmdsts;
158 	u32 bufptr;
159 } BufferDesc;
160 
161 struct sis900_private {
162 	struct pci_dev * pci_dev;
163 
164 	spinlock_t lock;
165 
166 	struct mii_phy * mii;
167 	struct mii_phy * first_mii; /* record the first mii structure */
168 	unsigned int cur_phy;
169 	struct mii_if_info mii_info;
170 
171 	struct timer_list timer; /* Link status detection timer. */
172 	u8 autong_complete; /* 1: auto-negotiate complete  */
173 
174 	u32 msg_enable;
175 
176 	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
177 	unsigned int cur_tx, dirty_tx;
178 
179 	/* The saved address of a sent/receive-in-place packet buffer */
180 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
181 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
182 	BufferDesc *tx_ring;
183 	BufferDesc *rx_ring;
184 
185 	dma_addr_t tx_ring_dma;
186 	dma_addr_t rx_ring_dma;
187 
188 	unsigned int tx_full; /* The Tx queue is full. */
189 	u8 host_bridge_rev;
190 	u8 chipset_rev;
191 };
192 
193 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
194 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
195 MODULE_LICENSE("GPL");
196 
197 module_param(multicast_filter_limit, int, 0444);
198 module_param(max_interrupt_work, int, 0444);
199 module_param(sis900_debug, int, 0444);
200 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
201 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
202 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
203 
204 #ifdef CONFIG_NET_POLL_CONTROLLER
205 static void sis900_poll(struct net_device *dev);
206 #endif
207 static int sis900_open(struct net_device *net_dev);
208 static int sis900_mii_probe (struct net_device * net_dev);
209 static void sis900_init_rxfilter (struct net_device * net_dev);
210 static u16 read_eeprom(long ioaddr, int location);
211 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
212 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
213 static void sis900_timer(unsigned long data);
214 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
215 static void sis900_tx_timeout(struct net_device *net_dev);
216 static void sis900_init_tx_ring(struct net_device *net_dev);
217 static void sis900_init_rx_ring(struct net_device *net_dev);
218 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
219 				     struct net_device *net_dev);
220 static int sis900_rx(struct net_device *net_dev);
221 static void sis900_finish_xmit (struct net_device *net_dev);
222 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
223 static int sis900_close(struct net_device *net_dev);
224 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
225 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
226 static void set_rx_mode(struct net_device *net_dev);
227 static void sis900_reset(struct net_device *net_dev);
228 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
229 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
230 static u16 sis900_default_phy(struct net_device * net_dev);
231 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
232 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
233 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
234 static void sis900_set_mode (long ioaddr, int speed, int duplex);
235 static const struct ethtool_ops sis900_ethtool_ops;
236 
237 /**
238  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
239  *	@pci_dev: the sis900 pci device
240  *	@net_dev: the net device to get address for
241  *
242  *	Older SiS900 and friends, use EEPROM to store MAC address.
243  *	MAC address is read from read_eeprom() into @net_dev->dev_addr and
244  *	@net_dev->perm_addr.
245  */
246 
247 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
248 {
249 	long ioaddr = pci_resource_start(pci_dev, 0);
250 	u16 signature;
251 	int i;
252 
253 	/* check to see if we have sane EEPROM */
254 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
255 	if (signature == 0xffff || signature == 0x0000) {
256 		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
257 			pci_name(pci_dev), signature);
258 		return 0;
259 	}
260 
261 	/* get MAC address from EEPROM */
262 	for (i = 0; i < 3; i++)
263 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
264 
265 	/* Store MAC Address in perm_addr */
266 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
267 
268 	return 1;
269 }
270 
271 /**
272  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
273  *	@pci_dev: the sis900 pci device
274  *	@net_dev: the net device to get address for
275  *
276  *	SiS630E model, use APC CMOS RAM to store MAC address.
277  *	APC CMOS RAM is accessed through ISA bridge.
278  *	MAC address is read into @net_dev->dev_addr and
279  *	@net_dev->perm_addr.
280  */
281 
282 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
283 					struct net_device *net_dev)
284 {
285 	struct pci_dev *isa_bridge = NULL;
286 	u8 reg;
287 	int i;
288 
289 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
290 	if (!isa_bridge)
291 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
292 	if (!isa_bridge) {
293 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
294 		       pci_name(pci_dev));
295 		return 0;
296 	}
297 	pci_read_config_byte(isa_bridge, 0x48, &reg);
298 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
299 
300 	for (i = 0; i < 6; i++) {
301 		outb(0x09 + i, 0x70);
302 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
303 	}
304 
305 	/* Store MAC Address in perm_addr */
306 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
307 
308 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
309 	pci_dev_put(isa_bridge);
310 
311 	return 1;
312 }
313 
314 
315 /**
316  *	sis635_get_mac_addr - Get MAC address for SIS635 model
317  *	@pci_dev: the sis900 pci device
318  *	@net_dev: the net device to get address for
319  *
320  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
321  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
322  *	@net_dev->dev_addr and @net_dev->perm_addr.
323  */
324 
325 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
326 					struct net_device *net_dev)
327 {
328 	long ioaddr = net_dev->base_addr;
329 	u32 rfcrSave;
330 	u32 i;
331 
332 	rfcrSave = inl(rfcr + ioaddr);
333 
334 	outl(rfcrSave | RELOAD, ioaddr + cr);
335 	outl(0, ioaddr + cr);
336 
337 	/* disable packet filtering before setting filter */
338 	outl(rfcrSave & ~RFEN, rfcr + ioaddr);
339 
340 	/* load MAC addr to filter data register */
341 	for (i = 0 ; i < 3 ; i++) {
342 		outl((i << RFADDR_shift), ioaddr + rfcr);
343 		*( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
344 	}
345 
346 	/* Store MAC Address in perm_addr */
347 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
348 
349 	/* enable packet filtering */
350 	outl(rfcrSave | RFEN, rfcr + ioaddr);
351 
352 	return 1;
353 }
354 
355 /**
356  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
357  *	@pci_dev: the sis900 pci device
358  *	@net_dev: the net device to get address for
359  *
360  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
361  *	is shared by
362  *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
363  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
364  *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
365  *	EEDONE signal to refuse EEPROM access by LAN.
366  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
367  *	The signature field in SiS962 or SiS963 spec is meaningless.
368  *	MAC address is read into @net_dev->dev_addr and @net_dev->perm_addr.
369  */
370 
371 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
372 					struct net_device *net_dev)
373 {
374 	long ioaddr = net_dev->base_addr;
375 	long ee_addr = ioaddr + mear;
376 	u32 waittime = 0;
377 	int i;
378 
379 	outl(EEREQ, ee_addr);
380 	while(waittime < 2000) {
381 		if(inl(ee_addr) & EEGNT) {
382 
383 			/* get MAC address from EEPROM */
384 			for (i = 0; i < 3; i++)
385 			        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
386 
387 			/* Store MAC Address in perm_addr */
388 			memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
389 
390 			outl(EEDONE, ee_addr);
391 			return 1;
392 		} else {
393 			udelay(1);
394 			waittime ++;
395 		}
396 	}
397 	outl(EEDONE, ee_addr);
398 	return 0;
399 }
400 
401 static const struct net_device_ops sis900_netdev_ops = {
402 	.ndo_open		 = sis900_open,
403 	.ndo_stop		= sis900_close,
404 	.ndo_start_xmit		= sis900_start_xmit,
405 	.ndo_set_config		= sis900_set_config,
406 	.ndo_set_rx_mode	= set_rx_mode,
407 	.ndo_change_mtu		= eth_change_mtu,
408 	.ndo_validate_addr	= eth_validate_addr,
409 	.ndo_set_mac_address 	= eth_mac_addr,
410 	.ndo_do_ioctl		= mii_ioctl,
411 	.ndo_tx_timeout		= sis900_tx_timeout,
412 #ifdef CONFIG_NET_POLL_CONTROLLER
413         .ndo_poll_controller	= sis900_poll,
414 #endif
415 };
416 
417 /**
418  *	sis900_probe - Probe for sis900 device
419  *	@pci_dev: the sis900 pci device
420  *	@pci_id: the pci device ID
421  *
422  *	Check and probe sis900 net device for @pci_dev.
423  *	Get mac address according to the chip revision,
424  *	and assign SiS900-specific entries in the device structure.
