xref: /openbmc/linux/drivers/net/ethernet/sis/sis900.c (revision 61cb9ac6)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <linux/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 
110 static const struct pci_device_id sis900_pci_tbl[] = {
111 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
112 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
113 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
114 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
115 	{0,}
116 };
117 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
118 
119 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
120 
121 static const struct mii_chip_info {
122 	const char * name;
123 	u16 phy_id0;
124 	u16 phy_id1;
125 	u8  phy_types;
126 #define	HOME 	0x0001
127 #define LAN	0x0002
128 #define MIX	0x0003
129 #define UNKNOWN	0x0
130 } mii_chip_table[] = {
131 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
132 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
133 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
134 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
135 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
136 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
137 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
138 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
139 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
140 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
141 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
142 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
143 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
144 	{NULL,},
145 };
146 
147 struct mii_phy {
148 	struct mii_phy * next;
149 	int phy_addr;
150 	u16 phy_id0;
151 	u16 phy_id1;
152 	u16 status;
153 	u8  phy_types;
154 };
155 
156 typedef struct _BufferDesc {
157 	u32 link;
158 	u32 cmdsts;
159 	u32 bufptr;
160 } BufferDesc;
161 
162 struct sis900_private {
163 	struct pci_dev * pci_dev;
164 
165 	spinlock_t lock;
166 
167 	struct mii_phy * mii;
168 	struct mii_phy * first_mii; /* record the first mii structure */
169 	unsigned int cur_phy;
170 	struct mii_if_info mii_info;
171 
172 	void __iomem	*ioaddr;
173 
174 	struct timer_list timer; /* Link status detection timer. */
175 	u8 autong_complete; /* 1: auto-negotiate complete  */
176 
177 	u32 msg_enable;
178 
179 	unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */
180 	unsigned int cur_tx, dirty_tx;
181 
182 	/* The saved address of a sent/receive-in-place packet buffer */
183 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
184 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
185 	BufferDesc *tx_ring;
186 	BufferDesc *rx_ring;
187 
188 	dma_addr_t tx_ring_dma;
189 	dma_addr_t rx_ring_dma;
190 
191 	unsigned int tx_full; /* The Tx queue is full. */
192 	u8 host_bridge_rev;
193 	u8 chipset_rev;
194 	/* EEPROM data */
195 	int eeprom_size;
196 };
197 
198 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
199 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
200 MODULE_LICENSE("GPL");
201 
202 module_param(multicast_filter_limit, int, 0444);
203 module_param(max_interrupt_work, int, 0444);
204 module_param(sis900_debug, int, 0444);
205 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
206 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
207 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
208 
209 #define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
210 #define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
211 #define sr32(reg)	ioread32(ioaddr + (reg))
212 #define sr16(reg)	ioread16(ioaddr + (reg))
213 
214 #ifdef CONFIG_NET_POLL_CONTROLLER
215 static void sis900_poll(struct net_device *dev);
216 #endif
217 static int sis900_open(struct net_device *net_dev);
218 static int sis900_mii_probe (struct net_device * net_dev);
219 static void sis900_init_rxfilter (struct net_device * net_dev);
220 static u16 read_eeprom(void __iomem *ioaddr, int location);
221 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
222 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
223 static void sis900_timer(struct timer_list *t);
224 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
225 static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue);
226 static void sis900_init_tx_ring(struct net_device *net_dev);
227 static void sis900_init_rx_ring(struct net_device *net_dev);
228 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
229 				     struct net_device *net_dev);
230 static int sis900_rx(struct net_device *net_dev);
231 static void sis900_finish_xmit (struct net_device *net_dev);
232 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
233 static int sis900_close(struct net_device *net_dev);
234 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
235 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
236 static void set_rx_mode(struct net_device *net_dev);
237 static void sis900_reset(struct net_device *net_dev);
238 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
239 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
240 static u16 sis900_default_phy(struct net_device * net_dev);
241 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
242 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
243 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
244 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
245 static const struct ethtool_ops sis900_ethtool_ops;
246 
247 /**
248  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
249  *	@pci_dev: the sis900 pci device
250  *	@net_dev: the net device to get address for
251  *
252  *	Older SiS900 and friends, use EEPROM to store MAC address.