425  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
426  */
427 
428 static int __devinit sis900_probe(struct pci_dev *pci_dev,
429 				const struct pci_device_id *pci_id)
430 {
431 	struct sis900_private *sis_priv;
432 	struct net_device *net_dev;
433 	struct pci_dev *dev;
434 	dma_addr_t ring_dma;
435 	void *ring_space;
436 	long ioaddr;
437 	int i, ret;
438 	const char *card_name = card_names[pci_id->driver_data];
439 	const char *dev_name = pci_name(pci_dev);
440 
441 /* when built into the kernel, we only print version if device is found */
442 #ifndef MODULE
443 	static int printed_version;
444 	if (!printed_version++)
445 		printk(version);
446 #endif
447 
448 	/* setup various bits in PCI command register */
449 	ret = pci_enable_device(pci_dev);
450 	if(ret) return ret;
451 
452 	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
453 	if(i){
454 		printk(KERN_ERR "sis900.c: architecture does not support "
455 			"32bit PCI busmaster DMA\n");
456 		return i;
457 	}
458 
459 	pci_set_master(pci_dev);
460 
461 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
462 	if (!net_dev)
463 		return -ENOMEM;
464 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
465 
466 	/* We do a request_region() to register /proc/ioports info. */
467 	ioaddr = pci_resource_start(pci_dev, 0);
468 	ret = pci_request_regions(pci_dev, "sis900");
469 	if (ret)
470 		goto err_out;
471 
472 	sis_priv = netdev_priv(net_dev);
473 	net_dev->base_addr = ioaddr;
474 	net_dev->irq = pci_dev->irq;
475 	sis_priv->pci_dev = pci_dev;
476 	spin_lock_init(&sis_priv->lock);
477 
478 	pci_set_drvdata(pci_dev, net_dev);
479 
480 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
481 	if (!ring_space) {
482 		ret = -ENOMEM;
483 		goto err_out_cleardev;
484 	}
485 	sis_priv->tx_ring = ring_space;
486 	sis_priv->tx_ring_dma = ring_dma;
487 
488 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
489 	if (!ring_space) {
490 		ret = -ENOMEM;
491 		goto err_unmap_tx;
492 	}
493 	sis_priv->rx_ring = ring_space;
494 	sis_priv->rx_ring_dma = ring_dma;
495 
496 	/* The SiS900-specific entries in the device structure. */
497 	net_dev->netdev_ops = &sis900_netdev_ops;
498 	net_dev->watchdog_timeo = TX_TIMEOUT;
499 	net_dev->ethtool_ops = &sis900_ethtool_ops;
500 
501 	if (sis900_debug > 0)
502 		sis_priv->msg_enable = sis900_debug;
503 	else
504 		sis_priv->msg_enable = SIS900_DEF_MSG;
505 
506 	sis_priv->mii_info.dev = net_dev;
507 	sis_priv->mii_info.mdio_read = mdio_read;
508 	sis_priv->mii_info.mdio_write = mdio_write;
509 	sis_priv->mii_info.phy_id_mask = 0x1f;
510 	sis_priv->mii_info.reg_num_mask = 0x1f;
511 
512 	/* Get Mac address according to the chip revision */
513 	sis_priv->chipset_rev = pci_dev->revision;
514 	if(netif_msg_probe(sis_priv))
515 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
516 				"trying to get MAC address...\n",
517 				dev_name, sis_priv->chipset_rev);
518 
519 	ret = 0;
520 	if (sis_priv->chipset_rev == SIS630E_900_REV)
521 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
522 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
523 		ret = sis635_get_mac_addr(pci_dev, net_dev);
524 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
525 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
526 	else
527 		ret = sis900_get_mac_addr(pci_dev, net_dev);
528 
529 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
530 		eth_hw_addr_random(net_dev);
531 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
532 				"using random generated one\n", dev_name);
533 	}
534 
535 	/* 630ET : set the mii access mode as software-mode */
536 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
537 		outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
538 
539 	/* probe for mii transceiver */
540 	if (sis900_mii_probe(net_dev) == 0) {
541 		printk(KERN_WARNING "%s: Error probing MII device.\n",
542 		       dev_name);
543 		ret = -ENODEV;
544 		goto err_unmap_rx;
545 	}
546 
547 	/* save our host bridge revision */
548 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
549 	if (dev) {
550 		sis_priv->host_bridge_rev = dev->revision;
551 		pci_dev_put(dev);
552 	}
553 
554 	ret = register_netdev(net_dev);
555 	if (ret)
556 		goto err_unmap_rx;
557 
558 	/* print some information about our NIC */
559 	printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
560 	       net_dev->name, card_name, ioaddr, net_dev->irq,
561 	       net_dev->dev_addr);
562 
563 	/* Detect Wake on Lan support */
564 	ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
565 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
566 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
567 
568 	return 0;
569 
570  err_unmap_rx:
571 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
572 		sis_priv->rx_ring_dma);
573  err_unmap_tx:
574 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
575 		sis_priv->tx_ring_dma);
576  err_out_cleardev:
577  	pci_set_drvdata(pci_dev, NULL);
578 	pci_release_regions(pci_dev);
579  err_out:
580 	free_netdev(net_dev);
581 	return ret;
582 }
583 
584 /**
585  *	sis900_mii_probe - Probe MII PHY for sis900
586  *	@net_dev: the net device to probe for
587  *
588  *	Search for total of 32 possible mii phy addresses.
589  *	Identify and set current phy if found one,
590  *	return error if it failed to found.
591  */
592 
593 static int __devinit sis900_mii_probe(struct net_device * net_dev)
594 {
595 	struct sis900_private *sis_priv = netdev_priv(net_dev);
596 	const char *dev_name = pci_name(sis_priv->pci_dev);
597 	u16 poll_bit = MII_STAT_LINK, status = 0;
598 	unsigned long timeout = jiffies + 5 * HZ;
599 	int phy_addr;
600 
601 	sis_priv->mii = NULL;
602 
603 	/* search for total of 32 possible mii phy addresses */
604 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
605 		struct mii_phy * mii_phy = NULL;
606 		u16 mii_status;
607 		int i;
608 
609 		mii_phy = NULL;
610 		for(i = 0; i < 2; i++)
611 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
612 
613 		if (mii_status == 0xffff || mii_status == 0x0000) {
614 			if (netif_msg_probe(sis_priv))
615 				printk(KERN_DEBUG "%s: MII at address %d"
616 						" not accessible\n",
617 						dev_name, phy_addr);
618 			continue;
619 		}
620 
621 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
622 			mii_phy = sis_priv->first_mii;
623 			while (mii_phy) {
624 				struct mii_phy *phy;
625 				phy = mii_phy;
626 				mii_phy = mii_phy->next;
627 				kfree(phy);
628 			}
629 			return 0;
630 		}
631 
632 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
633 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
634 		mii_phy->phy_addr = phy_addr;
635 		mii_phy->status = mii_status;
636 		mii_phy->next = sis_priv->mii;
637 		sis_priv->mii = mii_phy;
638 		sis_priv->first_mii = mii_phy;
639 
640 		for (i = 0; mii_chip_table[i].phy_id1; i++)
641 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
642 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
643 				mii_phy->phy_types = mii_chip_table[i].phy_types;
644 				if (mii_chip_table[i].phy_types == MIX)
645 					mii_phy->phy_types =
646 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
647 				printk(KERN_INFO "%s: %s transceiver found "
648 							"at address %d.\n",
649 							dev_name,
650 							mii_chip_table[i].name,
651 							phy_addr);
652 				break;
653 			}
654 
655 		if( !mii_chip_table[i].phy_id1 ) {
656 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
657 			       dev_name, phy_addr);
658 			mii_phy->phy_types = UNKNOWN;
659 		}
660 	}
661 
662 	if (sis_priv->mii == NULL) {
663 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
664 		return 0;
665 	}
666 
667 	/* select default PHY for mac */
668 	sis_priv->mii = NULL;
669 	sis900_default_phy( net_dev );
670 
671 	/* Reset phy if default phy is internal sis900 */
672         if ((sis_priv->mii->phy_id0 == 0x001D) &&
673 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
674         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
675 
676         /* workaround for ICS1893 PHY */
677         if ((sis_priv->mii->phy_id0 == 0x0015) &&
678             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
679             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
680 
681 	if(status & MII_STAT_LINK){
682 		while (poll_bit) {
683 			yield();
684 
685 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
686 			if (time_after_eq(jiffies, timeout)) {
687 				printk(KERN_WARNING "%s: reset phy and link down now\n",
688 				       dev_name);
689 				return -ETIME;
690 			}
691 		}
692 	}
693 
694 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
695 		/* SiS 630E has some bugs on default value of PHY registers */
696 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
697 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
698 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
699 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
700 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
701 	}
702 
703 	if (sis_priv->mii->status & MII_STAT_LINK)
704 		netif_carrier_on(net_dev);
705 	else
706 		netif_carrier_off(net_dev);
707 
708 	return 1;
709 }
710 
711 /**
712  *	sis900_default_phy - Select default PHY for sis900 mac.
713  *	@net_dev: the net device to probe for
714  *
715  *	Select first detected PHY with link as default.
716  *	If no one is link on, select PHY whose types is HOME as default.
717  *	If HOME doesn't exist, select LAN.
718  */
719 
720 static u16 sis900_default_phy(struct net_device * net_dev)
721 {
722 	struct sis900_private *sis_priv = netdev_priv(net_dev);
723  	struct mii_phy *phy = NULL, *phy_home = NULL,
724 		*default_phy = NULL, *phy_lan = NULL;
725 	u16 status;
726 
727         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
728 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
729 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
730 
731 		/* Link ON & Not select default PHY & not ghost PHY */
732 		 if ((status & MII_STAT_LINK) && !default_phy &&
733 					(phy->phy_types != UNKNOWN))
734 		 	default_phy = phy;
735 		 else {
736 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
737 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
738 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
739 			if (phy->phy_types == HOME)
740 				phy_home = phy;
741 			else if(phy->phy_types == LAN)
742 				phy_lan = phy;
743 		 }
744 	}
745 
746 	if (!default_phy && phy_home)
747 		default_phy = phy_home;
748 	else if (!default_phy && phy_lan)
749 		default_phy = phy_lan;
750 	else if (!default_phy)
751 		default_phy = sis_priv->first_mii;
752 
753 	if (sis_priv->mii != default_phy) {
754 		sis_priv->mii = default_phy;
755 		sis_priv->cur_phy = default_phy->phy_addr;
756 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
757 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
758 	}
759 
760 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
761 
762 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
763 	status &= (~MII_CNTL_ISOLATE);
764 
765 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
766 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
767 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
768 
769 	return status;
770 }
771 
772 
773 /**
774  * 	sis900_set_capability - set the media capability of network adapter.
775  *	@net_dev : the net device to probe for
776  *	@phy : default PHY
777  *
778  *	Set the media capability of network adapter according to
779  *	mii status register. It's necessary before auto-negotiate.
780  */
781 
782 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
783 {
784 	u16 cap;
785 	u16 status;
786 
787 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
788 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
789 
790 	cap = MII_NWAY_CSMA_CD |
791 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
792 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
793 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
794 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
795 
796 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
797 }
798 
799 
800 /* Delay between EEPROM clock transitions. */
801 #define eeprom_delay()  inl(ee_addr)
802 
803 /**
804  *	read_eeprom - Read Serial EEPROM
805  *	@ioaddr: base i/o address
806  *	@location: the EEPROM location to read
807  *
808  *	Read Serial EEPROM through EEPROM Access Register.
809  *	Note that location is in word (16 bits) unit
810  */
811 
812 static u16 __devinit read_eeprom(long ioaddr, int location)
813 {
814 	int i;
815 	u16 retval = 0;
816 	long ee_addr = ioaddr + mear;
817 	u32 read_cmd = location | EEread;
818 
819 	outl(0, ee_addr);
820 	eeprom_delay();
821 	outl(EECS, ee_addr);
822 	eeprom_delay();
823 
824 	/* Shift the read command (9) bits out. */
825 	for (i = 8; i >= 0; i--) {
826 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
827 		outl(dataval, ee_addr);
828 		eeprom_delay();
829 		outl(dataval | EECLK, ee_addr);
830 		eeprom_delay();
831 	}
832 	outl(EECS, ee_addr);
833 	eeprom_delay();
834 
835 	/* read the 16-bits data in */
836 	for (i = 16; i > 0; i--) {
837 		outl(EECS, ee_addr);
838 		eeprom_delay();
839 		outl(EECS | EECLK, ee_addr);
840 		eeprom_delay();
841 		retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
842 		eeprom_delay();
843 	}
844 
845 	/* Terminate the EEPROM access. */
846 	outl(0, ee_addr);
847 	eeprom_delay();
848 
849 	return retval;
850 }
851 
852 /* Read and write the MII management registers using software-generated
853    serial MDIO protocol. Note that the command bits and data bits are
854    send out separately */
855 #define mdio_delay()    inl(mdio_addr)
856 
857 static void mdio_idle(long mdio_addr)
858 {
859 	outl(MDIO | MDDIR, mdio_addr);
860 	mdio_delay();
861 	outl(MDIO | MDDIR | MDC, mdio_addr);
862 }
863 
864 /* Syncronize the MII management interface by shifting 32 one bits out. */
865 static void mdio_reset(long mdio_addr)
866 {
867 	int i;
868 
869 	for (i = 31; i >= 0; i--) {
870 		outl(MDDIR | MDIO, mdio_addr);
871 		mdio_delay();
872 		outl(MDDIR | MDIO | MDC, mdio_addr);
873 		mdio_delay();
874 	}
875 }
876 
877 /**
878  *	mdio_read - read MII PHY register
879  *	@net_dev: the net device to read
880  *	@phy_id: the phy address to read
881  *	@location: the phy regiester id to read
882  *
883  *	Read MII registers through MDIO and MDC
884  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
885  *	Please see SiS7014 or ICS spec
886  */
887 
888 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
889 {
890 	long mdio_addr = net_dev->base_addr + mear;
891 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
892 	u16 retval = 0;
893 	int i;
894 
895 	mdio_reset(mdio_addr);
896 	mdio_idle(mdio_addr);
897 
898 	for (i = 15; i >= 0; i--) {
899 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
900 		outl(dataval, mdio_addr);
901 		mdio_delay();
902 		outl(dataval | MDC, mdio_addr);
903 		mdio_delay();
904 	}
905 
906 	/* Read the 16 data bits. */
907 	for (i = 16; i > 0; i--) {
908 		outl(0, mdio_addr);
909 		mdio_delay();
910 		retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
911 		outl(MDC, mdio_addr);
912 		mdio_delay();
913 	}
914 	outl(0x00, mdio_addr);
915 
916 	return retval;
917 }
918 
919 /**
920  *	mdio_write - write MII PHY register
921  *	@net_dev: the net device to write
922  *	@phy_id: the phy address to write
923  *	@location: the phy regiester id to write
924  *	@value: the register value to write with
925  *
926  *	Write MII registers with @value through MDIO and MDC
927  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
928  *	please see SiS7014 or ICS spec
929  */
930 
931 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
932 			int value)
933 {
934 	long mdio_addr = net_dev->base_addr + mear;
935 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
936 	int i;
937 
938 	mdio_reset(mdio_addr);
939 	mdio_idle(mdio_addr);
940 
941 	/* Shift the command bits out. */
942 	for (i = 15; i >= 0; i--) {
943 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
944 		outb(dataval, mdio_addr);
945 		mdio_delay();
946 		outb(dataval | MDC, mdio_addr);
947 		mdio_delay();
948 	}
949 	mdio_delay();
950 
951 	/* Shift the value bits out. */
952 	for (i = 15; i >= 0; i--) {
953 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
954 		outl(dataval, mdio_addr);
955 		mdio_delay();
956 		outl(dataval | MDC, mdio_addr);
957 		mdio_delay();
958 	}
959 	mdio_delay();
960 
961 	/* Clear out extra bits. */
962 	for (i = 2; i > 0; i--) {
963 		outb(0, mdio_addr);
964 		mdio_delay();
965 		outb(MDC, mdio_addr);
966 		mdio_delay();
967 	}
968 	outl(0x00, mdio_addr);
969 }
970 
971 
972 /**
973  *	sis900_reset_phy - reset sis900 mii phy.
974  *	@net_dev: the net device to write
975  *	@phy_addr: default phy address
976  *
977  *	Some specific phy can't work properly without reset.
978  *	This function will be called during initialization and
979  *	link status change from ON to DOWN.
980  */
981 
982 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
983 {
984 	int i;
985 	u16 status;
986 
987 	for (i = 0; i < 2; i++)
988 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
989 
990 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
991 
992 	return status;
993 }
994 
995 #ifdef CONFIG_NET_POLL_CONTROLLER
996 /*
997  * Polling 'interrupt' - used by things like netconsole to send skbs
998  * without having to re-enable interrupts. It's not called while
999  * the interrupt routine is executing.
1000 */
1001 static void sis900_poll(struct net_device *dev)
1002 {
1003 	disable_irq(dev->irq);
1004 	sis900_interrupt(dev->irq, dev);
1005 	enable_irq(dev->irq);
1006 }
1007 #endif
1008 
1009 /**
1010  *	sis900_open - open sis900 device
1011  *	@net_dev: the net device to open
1012  *
1013  *	Do some initialization and start net interface.
1014  *	enable interrupts and set sis900 timer.
1015  */
1016 
1017 static int
1018 sis900_open(struct net_device *net_dev)
1019 {
1020 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1021 	long ioaddr = net_dev->base_addr;
1022 	int ret;
1023 
1024 	/* Soft reset the chip. */
1025 	sis900_reset(net_dev);
1026 
1027 	/* Equalizer workaround Rule */
1028 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1029 
1030 	ret = request_irq(net_dev->irq, sis900_interrupt, IRQF_SHARED,
1031 						net_dev->name, net_dev);
1032 	if (ret)
1033 		return ret;
1034 
1035 	sis900_init_rxfilter(net_dev);
1036 
1037 	sis900_init_tx_ring(net_dev);
1038 	sis900_init_rx_ring(net_dev);
1039 
1040 	set_rx_mode(net_dev);
1041 
1042 	netif_start_queue(net_dev);
1043 
1044 	/* Workaround for EDB */
1045 	sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1046 
1047 	/* Enable all known interrupts by setting the interrupt mask. */
1048 	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1049 	outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1050 	outl(IE, ioaddr + ier);
1051 
1052 	sis900_check_mode(net_dev, sis_priv->mii);
1053 
1054 	/* Set the timer to switch to check for link beat and perhaps switch
1055 	   to an alternate media type. */
1056 	init_timer(&sis_priv->timer);
1057 	sis_priv->timer.expires = jiffies + HZ;
1058 	sis_priv->timer.data = (unsigned long)net_dev;
1059 	sis_priv->timer.function = sis900_timer;
1060 	add_timer(&sis_priv->timer);
1061 
1062 	return 0;
1063 }
1064 
1065 /**
1066  *	sis900_init_rxfilter - Initialize the Rx filter
1067  *	@net_dev: the net device to initialize for
1068  *
1069  *	Set receive filter address to our MAC address
1070  *	and enable packet filtering.