253  *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
254  */
255 
256 static int sis900_get_mac_addr(struct pci_dev *pci_dev,
257 			       struct net_device *net_dev)
258 {
259 	struct sis900_private *sis_priv = netdev_priv(net_dev);
260 	void __iomem *ioaddr = sis_priv->ioaddr;
261 	u16 signature;
262 	int i;
263 
264 	/* check to see if we have sane EEPROM */
265 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
266 	if (signature == 0xffff || signature == 0x0000) {
267 		printk (KERN_WARNING "%s: Error EEPROM read %x\n",
268 			pci_name(pci_dev), signature);
269 		return 0;
270 	}
271 
272 	/* get MAC address from EEPROM */
273 	for (i = 0; i < 3; i++)
274 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
275 
276 	return 1;
277 }
278 
279 /**
280  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
281  *	@pci_dev: the sis900 pci device
282  *	@net_dev: the net device to get address for
283  *
284  *	SiS630E model, use APC CMOS RAM to store MAC address.
285  *	APC CMOS RAM is accessed through ISA bridge.
286  *	MAC address is read into @net_dev->dev_addr.
287  */
288 
289 static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
290 				struct net_device *net_dev)
291 {
292 	struct pci_dev *isa_bridge = NULL;
293 	u8 reg;
294 	int i;
295 
296 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
297 	if (!isa_bridge)
298 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
299 	if (!isa_bridge) {
300 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
301 		       pci_name(pci_dev));
302 		return 0;
303 	}
304 	pci_read_config_byte(isa_bridge, 0x48, &reg);
305 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
306 
307 	for (i = 0; i < 6; i++) {
308 		outb(0x09 + i, 0x70);
309 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
310 	}
311 
312 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
313 	pci_dev_put(isa_bridge);
314 
315 	return 1;
316 }
317 
318 
319 /**
320  *	sis635_get_mac_addr - Get MAC address for SIS635 model
321  *	@pci_dev: the sis900 pci device
322  *	@net_dev: the net device to get address for
323  *
324  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
325  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
326  *	@net_dev->dev_addr.
327  */
328 
329 static int sis635_get_mac_addr(struct pci_dev *pci_dev,
330 			       struct net_device *net_dev)
331 {
332 	struct sis900_private *sis_priv = netdev_priv(net_dev);
333 	void __iomem *ioaddr = sis_priv->ioaddr;
334 	u32 rfcrSave;
335 	u32 i;
336 
337 	rfcrSave = sr32(rfcr);
338 
339 	sw32(cr, rfcrSave | RELOAD);
340 	sw32(cr, 0);
341 
342 	/* disable packet filtering before setting filter */
343 	sw32(rfcr, rfcrSave & ~RFEN);
344 
345 	/* load MAC addr to filter data register */
346 	for (i = 0 ; i < 3 ; i++) {
347 		sw32(rfcr, (i << RFADDR_shift));
348 		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
349 	}
350 
351 	/* enable packet filtering */
352 	sw32(rfcr, rfcrSave | RFEN);
353 
354 	return 1;
355 }
356 
357 /**
358  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
359  *	@pci_dev: the sis900 pci device
360  *	@net_dev: the net device to get address for
361  *
362  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
363  *	is shared by
364  *	LAN and 1394. When accessing EEPROM, send EEREQ signal to hardware first
365  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be accessed
366  *	by LAN, otherwise it is not. After MAC address is read from EEPROM, send
367  *	EEDONE signal to refuse EEPROM access by LAN.
368  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
369  *	The signature field in SiS962 or SiS963 spec is meaningless.
370  *	MAC address is read into @net_dev->dev_addr.