1071  */
1072 
1073 static void
1074 sis900_init_rxfilter (struct net_device * net_dev)
1075 {
1076 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1077 	long ioaddr = net_dev->base_addr;
1078 	u32 rfcrSave;
1079 	u32 i;
1080 
1081 	rfcrSave = inl(rfcr + ioaddr);
1082 
1083 	/* disable packet filtering before setting filter */
1084 	outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1085 
1086 	/* load MAC addr to filter data register */
1087 	for (i = 0 ; i < 3 ; i++) {
1088 		u32 w;
1089 
1090 		w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1091 		outl((i << RFADDR_shift), ioaddr + rfcr);
1092 		outl(w, ioaddr + rfdr);
1093 
1094 		if (netif_msg_hw(sis_priv)) {
1095 			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1096 			       net_dev->name, i, inl(ioaddr + rfdr));
1097 		}
1098 	}
1099 
1100 	/* enable packet filtering */
1101 	outl(rfcrSave | RFEN, rfcr + ioaddr);
1102 }
1103 
1104 /**
1105  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1106  *	@net_dev: the net device to initialize for
1107  *
1108  *	Initialize the Tx descriptor ring,
1109  */
1110 
1111 static void
1112 sis900_init_tx_ring(struct net_device *net_dev)
1113 {
1114 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1115 	long ioaddr = net_dev->base_addr;
1116 	int i;
1117 
1118 	sis_priv->tx_full = 0;
1119 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1120 
1121 	for (i = 0; i < NUM_TX_DESC; i++) {
1122 		sis_priv->tx_skbuff[i] = NULL;
1123 
1124 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1125 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1126 		sis_priv->tx_ring[i].cmdsts = 0;
1127 		sis_priv->tx_ring[i].bufptr = 0;
1128 	}
1129 
1130 	/* load Transmit Descriptor Register */
1131 	outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1132 	if (netif_msg_hw(sis_priv))
1133 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1134 		       net_dev->name, inl(ioaddr + txdp));
1135 }
1136 
1137 /**
1138  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1139  *	@net_dev: the net device to initialize for
1140  *
1141  *	Initialize the Rx descriptor ring,
1142  *	and pre-allocate recevie buffers (socket buffer)
1143  */
1144 
1145 static void
1146 sis900_init_rx_ring(struct net_device *net_dev)
1147 {
1148 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1149 	long ioaddr = net_dev->base_addr;
1150 	int i;
1151 
1152 	sis_priv->cur_rx = 0;
1153 	sis_priv->dirty_rx = 0;
1154 
1155 	/* init RX descriptor */
1156 	for (i = 0; i < NUM_RX_DESC; i++) {
1157 		sis_priv->rx_skbuff[i] = NULL;
1158 
1159 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1160 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1161 		sis_priv->rx_ring[i].cmdsts = 0;
1162 		sis_priv->rx_ring[i].bufptr = 0;
1163 	}
1164 
1165 	/* allocate sock buffers */
1166 	for (i = 0; i < NUM_RX_DESC; i++) {
1167 		struct sk_buff *skb;
1168 
1169 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1170 			/* not enough memory for skbuff, this makes a "hole"
1171 			   on the buffer ring, it is not clear how the
1172 			   hardware will react to this kind of degenerated
1173 			   buffer */
1174 			break;
1175 		}
1176 		sis_priv->rx_skbuff[i] = skb;
1177 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1178                 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1179                         skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1180 	}
1181 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1182 
1183 	/* load Receive Descriptor Register */
1184 	outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1185 	if (netif_msg_hw(sis_priv))
1186 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1187 		       net_dev->name, inl(ioaddr + rxdp));
1188 }
1189 
1190 /**
1191  *	sis630_set_eq - set phy equalizer value for 630 LAN
1192  *	@net_dev: the net device to set equalizer value
1193  *	@revision: 630 LAN revision number
1194  *
1195  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1196  *	PHY register 14h(Test)
1197  *	Bit 14: 0 -- Automatically detect (default)
1198  *		1 -- Manually set Equalizer filter
1199  *	Bit 13: 0 -- (Default)
1200  *		1 -- Speed up convergence of equalizer setting
1201  *	Bit 9 : 0 -- (Default)
1202  *		1 -- Disable Baseline Wander
1203  *	Bit 3~7   -- Equalizer filter setting
1204  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1205  *	Then calculate equalizer value
1206  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1207  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1208  *	Calculate Equalizer value:
1209  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1210  *	When the equalizer is stable, this value is not a fixed value. It will be within
1211  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1212  *	0 <= max <= 4  --> set equalizer to max
1213  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1214  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1215  */
1216 
1217 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1218 {
1219 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1220 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1221 	int i, maxcount=10;
1222 
1223 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1224 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1225 		return;
1226 
1227 	if (netif_carrier_ok(net_dev)) {
1228 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1229 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1230 					(0x2200 | reg14h) & 0xBFFF);
1231 		for (i=0; i < maxcount; i++) {
1232 			eq_value = (0x00F8 & mdio_read(net_dev,
1233 					sis_priv->cur_phy, MII_RESV)) >> 3;
1234 			if (i == 0)
1235 				max_value=min_value=eq_value;
1236 			max_value = (eq_value > max_value) ?
1237 						eq_value : max_value;
1238 			min_value = (eq_value < min_value) ?
1239 						eq_value : min_value;
1240 		}
1241 		/* 630E rule to determine the equalizer value */
1242 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1243 		    revision == SIS630ET_900_REV) {
1244 			if (max_value < 5)
1245 				eq_value = max_value;
1246 			else if (max_value >= 5 && max_value < 15)
1247 				eq_value = (max_value == min_value) ?
1248 						max_value+2 : max_value+1;
1249 			else if (max_value >= 15)
1250 				eq_value=(max_value == min_value) ?
1251 						max_value+6 : max_value+5;
1252 		}
1253 		/* 630B0&B1 rule to determine the equalizer value */
1254 		if (revision == SIS630A_900_REV &&
1255 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1256 		     sis_priv->host_bridge_rev == SIS630B1)) {
1257 			if (max_value == 0)
1258 				eq_value = 3;
1259 			else
1260 				eq_value = (max_value + min_value + 1)/2;
1261 		}
1262 		/* write equalizer value and setting */
1263 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1264 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1265 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1266 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1267 	} else {
1268 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1269 		if (revision == SIS630A_900_REV &&
1270 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1271 		     sis_priv->host_bridge_rev == SIS630B1))
1272 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1273 						(reg14h | 0x2200) & 0xBFFF);
1274 		else
1275 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1276 						(reg14h | 0x2000) & 0xBFFF);
1277 	}
1278 }
1279 
1280 /**
1281  *	sis900_timer - sis900 timer routine
1282  *	@data: pointer to sis900 net device
1283  *
1284  *	On each timer ticks we check two things,
1285  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1286  */
1287 
1288 static void sis900_timer(unsigned long data)
1289 {
1290 	struct net_device *net_dev = (struct net_device *)data;
1291 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1292 	struct mii_phy *mii_phy = sis_priv->mii;
1293 	static const int next_tick = 5*HZ;
1294 	u16 status;
1295 
1296 	if (!sis_priv->autong_complete){
1297 		int uninitialized_var(speed), duplex = 0;
1298 
1299 		sis900_read_mode(net_dev, &speed, &duplex);
1300 		if (duplex){
1301 			sis900_set_mode(net_dev->base_addr, speed, duplex);
1302 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1303 			netif_start_queue(net_dev);
1304 		}
1305 
1306 		sis_priv->timer.expires = jiffies + HZ;
1307 		add_timer(&sis_priv->timer);
1308 		return;
1309 	}
1310 
1311 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1312 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1313 
1314 	/* Link OFF -> ON */
1315 	if (!netif_carrier_ok(net_dev)) {
1316 	LookForLink:
1317 		/* Search for new PHY */
1318 		status = sis900_default_phy(net_dev);
1319 		mii_phy = sis_priv->mii;
1320 
1321 		if (status & MII_STAT_LINK){
1322 			sis900_check_mode(net_dev, mii_phy);
1323 			netif_carrier_on(net_dev);
1324 		}
1325 	} else {
1326 	/* Link ON -> OFF */
1327                 if (!(status & MII_STAT_LINK)){
1328                 	netif_carrier_off(net_dev);
1329 			if(netif_msg_link(sis_priv))
1330                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1331 
1332                 	/* Change mode issue */
1333                 	if ((mii_phy->phy_id0 == 0x001D) &&
1334 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1335                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1336 
1337 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1338 
1339                 	goto LookForLink;
1340                 }
1341 	}
1342 
1343 	sis_priv->timer.expires = jiffies + next_tick;
1344 	add_timer(&sis_priv->timer);
1345 }
1346 
1347 /**
1348  *	sis900_check_mode - check the media mode for sis900
1349  *	@net_dev: the net device to be checked
1350  *	@mii_phy: the mii phy
1351  *
1352  *	Older driver gets the media mode from mii status output
1353  *	register. Now we set our media capability and auto-negotiate
1354  *	to get the upper bound of speed and duplex between two ends.
1355  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1356  *	and autong_complete should be set to 1.
1357  */
1358 
1359 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1360 {
1361 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1362 	long ioaddr = net_dev->base_addr;
1363 	int speed, duplex;
1364 
1365 	if (mii_phy->phy_types == LAN) {
1366 		outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1367 		sis900_set_capability(net_dev , mii_phy);
1368 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1369 	} else {
1370 		outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1371 		speed = HW_SPEED_HOME;
1372 		duplex = FDX_CAPABLE_HALF_SELECTED;
1373 		sis900_set_mode(ioaddr, speed, duplex);
1374 		sis_priv->autong_complete = 1;
1375 	}
1376 }
1377 
1378 /**
1379  *	sis900_set_mode - Set the media mode of mac register.
1380  *	@ioaddr: the address of the device
1381  *	@speed : the transmit speed to be determined
1382  *	@duplex: the duplex mode to be determined
1383  *
1384  *	Set the media mode of mac register txcfg/rxcfg according to
1385  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1386  *	bus is used instead of PCI bus. When this bit is set 1, the
1387  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1388  *	double words.
1389  */
1390 
1391 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1392 {
1393 	u32 tx_flags = 0, rx_flags = 0;
1394 
1395 	if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1396 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1397 					(TX_FILL_THRESH << TxFILLT_shift);
1398 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1399 	} else {
1400 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1401 					(TX_FILL_THRESH << TxFILLT_shift);
1402 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1403 	}
1404 
1405 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1406 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1407 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1408 	} else {
1409 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1410 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1411 	}
1412 
1413 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1414 		tx_flags |= (TxCSI | TxHBI);
1415 		rx_flags |= RxATX;
1416 	}
1417 
1418 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1419 	/* Can accept Jumbo packet */
1420 	rx_flags |= RxAJAB;
1421 #endif
1422 
1423 	outl (tx_flags, ioaddr + txcfg);
1424 	outl (rx_flags, ioaddr + rxcfg);
1425 }
1426 
1427 /**
1428  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1429  *	@net_dev: the net device to read mode for
1430  *	@phy_addr: mii phy address
1431  *
1432  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1433  *	autong_complete should be set to 0 when starting auto-negotiation.
1434  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1435  *	sis900_timer will wait for link on again if autong_complete = 0.
1436  */
1437 
1438 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1439 {
1440 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1441 	int i = 0;
1442 	u32 status;
1443 
1444 	for (i = 0; i < 2; i++)
1445 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1446 
1447 	if (!(status & MII_STAT_LINK)){
1448 		if(netif_msg_link(sis_priv))
1449 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1450 		sis_priv->autong_complete = 1;
1451 		netif_carrier_off(net_dev);
1452 		return;
1453 	}
1454 
1455 	/* (Re)start AutoNegotiate */
1456 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1457 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1458 	sis_priv->autong_complete = 0;
1459 }
1460 
1461 
1462 /**
1463  *	sis900_read_mode - read media mode for sis900 internal phy
1464  *	@net_dev: the net device to read mode for
1465  *	@speed  : the transmit speed to be determined
1466  *	@duplex : the duplex mode to be determined
1467  *
1468  *	The capability of remote end will be put in mii register autorec
1469  *	after auto-negotiation. Use AND operation to get the upper bound
1470  *	of speed and duplex between two ends.
1471  */
1472 
1473 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1474 {
1475 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1476 	struct mii_phy *phy = sis_priv->mii;
1477 	int phy_addr = sis_priv->cur_phy;
1478 	u32 status;
1479 	u16 autoadv, autorec;
1480 	int i;
1481 
1482 	for (i = 0; i < 2; i++)
1483 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1484 
1485 	if (!(status & MII_STAT_LINK))
1486 		return;
1487 
1488 	/* AutoNegotiate completed */
1489 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1490 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1491 	status = autoadv & autorec;
1492 
1493 	*speed = HW_SPEED_10_MBPS;
1494 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1495 
1496 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1497 		*speed = HW_SPEED_100_MBPS;
1498 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1499 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1500 
1501 	sis_priv->autong_complete = 1;
1502 
1503 	/* Workaround for Realtek RTL8201 PHY issue */
1504 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1505 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1506 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1507 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1508 			*speed = HW_SPEED_100_MBPS;
1509 	}
1510 
1511 	if(netif_msg_link(sis_priv))
1512 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1513 	       				net_dev->name,
1514 	       				*speed == HW_SPEED_100_MBPS ?
1515 	       					"100mbps" : "10mbps",
1516 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1517 	       					"full" : "half");
1518 }
1519 
1520 /**
1521  *	sis900_tx_timeout - sis900 transmit timeout routine
1522  *	@net_dev: the net device to transmit
1523  *
1524  *	print transmit timeout status
1525  *	disable interrupts and do some tasks
1526  */
1527 
1528 static void sis900_tx_timeout(struct net_device *net_dev)
1529 {
1530 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1531 	long ioaddr = net_dev->base_addr;
1532 	unsigned long flags;
1533 	int i;
1534 
1535 	if(netif_msg_tx_err(sis_priv))
1536 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1537 	       		net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1538 
1539 	/* Disable interrupts by clearing the interrupt mask. */
1540 	outl(0x0000, ioaddr + imr);
1541 
1542 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1543 	spin_lock_irqsave(&sis_priv->lock, flags);
1544 
1545 	/* discard unsent packets */
1546 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1547 	for (i = 0; i < NUM_TX_DESC; i++) {
1548 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1549 
1550 		if (skb) {
1551 			pci_unmap_single(sis_priv->pci_dev,
1552 				sis_priv->tx_ring[i].bufptr, skb->len,
1553 				PCI_DMA_TODEVICE);
1554 			dev_kfree_skb_irq(skb);
1555 			sis_priv->tx_skbuff[i] = NULL;
1556 			sis_priv->tx_ring[i].cmdsts = 0;
1557 			sis_priv->tx_ring[i].bufptr = 0;
1558 			net_dev->stats.tx_dropped++;
1559 		}
1560 	}
1561 	sis_priv->tx_full = 0;
1562 	netif_wake_queue(net_dev);
1563 
1564 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1565 
1566 	net_dev->trans_start = jiffies; /* prevent tx timeout */
1567 
1568 	/* load Transmit Descriptor Register */
1569 	outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1570 
1571 	/* Enable all known interrupts by setting the interrupt mask. */
1572 	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1573 }
1574 
1575 /**
1576  *	sis900_start_xmit - sis900 start transmit routine
1577  *	@skb: socket buffer pointer to put the data being transmitted
1578  *	@net_dev: the net device to transmit with
1579  *
1580  *	Set the transmit buffer descriptor,
1581  *	and write TxENA to enable transmit state machine.
1582  *	tell upper layer if the buffer is full
1583  */
1584 
1585 static netdev_tx_t
1586 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1587 {
1588 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1589 	long ioaddr = net_dev->base_addr;
1590 	unsigned int  entry;
1591 	unsigned long flags;
1592 	unsigned int  index_cur_tx, index_dirty_tx;
1593 	unsigned int  count_dirty_tx;
1594 
1595 	/* Don't transmit data before the complete of auto-negotiation */
1596 	if(!sis_priv->autong_complete){
1597 		netif_stop_queue(net_dev);
1598 		return NETDEV_TX_BUSY;
1599 	}
1600 
1601 	spin_lock_irqsave(&sis_priv->lock, flags);
1602 
1603 	/* Calculate the next Tx descriptor entry. */
1604 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1605 	sis_priv->tx_skbuff[entry] = skb;
1606 
1607 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1608 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1609 		skb->data, skb->len, PCI_DMA_TODEVICE);
1610 	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1611 	outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1612 
1613 	sis_priv->cur_tx ++;
1614 	index_cur_tx = sis_priv->cur_tx;
1615 	index_dirty_tx = sis_priv->dirty_tx;
1616 
1617 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1618 		count_dirty_tx ++;
1619 
1620 	if (index_cur_tx == index_dirty_tx) {
1621 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1622 		sis_priv->tx_full = 1;
1623 		netif_stop_queue(net_dev);
1624 	} else if (count_dirty_tx < NUM_TX_DESC) {
1625 		/* Typical path, tell upper layer that more transmission is possible */
1626 		netif_start_queue(net_dev);
1627 	} else {