371  */
372 
373 static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
374 			       struct net_device *net_dev)
375 {
376 	struct sis900_private *sis_priv = netdev_priv(net_dev);
377 	void __iomem *ioaddr = sis_priv->ioaddr;
378 	int wait, rc = 0;
379 
380 	sw32(mear, EEREQ);
381 	for (wait = 0; wait < 2000; wait++) {
382 		if (sr32(mear) & EEGNT) {
383 			u16 *mac = (u16 *)net_dev->dev_addr;
384 			int i;
385 
386 			/* get MAC address from EEPROM */
387 			for (i = 0; i < 3; i++)
388 			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
389 
390 			rc = 1;
391 			break;
392 		}
393 		udelay(1);
394 	}
395 	sw32(mear, EEDONE);
396 	return rc;
397 }
398 
399 static const struct net_device_ops sis900_netdev_ops = {
400 	.ndo_open		 = sis900_open,
401 	.ndo_stop		= sis900_close,
402 	.ndo_start_xmit		= sis900_start_xmit,
403 	.ndo_set_config		= sis900_set_config,
404 	.ndo_set_rx_mode	= set_rx_mode,
405 	.ndo_validate_addr	= eth_validate_addr,
406 	.ndo_set_mac_address 	= eth_mac_addr,
407 	.ndo_eth_ioctl		= mii_ioctl,
408 	.ndo_tx_timeout		= sis900_tx_timeout,
409 #ifdef CONFIG_NET_POLL_CONTROLLER
410         .ndo_poll_controller	= sis900_poll,
411 #endif
412 };
413 
414 /**
415  *	sis900_probe - Probe for sis900 device
416  *	@pci_dev: the sis900 pci device
417  *	@pci_id: the pci device ID
418  *
419  *	Check and probe sis900 net device for @pci_dev.
420  *	Get mac address according to the chip revision,
421  *	and assign SiS900-specific entries in the device structure.
422  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
423  */
424 
425 static int sis900_probe(struct pci_dev *pci_dev,
426 			const struct pci_device_id *pci_id)
427 {
428 	struct sis900_private *sis_priv;
429 	struct net_device *net_dev;
430 	struct pci_dev *dev;
431 	dma_addr_t ring_dma;
432 	void *ring_space;
433 	void __iomem *ioaddr;
434 	int i, ret;
435 	const char *card_name = card_names[pci_id->driver_data];
436 	const char *dev_name = pci_name(pci_dev);
437 
438 /* when built into the kernel, we only print version if device is found */
439 #ifndef MODULE
440 	static int printed_version;
441 	if (!printed_version++)
442 		printk(version);
443 #endif
444 
445 	/* setup various bits in PCI command register */
446 	ret = pcim_enable_device(pci_dev);
447 	if(ret) return ret;
448 
449 	i = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
450 	if(i){
451 		printk(KERN_ERR "sis900.c: architecture does not support "
452 			"32bit PCI busmaster DMA\n");
453 		return i;
454 	}
455 
456 	pci_set_master(pci_dev);
457 
458 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
459 	if (!net_dev)
460 		return -ENOMEM;
461 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
462 
463 	/* We do a request_region() to register /proc/ioports info. */
464 	ret = pci_request_regions(pci_dev, "sis900");
465 	if (ret)
466 		goto err_out;
467 
468 	/* IO region. */
469 	ioaddr = pci_iomap(pci_dev, 0, 0);
470 	if (!ioaddr) {
471 		ret = -ENOMEM;
472 		goto err_out;
473 	}
474 
475 	sis_priv = netdev_priv(net_dev);
476 	sis_priv->ioaddr = ioaddr;
477 	sis_priv->pci_dev = pci_dev;
478 	spin_lock_init(&sis_priv->lock);
479 
480 	sis_priv->eeprom_size = 24;
481 
482 	pci_set_drvdata(pci_dev, net_dev);
483 
484 	ring_space = dma_alloc_coherent(&pci_dev->dev, TX_TOTAL_SIZE,
485 					&ring_dma, GFP_KERNEL);
486 	if (!ring_space) {
487 		ret = -ENOMEM;
488 		goto err_out_unmap;
489 	}
490 	sis_priv->tx_ring = ring_space;
491 	sis_priv->tx_ring_dma = ring_dma;
492 
493 	ring_space = dma_alloc_coherent(&pci_dev->dev, RX_TOTAL_SIZE,
494 					&ring_dma, GFP_KERNEL);
495 	if (!ring_space) {
496 		ret = -ENOMEM;
497 		goto err_unmap_tx;
498 	}
499 	sis_priv->rx_ring = ring_space;
500 	sis_priv->rx_ring_dma = ring_dma;
501 
502 	/* The SiS900-specific entries in the device structure. */
503 	net_dev->netdev_ops = &sis900_netdev_ops;
504 	net_dev->watchdog_timeo = TX_TIMEOUT;
505 	net_dev->ethtool_ops = &sis900_ethtool_ops;
506 
507 	if (sis900_debug > 0)
508 		sis_priv->msg_enable = sis900_debug;
509 	else
510 		sis_priv->msg_enable = SIS900_DEF_MSG;
511 
512 	sis_priv->mii_info.dev = net_dev;
513 	sis_priv->mii_info.mdio_read = mdio_read;
514 	sis_priv->mii_info.mdio_write = mdio_write;
515 	sis_priv->mii_info.phy_id_mask = 0x1f;
516 	sis_priv->mii_info.reg_num_mask = 0x1f;
517 
518 	/* Get Mac address according to the chip revision */
519 	sis_priv->chipset_rev = pci_dev->revision;
520 	if(netif_msg_probe(sis_priv))
521 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
522 				"trying to get MAC address...\n",
523 				dev_name, sis_priv->chipset_rev);
524 
525 	ret = 0;
526 	if (sis_priv->chipset_rev == SIS630E_900_REV)
527 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
528 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
529 		ret = sis635_get_mac_addr(pci_dev, net_dev);
530 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
531 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
532 	else
533 		ret = sis900_get_mac_addr(pci_dev, net_dev);
534 
535 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
536 		eth_hw_addr_random(net_dev);
537 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
538 				"using random generated one\n", dev_name);
539 	}
540 
541 	/* 630ET : set the mii access mode as software-mode */
542 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
543 		sw32(cr, ACCESSMODE | sr32(cr));
544 
545 	/* probe for mii transceiver */
546 	if (sis900_mii_probe(net_dev) == 0) {
547 		printk(KERN_WARNING "%s: Error probing MII device.\n",
548 		       dev_name);
549 		ret = -ENODEV;
550 		goto err_unmap_rx;
551 	}
552 
553 	/* save our host bridge revision */
554 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
555 	if (dev) {
556 		sis_priv->host_bridge_rev = dev->revision;
557 		pci_dev_put(dev);
558 	}
559 
560 	ret = register_netdev(net_dev);
561 	if (ret)
562 		goto err_unmap_rx;
563 
564 	/* print some information about our NIC */
565 	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
566 	       net_dev->name, card_name, ioaddr, pci_dev->irq,
567 	       net_dev->dev_addr);
568 
569 	/* Detect Wake on Lan support */
570 	ret = (sr32(CFGPMC) & PMESP) >> 27;
571 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
572 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
573 
574 	return 0;
575 
576 err_unmap_rx:
577 	dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
578 			  sis_priv->rx_ring_dma);
579 err_unmap_tx:
580 	dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
581 			  sis_priv->tx_ring_dma);
582 err_out_unmap:
583 	pci_iounmap(pci_dev, ioaddr);
584  err_out:
585 	free_netdev(net_dev);
586 	return ret;
587 }
588 
589 /**
590  *	sis900_mii_probe - Probe MII PHY for sis900
591  *	@net_dev: the net device to probe for
592  *
593  *	Search for total of 32 possible mii phy addresses.
594  *	Identify and set current phy if found one,
595  *	return error if it failed to found.