1628 		/* buffer full, tell upper layer no more transmission */
1629 		sis_priv->tx_full = 1;
1630 		netif_stop_queue(net_dev);
1631 	}
1632 
1633 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1634 
1635 	if (netif_msg_tx_queued(sis_priv))
1636 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1637 		       "to slot %d.\n",
1638 		       net_dev->name, skb->data, (int)skb->len, entry);
1639 
1640 	return NETDEV_TX_OK;
1641 }
1642 
1643 /**
1644  *	sis900_interrupt - sis900 interrupt handler
1645  *	@irq: the irq number
1646  *	@dev_instance: the client data object
1647  *
1648  *	The interrupt handler does all of the Rx thread work,
1649  *	and cleans up after the Tx thread
1650  */
1651 
1652 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1653 {
1654 	struct net_device *net_dev = dev_instance;
1655 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1656 	int boguscnt = max_interrupt_work;
1657 	long ioaddr = net_dev->base_addr;
1658 	u32 status;
1659 	unsigned int handled = 0;
1660 
1661 	spin_lock (&sis_priv->lock);
1662 
1663 	do {
1664 		status = inl(ioaddr + isr);
1665 
1666 		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1667 			/* nothing intresting happened */
1668 			break;
1669 		handled = 1;
1670 
1671 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1672 		if (status & (RxORN | RxERR | RxOK))
1673 			/* Rx interrupt */
1674 			sis900_rx(net_dev);
1675 
1676 		if (status & (TxURN | TxERR | TxIDLE))
1677 			/* Tx interrupt */
1678 			sis900_finish_xmit(net_dev);
1679 
1680 		/* something strange happened !!! */
1681 		if (status & HIBERR) {
1682 			if(netif_msg_intr(sis_priv))
1683 				printk(KERN_INFO "%s: Abnormal interrupt, "
1684 					"status %#8.8x.\n", net_dev->name, status);
1685 			break;
1686 		}
1687 		if (--boguscnt < 0) {
1688 			if(netif_msg_intr(sis_priv))
1689 				printk(KERN_INFO "%s: Too much work at interrupt, "
1690 					"interrupt status = %#8.8x.\n",
1691 					net_dev->name, status);
1692 			break;
1693 		}
1694 	} while (1);
1695 
1696 	if(netif_msg_intr(sis_priv))
1697 		printk(KERN_DEBUG "%s: exiting interrupt, "
1698 		       "interrupt status = 0x%#8.8x.\n",
1699 		       net_dev->name, inl(ioaddr + isr));
1700 
1701 	spin_unlock (&sis_priv->lock);
1702 	return IRQ_RETVAL(handled);
1703 }
1704 
1705 /**
1706  *	sis900_rx - sis900 receive routine
1707  *	@net_dev: the net device which receives data
1708  *
1709  *	Process receive interrupt events,
1710  *	put buffer to higher layer and refill buffer pool
1711  *	Note: This function is called by interrupt handler,
1712  *	don't do "too much" work here
1713  */
1714 
1715 static int sis900_rx(struct net_device *net_dev)
1716 {
1717 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1718 	long ioaddr = net_dev->base_addr;
1719 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1720 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1721 	int rx_work_limit;
1722 
1723 	if (netif_msg_rx_status(sis_priv))
1724 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1725 		       "status:0x%8.8x\n",
1726 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1727 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1728 
1729 	while (rx_status & OWN) {
1730 		unsigned int rx_size;
1731 		unsigned int data_size;
1732 
1733 		if (--rx_work_limit < 0)
1734 			break;
1735 
1736 		data_size = rx_status & DSIZE;
1737 		rx_size = data_size - CRC_SIZE;
1738 
1739 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1740 		/* ``TOOLONG'' flag means jumbo packet received. */
1741 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1742 			rx_status &= (~ ((unsigned int)TOOLONG));
1743 #endif
1744 
1745 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1746 			/* corrupted packet received */
1747 			if (netif_msg_rx_err(sis_priv))
1748 				printk(KERN_DEBUG "%s: Corrupted packet "
1749 				       "received, buffer status = 0x%8.8x/%d.\n",
1750 				       net_dev->name, rx_status, data_size);
1751 			net_dev->stats.rx_errors++;
1752 			if (rx_status & OVERRUN)
1753 				net_dev->stats.rx_over_errors++;
1754 			if (rx_status & (TOOLONG|RUNT))
1755 				net_dev->stats.rx_length_errors++;
1756 			if (rx_status & (RXISERR | FAERR))
1757 				net_dev->stats.rx_frame_errors++;
1758 			if (rx_status & CRCERR)
1759 				net_dev->stats.rx_crc_errors++;
1760 			/* reset buffer descriptor state */
1761 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1762 		} else {
1763 			struct sk_buff * skb;
1764 			struct sk_buff * rx_skb;
1765 
1766 			pci_unmap_single(sis_priv->pci_dev,
1767 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1768 				PCI_DMA_FROMDEVICE);
1769 
1770 			/* refill the Rx buffer, what if there is not enough
1771 			 * memory for new socket buffer ?? */
1772 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1773 				/*
1774 				 * Not enough memory to refill the buffer
1775 				 * so we need to recycle the old one so
1776 				 * as to avoid creating a memory hole
1777 				 * in the rx ring
1778 				 */
1779 				skb = sis_priv->rx_skbuff[entry];
1780 				net_dev->stats.rx_dropped++;
1781 				goto refill_rx_ring;
1782 			}
1783 
1784 			/* This situation should never happen, but due to
1785 			   some unknown bugs, it is possible that
1786 			   we are working on NULL sk_buff :-( */
1787 			if (sis_priv->rx_skbuff[entry] == NULL) {
1788 				if (netif_msg_rx_err(sis_priv))
1789 					printk(KERN_WARNING "%s: NULL pointer "
1790 					      "encountered in Rx ring\n"
1791 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1792 					      net_dev->name, sis_priv->cur_rx,
1793 					      sis_priv->dirty_rx);
1794 				dev_kfree_skb(skb);
1795 				break;
1796 			}
1797 
1798 			/* give the socket buffer to upper layers */
1799 			rx_skb = sis_priv->rx_skbuff[entry];
1800 			skb_put(rx_skb, rx_size);
1801 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1802 			netif_rx(rx_skb);
1803 
1804 			/* some network statistics */
1805 			if ((rx_status & BCAST) == MCAST)
1806 				net_dev->stats.multicast++;
1807 			net_dev->stats.rx_bytes += rx_size;
1808 			net_dev->stats.rx_packets++;
1809 			sis_priv->dirty_rx++;
1810 refill_rx_ring:
1811 			sis_priv->rx_skbuff[entry] = skb;
1812 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1813                 	sis_priv->rx_ring[entry].bufptr =
1814 				pci_map_single(sis_priv->pci_dev, skb->data,
1815 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1816 		}
1817 		sis_priv->cur_rx++;
1818 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1819 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1820 	} // while
1821 
1822 	/* refill the Rx buffer, what if the rate of refilling is slower
1823 	 * than consuming ?? */
1824 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1825 		struct sk_buff *skb;
1826 
1827 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1828 
1829 		if (sis_priv->rx_skbuff[entry] == NULL) {
1830 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1831 				/* not enough memory for skbuff, this makes a
1832 				 * "hole" on the buffer ring, it is not clear
1833 				 * how the hardware will react to this kind
1834 				 * of degenerated buffer */
1835 				if (netif_msg_rx_err(sis_priv))
1836 					printk(KERN_INFO "%s: Memory squeeze, "
1837 						"deferring packet.\n",
1838 						net_dev->name);
1839 				net_dev->stats.rx_dropped++;
1840 				break;
1841 			}
1842 			sis_priv->rx_skbuff[entry] = skb;
1843 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1844                 	sis_priv->rx_ring[entry].bufptr =
1845 				pci_map_single(sis_priv->pci_dev, skb->data,
1846 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1847 		}
1848 	}
1849 	/* re-enable the potentially idle receive state matchine */
1850 	outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1851 
1852 	return 0;
1853 }
1854 
1855 /**
1856  *	sis900_finish_xmit - finish up transmission of packets
1857  *	@net_dev: the net device to be transmitted on
1858  *
1859  *	Check for error condition and free socket buffer etc
1860  *	schedule for more transmission as needed
1861  *	Note: This function is called by interrupt handler,
1862  *	don't do "too much" work here
1863  */
1864 
1865 static void sis900_finish_xmit (struct net_device *net_dev)
1866 {
1867 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1868 
1869 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1870 		struct sk_buff *skb;
1871 		unsigned int entry;
1872 		u32 tx_status;
1873 
1874 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1875 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1876 
1877 		if (tx_status & OWN) {
1878 			/* The packet is not transmitted yet (owned by hardware) !
1879 			 * Note: the interrupt is generated only when Tx Machine
1880 			 * is idle, so this is an almost impossible case */
1881 			break;
1882 		}
1883 
1884 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1885 			/* packet unsuccessfully transmitted */
1886 			if (netif_msg_tx_err(sis_priv))
1887 				printk(KERN_DEBUG "%s: Transmit "
1888 				       "error, Tx status %8.8x.\n",
1889 				       net_dev->name, tx_status);
1890 			net_dev->stats.tx_errors++;
1891 			if (tx_status & UNDERRUN)
1892 				net_dev->stats.tx_fifo_errors++;
1893 			if (tx_status & ABORT)
1894 				net_dev->stats.tx_aborted_errors++;
1895 			if (tx_status & NOCARRIER)
1896 				net_dev->stats.tx_carrier_errors++;
1897 			if (tx_status & OWCOLL)
1898 				net_dev->stats.tx_window_errors++;
1899 		} else {
1900 			/* packet successfully transmitted */
1901 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1902 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1903 			net_dev->stats.tx_packets++;
1904 		}
1905 		/* Free the original skb. */
1906 		skb = sis_priv->tx_skbuff[entry];
1907 		pci_unmap_single(sis_priv->pci_dev,
1908 			sis_priv->tx_ring[entry].bufptr, skb->len,
1909 			PCI_DMA_TODEVICE);
1910 		dev_kfree_skb_irq(skb);
1911 		sis_priv->tx_skbuff[entry] = NULL;
1912 		sis_priv->tx_ring[entry].bufptr = 0;
1913 		sis_priv->tx_ring[entry].cmdsts = 0;
1914 	}
1915 
1916 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1917 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1918 		/* The ring is no longer full, clear tx_full and schedule
1919 		 * more transmission by netif_wake_queue(net_dev) */
1920 		sis_priv->tx_full = 0;
1921 		netif_wake_queue (net_dev);
1922 	}
1923 }
1924 
1925 /**
1926  *	sis900_close - close sis900 device
1927  *	@net_dev: the net device to be closed
1928  *
1929  *	Disable interrupts, stop the Tx and Rx Status Machine
1930  *	free Tx and RX socket buffer
1931  */
1932 
1933 static int sis900_close(struct net_device *net_dev)
1934 {
1935 	long ioaddr = net_dev->base_addr;
1936 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1937 	struct sk_buff *skb;
1938 	int i;
1939 
1940 	netif_stop_queue(net_dev);
1941 
1942 	/* Disable interrupts by clearing the interrupt mask. */
1943 	outl(0x0000, ioaddr + imr);
1944 	outl(0x0000, ioaddr + ier);
1945 
1946 	/* Stop the chip's Tx and Rx Status Machine */
1947 	outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1948 
1949 	del_timer(&sis_priv->timer);
1950 
1951 	free_irq(net_dev->irq, net_dev);
1952 
1953 	/* Free Tx and RX skbuff */
1954 	for (i = 0; i < NUM_RX_DESC; i++) {
1955 		skb = sis_priv->rx_skbuff[i];
1956 		if (skb) {
1957 			pci_unmap_single(sis_priv->pci_dev,
1958 				sis_priv->rx_ring[i].bufptr,
1959 				RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1960 			dev_kfree_skb(skb);
1961 			sis_priv->rx_skbuff[i] = NULL;
1962 		}
1963 	}
1964 	for (i = 0; i < NUM_TX_DESC; i++) {
1965 		skb = sis_priv->tx_skbuff[i];
1966 		if (skb) {
1967 			pci_unmap_single(sis_priv->pci_dev,
1968 				sis_priv->tx_ring[i].bufptr, skb->len,
1969 				PCI_DMA_TODEVICE);
1970 			dev_kfree_skb(skb);
1971 			sis_priv->tx_skbuff[i] = NULL;
1972 		}
1973 	}
1974 
1975 	/* Green! Put the chip in low-power mode. */
1976 
1977 	return 0;
1978 }
1979 
1980 /**
1981  *	sis900_get_drvinfo - Return information about driver
1982  *	@net_dev: the net device to probe
1983  *	@info: container for info returned
1984  *
1985  *	Process ethtool command such as "ehtool -i" to show information
1986  */
1987 
1988 static void sis900_get_drvinfo(struct net_device *net_dev,
1989 			       struct ethtool_drvinfo *info)
1990 {
1991 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1992 
1993 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
1994 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
1995 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
1996 		sizeof(info->bus_info));
1997 }
1998 
1999 static u32 sis900_get_msglevel(struct net_device *net_dev)
2000 {
2001 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2002 	return sis_priv->msg_enable;
2003 }
2004 
2005 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2006 {
2007 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2008 	sis_priv->msg_enable = value;
2009 }
2010 
2011 static u32 sis900_get_link(struct net_device *net_dev)
2012 {
2013 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2014 	return mii_link_ok(&sis_priv->mii_info);
2015 }
2016 
2017 static int sis900_get_settings(struct net_device *net_dev,
2018 				struct ethtool_cmd *cmd)
2019 {
2020 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2021 	spin_lock_irq(&sis_priv->lock);
2022 	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2023 	spin_unlock_irq(&sis_priv->lock);
2024 	return 0;
2025 }
2026 
2027 static int sis900_set_settings(struct net_device *net_dev,
2028 				struct ethtool_cmd *cmd)
2029 {
2030 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2031 	int rt;
2032 	spin_lock_irq(&sis_priv->lock);
2033 	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2034 	spin_unlock_irq(&sis_priv->lock);
2035 	return rt;
2036 }
2037 
2038 static int sis900_nway_reset(struct net_device *net_dev)
2039 {
2040 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2041 	return mii_nway_restart(&sis_priv->mii_info);
2042 }
2043 
2044 /**
2045  *	sis900_set_wol - Set up Wake on Lan registers
2046  *	@net_dev: the net device to probe
2047  *	@wol: container for info passed to the driver
2048  *
2049  *	Process ethtool command "wol" to setup wake on lan features.
2050  *	SiS900 supports sending WoL events if a correct packet is received,
2051  *	but there is no simple way to filter them to only a subset (broadcast,
2052  *	multicast, unicast or arp).
2053  */
2054 
2055 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2056 {
2057 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2058 	long pmctrl_addr = net_dev->base_addr + pmctrl;
2059 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2060 
2061 	if (wol->wolopts == 0) {
2062 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2063 		cfgpmcsr &= ~PME_EN;
2064 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2065 		outl(pmctrl_bits, pmctrl_addr);
2066 		if (netif_msg_wol(sis_priv))
2067 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2068 		return 0;
2069 	}
2070 
2071 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2072 				| WAKE_BCAST | WAKE_ARP))
2073 		return -EINVAL;
2074 
2075 	if (wol->wolopts & WAKE_MAGIC)
2076 		pmctrl_bits |= MAGICPKT;
2077 	if (wol->wolopts & WAKE_PHY)
2078 		pmctrl_bits |= LINKON;
2079 
2080 	outl(pmctrl_bits, pmctrl_addr);
2081 
2082 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2083 	cfgpmcsr |= PME_EN;
2084 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2085 	if (netif_msg_wol(sis_priv))
2086 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2087 
2088 	return 0;
2089 }
2090 
2091 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2092 {
2093 	long pmctrl_addr = net_dev->base_addr + pmctrl;
2094 	u32 pmctrl_bits;
2095 
2096 	pmctrl_bits = inl(pmctrl_addr);
2097 	if (pmctrl_bits & MAGICPKT)
2098 		wol->wolopts |= WAKE_MAGIC;
2099 	if (pmctrl_bits & LINKON)
2100 		wol->wolopts |= WAKE_PHY;
2101 
2102 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2103 }
2104 
2105 static const struct ethtool_ops sis900_ethtool_ops = {
2106 	.get_drvinfo 	= sis900_get_drvinfo,
2107 	.get_msglevel	= sis900_get_msglevel,
2108 	.set_msglevel	= sis900_set_msglevel,
2109 	.get_link	= sis900_get_link,
2110 	.get_settings	= sis900_get_settings,
2111 	.set_settings	= sis900_set_settings,
2112 	.nway_reset	= sis900_nway_reset,
2113 	.get_wol	= sis900_get_wol,
2114 	.set_wol	= sis900_set_wol
2115 };
2116 
2117 /**
2118  *	mii_ioctl - process MII i/o control command
2119  *	@net_dev: the net device to command for
2120  *	@rq: parameter for command
2121  *	@cmd: the i/o command
2122  *
2123  *	Process MII command like read/write MII register
2124  */
2125 
2126 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2127 {
2128 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2129 	struct mii_ioctl_data *data = if_mii(rq);
2130 
2131 	switch(cmd) {
2132 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2133 		data->phy_id = sis_priv->mii->phy_addr;
2134 		/* Fall Through */
2135 
2136 	case SIOCGMIIREG:		/* Read MII PHY register. */
2137 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2138 		return 0;
2139 
2140 	case SIOCSMIIREG:		/* Write MII PHY register. */
2141 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2142 		return 0;
2143 	default:
2144 		return -EOPNOTSUPP;
2145 	}
2146 }
2147 
2148 /**
2149  *	sis900_set_config - Set media type by net_device.set_config
2150  *	@dev: the net device for media type change
2151  *	@map: ifmap passed by ifconfig
2152  *
2153  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2154  *	we support only port changes. All other runtime configuration
2155  *	changes will be ignored
2156  */
2157 
2158 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2159 {
2160 	struct sis900_private *sis_priv = netdev_priv(dev);
2161 	struct mii_phy *mii_phy = sis_priv->mii;
2162 
2163 	u16 status;
2164 
2165 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2166 		/* we switch on the ifmap->port field. I couldn't find anything
2167 		 * like a definition or standard for the values of that field.