596  */
597 
598 static int sis900_mii_probe(struct net_device *net_dev)
599 {
600 	struct sis900_private *sis_priv = netdev_priv(net_dev);
601 	const char *dev_name = pci_name(sis_priv->pci_dev);
602 	u16 poll_bit = MII_STAT_LINK, status = 0;
603 	unsigned long timeout = jiffies + 5 * HZ;
604 	int phy_addr;
605 
606 	sis_priv->mii = NULL;
607 
608 	/* search for total of 32 possible mii phy addresses */
609 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
610 		struct mii_phy * mii_phy = NULL;
611 		u16 mii_status;
612 		int i;
613 
614 		mii_phy = NULL;
615 		for(i = 0; i < 2; i++)
616 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
617 
618 		if (mii_status == 0xffff || mii_status == 0x0000) {
619 			if (netif_msg_probe(sis_priv))
620 				printk(KERN_DEBUG "%s: MII at address %d"
621 						" not accessible\n",
622 						dev_name, phy_addr);
623 			continue;
624 		}
625 
626 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
627 			mii_phy = sis_priv->first_mii;
628 			while (mii_phy) {
629 				struct mii_phy *phy;
630 				phy = mii_phy;
631 				mii_phy = mii_phy->next;
632 				kfree(phy);
633 			}
634 			return 0;
635 		}
636 
637 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
638 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
639 		mii_phy->phy_addr = phy_addr;
640 		mii_phy->status = mii_status;
641 		mii_phy->next = sis_priv->mii;
642 		sis_priv->mii = mii_phy;
643 		sis_priv->first_mii = mii_phy;
644 
645 		for (i = 0; mii_chip_table[i].phy_id1; i++)
646 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
647 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
648 				mii_phy->phy_types = mii_chip_table[i].phy_types;
649 				if (mii_chip_table[i].phy_types == MIX)
650 					mii_phy->phy_types =
651 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
652 				printk(KERN_INFO "%s: %s transceiver found "
653 							"at address %d.\n",
654 							dev_name,
655 							mii_chip_table[i].name,
656 							phy_addr);
657 				break;
658 			}
659 
660 		if( !mii_chip_table[i].phy_id1 ) {
661 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
662 			       dev_name, phy_addr);
663 			mii_phy->phy_types = UNKNOWN;
664 		}
665 	}
666 
667 	if (sis_priv->mii == NULL) {
668 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
669 		return 0;
670 	}
671 
672 	/* select default PHY for mac */
673 	sis_priv->mii = NULL;
674 	sis900_default_phy( net_dev );
675 
676 	/* Reset phy if default phy is internal sis900 */
677         if ((sis_priv->mii->phy_id0 == 0x001D) &&
678 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
679 		status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
680 
681         /* workaround for ICS1893 PHY */
682         if ((sis_priv->mii->phy_id0 == 0x0015) &&
683             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
684 		mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
685 
686 	if(status & MII_STAT_LINK){
687 		while (poll_bit) {
688 			yield();
689 
690 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
691 			if (time_after_eq(jiffies, timeout)) {
692 				printk(KERN_WARNING "%s: reset phy and link down now\n",
693 				       dev_name);
694 				return -ETIME;
695 			}
696 		}
697 	}
698 
699 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
700 		/* SiS 630E has some bugs on default value of PHY registers */
701 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
702 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
703 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
704 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
705 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
706 	}
707 
708 	if (sis_priv->mii->status & MII_STAT_LINK)
709 		netif_carrier_on(net_dev);
710 	else
711 		netif_carrier_off(net_dev);
712 
713 	return 1;
714 }
715 
716 /**
717  *	sis900_default_phy - Select default PHY for sis900 mac.
718  *	@net_dev: the net device to probe for
719  *
720  *	Select first detected PHY with link as default.
721  *	If no one is link on, select PHY whose types is HOME as default.
722  *	If HOME doesn't exist, select LAN.