2168 		 * I think the meaning of those values is device specific. But
2169 		 * since I would like to change the media type via the ifconfig
2170 		 * command I use the definition from linux/netdevice.h
2171 		 * (which seems to be different from the ifport(pcmcia) definition) */
2172 		switch(map->port){
2173 		case IF_PORT_UNKNOWN: /* use auto here */
2174 			dev->if_port = map->port;
2175 			/* we are going to change the media type, so the Link
2176 			 * will be temporary down and we need to reflect that
2177 			 * here. When the Link comes up again, it will be
2178 			 * sensed by the sis_timer procedure, which also does
2179 			 * all the rest for us */
2180 			netif_carrier_off(dev);
2181 
2182 			/* read current state */
2183 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2184 
2185 			/* enable auto negotiation and reset the negotioation
2186 			 * (I don't really know what the auto negatiotiation
2187 			 * reset really means, but it sounds for me right to
2188 			 * do one here) */
2189 			mdio_write(dev, mii_phy->phy_addr,
2190 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2191 
2192 			break;
2193 
2194 		case IF_PORT_10BASET: /* 10BaseT */
2195 			dev->if_port = map->port;
2196 
2197 			/* we are going to change the media type, so the Link
2198 			 * will be temporary down and we need to reflect that
2199 			 * here. When the Link comes up again, it will be
2200 			 * sensed by the sis_timer procedure, which also does
2201 			 * all the rest for us */
2202 			netif_carrier_off(dev);
2203 
2204 			/* set Speed to 10Mbps */
2205 			/* read current state */
2206 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2207 
2208 			/* disable auto negotiation and force 10MBit mode*/
2209 			mdio_write(dev, mii_phy->phy_addr,
2210 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2211 					MII_CNTL_AUTO));
2212 			break;
2213 
2214 		case IF_PORT_100BASET: /* 100BaseT */
2215 		case IF_PORT_100BASETX: /* 100BaseTx */
2216 			dev->if_port = map->port;
2217 
2218 			/* we are going to change the media type, so the Link
2219 			 * will be temporary down and we need to reflect that
2220 			 * here. When the Link comes up again, it will be
2221 			 * sensed by the sis_timer procedure, which also does
2222 			 * all the rest for us */
2223 			netif_carrier_off(dev);
2224 
2225 			/* set Speed to 100Mbps */
2226 			/* disable auto negotiation and enable 100MBit Mode */
2227 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2228 			mdio_write(dev, mii_phy->phy_addr,
2229 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2230 				   MII_CNTL_SPEED);
2231 
2232 			break;
2233 
2234 		case IF_PORT_10BASE2: /* 10Base2 */
2235 		case IF_PORT_AUI: /* AUI */
2236 		case IF_PORT_100BASEFX: /* 100BaseFx */
2237                 	/* These Modes are not supported (are they?)*/
2238 			return -EOPNOTSUPP;
2239 			break;
2240 
2241 		default:
2242 			return -EINVAL;
2243 		}
2244 	}
2245 	return 0;
2246 }
2247 
2248 /**
2249  *	sis900_mcast_bitnr - compute hashtable index
2250  *	@addr: multicast address
2251  *	@revision: revision id of chip
2252  *
2253  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2254  *	hash table, which makes this function a little bit different from other drivers
2255  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2256  *   	multicast hash table.
2257  */
2258 
2259 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2260 {
2261 
2262 	u32 crc = ether_crc(6, addr);
2263 
2264 	/* leave 8 or 7 most siginifant bits */
2265 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2266 		return (int)(crc >> 24);
2267 	else
2268 		return (int)(crc >> 25);
2269 }
2270 
2271 /**
2272  *	set_rx_mode - Set SiS900 receive mode
2273  *	@net_dev: the net device to be set
2274  *
2275  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2276  *	And set the appropriate multicast filter.
2277  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2278  */
2279 
2280 static void set_rx_mode(struct net_device *net_dev)
2281 {
2282 	long ioaddr = net_dev->base_addr;
2283 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2284 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2285 	int i, table_entries;
2286 	u32 rx_mode;
2287 
2288 	/* 635 Hash Table entries = 256(2^16) */
2289 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2290 			(sis_priv->chipset_rev == SIS900B_900_REV))
2291 		table_entries = 16;
2292 	else
2293 		table_entries = 8;
2294 
2295 	if (net_dev->flags & IFF_PROMISC) {
2296 		/* Accept any kinds of packets */
2297 		rx_mode = RFPromiscuous;
2298 		for (i = 0; i < table_entries; i++)
2299 			mc_filter[i] = 0xffff;
2300 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2301 		   (net_dev->flags & IFF_ALLMULTI)) {
2302 		/* too many multicast addresses or accept all multicast packet */
2303 		rx_mode = RFAAB | RFAAM;
2304 		for (i = 0; i < table_entries; i++)
2305 			mc_filter[i] = 0xffff;
2306 	} else {
2307 		/* Accept Broadcast packet, destination address matchs our
2308 		 * MAC address, use Receive Filter to reject unwanted MCAST
2309 		 * packets */
2310 		struct netdev_hw_addr *ha;
2311 		rx_mode = RFAAB;
2312 
2313 		netdev_for_each_mc_addr(ha, net_dev) {
2314 			unsigned int bit_nr;
2315 
2316 			bit_nr = sis900_mcast_bitnr(ha->addr,
2317 						    sis_priv->chipset_rev);
2318 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2319 		}
2320 	}
2321 
2322 	/* update Multicast Hash Table in Receive Filter */
2323 	for (i = 0; i < table_entries; i++) {
2324                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2325 		outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2326 		outl(mc_filter[i], ioaddr + rfdr);
2327 	}
2328 
2329 	outl(RFEN | rx_mode, ioaddr + rfcr);
2330 
2331 	/* sis900 is capable of looping back packets at MAC level for
2332 	 * debugging purpose */
2333 	if (net_dev->flags & IFF_LOOPBACK) {
2334 		u32 cr_saved;
2335 		/* We must disable Tx/Rx before setting loopback mode */
2336 		cr_saved = inl(ioaddr + cr);
2337 		outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2338 		/* enable loopback */
2339 		outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2340 		outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2341 		/* restore cr */
2342 		outl(cr_saved, ioaddr + cr);
2343 	}
2344 }
2345 
2346 /**
2347  *	sis900_reset - Reset sis900 MAC
2348  *	@net_dev: the net device to reset
2349  *
2350  *	reset sis900 MAC and wait until finished
2351  *	reset through command register
2352  *	change backoff algorithm for 900B0 & 635 M/B
2353  */
2354 
2355 static void sis900_reset(struct net_device *net_dev)
2356 {
2357 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2358 	long ioaddr = net_dev->base_addr;
2359 	int i = 0;
2360 	u32 status = TxRCMP | RxRCMP;
2361 
2362 	outl(0, ioaddr + ier);
2363 	outl(0, ioaddr + imr);
2364 	outl(0, ioaddr + rfcr);
2365 
2366 	outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2367 
2368 	/* Check that the chip has finished the reset. */
2369 	while (status && (i++ < 1000)) {
2370 		status ^= (inl(isr + ioaddr) & status);
2371 	}
2372 
2373 	if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2374 			(sis_priv->chipset_rev == SIS900B_900_REV) )
2375 		outl(PESEL | RND_CNT, ioaddr + cfg);
2376 	else
2377 		outl(PESEL, ioaddr + cfg);
2378 }
2379 
2380 /**
2381  *	sis900_remove - Remove sis900 device
2382  *	@pci_dev: the pci device to be removed
2383  *
2384  *	remove and release SiS900 net device
2385  */
2386 
2387 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2388 {
2389 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2390 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2391 	struct mii_phy *phy = NULL;
2392 
2393 	while (sis_priv->first_mii) {
2394 		phy = sis_priv->first_mii;
2395 		sis_priv->first_mii = phy->next;
2396 		kfree(phy);
2397 	}
2398 
2399 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2400 		sis_priv->rx_ring_dma);
2401 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2402 		sis_priv->tx_ring_dma);
2403 	unregister_netdev(net_dev);
2404 	free_netdev(net_dev);
2405 	pci_release_regions(pci_dev);
2406 	pci_set_drvdata(pci_dev, NULL);
2407 }
2408 
2409 #ifdef CONFIG_PM
2410 
2411 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2412 {
2413 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2414 	long ioaddr = net_dev->base_addr;
2415 
2416 	if(!netif_running(net_dev))
2417 		return 0;
2418 
2419 	netif_stop_queue(net_dev);
2420 	netif_device_detach(net_dev);
2421 
2422 	/* Stop the chip's Tx and Rx Status Machine */
2423 	outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2424 
2425 	pci_set_power_state(pci_dev, PCI_D3hot);
2426 	pci_save_state(pci_dev);
2427 
2428 	return 0;
2429 }
2430 
2431 static int sis900_resume(struct pci_dev *pci_dev)
2432 {
2433 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2434 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2435 	long ioaddr = net_dev->base_addr;
2436 
2437 	if(!netif_running(net_dev))
2438 		return 0;
2439 	pci_restore_state(pci_dev);
2440 	pci_set_power_state(pci_dev, PCI_D0);
2441 
2442 	sis900_init_rxfilter(net_dev);
2443 
2444 	sis900_init_tx_ring(net_dev);
2445 	sis900_init_rx_ring(net_dev);
2446 
2447 	set_rx_mode(net_dev);
2448 
2449 	netif_device_attach(net_dev);
2450 	netif_start_queue(net_dev);
2451 
2452 	/* Workaround for EDB */
2453 	sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2454 
2455 	/* Enable all known interrupts by setting the interrupt mask. */
2456 	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2457 	outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2458 	outl(IE, ioaddr + ier);
2459 
2460 	sis900_check_mode(net_dev, sis_priv->mii);
2461 
2462 	return 0;
2463 }
2464 #endif /* CONFIG_PM */
2465 
2466 static struct pci_driver sis900_pci_driver = {
2467 	.name		= SIS900_MODULE_NAME,
2468 	.id_table	= sis900_pci_tbl,
2469 	.probe		= sis900_probe,
2470 	.remove		= __devexit_p(sis900_remove),
2471 #ifdef CONFIG_PM
2472 	.suspend	= sis900_suspend,
2473 	.resume		= sis900_resume,
2474 #endif /* CONFIG_PM */
2475 };
2476 
2477 static int __init sis900_init_module(void)
2478 {
2479 /* when a module, this is printed whether or not devices are found in probe */
2480 #ifdef MODULE
2481 	printk(version);
2482 #endif
2483 
2484 	return pci_register_driver(&sis900_pci_driver);
2485 }
2486 
2487 static void __exit sis900_cleanup_module(void)
2488 {
2489 	pci_unregister_driver(&sis900_pci_driver);
2490 }
2491 
2492 module_init(sis900_init_module);
2493 module_exit(sis900_cleanup_module);
2494 
2495