723  */
724 
725 static u16 sis900_default_phy(struct net_device * net_dev)
726 {
727 	struct sis900_private *sis_priv = netdev_priv(net_dev);
728 	struct mii_phy *phy = NULL, *phy_home = NULL,
729 		*default_phy = NULL, *phy_lan = NULL;
730 	u16 status;
731 
732         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
733 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
734 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
735 
736 		/* Link ON & Not select default PHY & not ghost PHY */
737 		if ((status & MII_STAT_LINK) && !default_phy &&
738 		    (phy->phy_types != UNKNOWN)) {
739 			default_phy = phy;
740 		} else {
741 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
742 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
743 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
744 			if (phy->phy_types == HOME)
745 				phy_home = phy;
746 			else if(phy->phy_types == LAN)
747 				phy_lan = phy;
748 		}
749 	}
750 
751 	if (!default_phy && phy_home)
752 		default_phy = phy_home;
753 	else if (!default_phy && phy_lan)
754 		default_phy = phy_lan;
755 	else if (!default_phy)
756 		default_phy = sis_priv->first_mii;
757 
758 	if (sis_priv->mii != default_phy) {
759 		sis_priv->mii = default_phy;
760 		sis_priv->cur_phy = default_phy->phy_addr;
761 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
762 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
763 	}
764 
765 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
766 
767 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
768 	status &= (~MII_CNTL_ISOLATE);
769 
770 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
771 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
772 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
773 
774 	return status;
775 }
776 
777 
778 /**
779  * 	sis900_set_capability - set the media capability of network adapter.
780  *	@net_dev : the net device to probe for
781  *	@phy : default PHY
782  *
783  *	Set the media capability of network adapter according to
784  *	mii status register. It's necessary before auto-negotiate.
785  */
786 
787 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
788 {
789 	u16 cap;
790 
791 	mdio_read(net_dev, phy->phy_addr, MII_STATUS);
792 	mdio_read(net_dev, phy->phy_addr, MII_STATUS);
793 
794 	cap = MII_NWAY_CSMA_CD |
795 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
796 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
797 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
798 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
799 
800 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
801 }
802 
803 
804 /* Delay between EEPROM clock transitions. */
805 #define eeprom_delay()	sr32(mear)
806 
807 /**
808  *	read_eeprom - Read Serial EEPROM
809  *	@ioaddr: base i/o address
810  *	@location: the EEPROM location to read
811  *
812  *	Read Serial EEPROM through EEPROM Access Register.
813  *	Note that location is in word (16 bits) unit
814  */
815 
816 static u16 read_eeprom(void __iomem *ioaddr, int location)
817 {
818 	u32 read_cmd = location | EEread;
819 	int i;
820 	u16 retval = 0;
821 
822 	sw32(mear, 0);
823 	eeprom_delay();
824 	sw32(mear, EECS);
825 	eeprom_delay();
826 
827 	/* Shift the read command (9) bits out. */
828 	for (i = 8; i >= 0; i--) {
829 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
830 
831 		sw32(mear, dataval);
832 		eeprom_delay();
833 		sw32(mear, dataval | EECLK);
834 		eeprom_delay();
835 	}
836 	sw32(mear, EECS);
837 	eeprom_delay();
838 
839 	/* read the 16-bits data in */
840 	for (i = 16; i > 0; i--) {
841 		sw32(mear, EECS);
842 		eeprom_delay();
843 		sw32(mear, EECS | EECLK);
844 		eeprom_delay();
845 		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
846 		eeprom_delay();
847 	}
848 
849 	/* Terminate the EEPROM access. */
850 	sw32(mear, 0);
851 	eeprom_delay();
852 
853 	return retval;
854 }
855 
856 /* Read and write the MII management registers using software-generated
857    serial MDIO protocol. Note that the command bits and data bits are
858    send out separately */
859 #define mdio_delay()	sr32(mear)
860 
861 static void mdio_idle(struct sis900_private *sp)
862 {
863 	void __iomem *ioaddr = sp->ioaddr;
864 
865 	sw32(mear, MDIO | MDDIR);
866 	mdio_delay();
867 	sw32(mear, MDIO | MDDIR | MDC);
868 }
869 
870 /* Synchronize the MII management interface by shifting 32 one bits out. */
871 static void mdio_reset(struct sis900_private *sp)
872 {
873 	void __iomem *ioaddr = sp->ioaddr;
874 	int i;
875 
876 	for (i = 31; i >= 0; i--) {
877 		sw32(mear, MDDIR | MDIO);
878 		mdio_delay();
879 		sw32(mear, MDDIR | MDIO | MDC);
880 		mdio_delay();
881 	}
882 }
883 
884 /**
885  *	mdio_read - read MII PHY register
886  *	@net_dev: the net device to read
887  *	@phy_id: the phy address to read
888  *	@location: the phy register id to read
889  *
890  *	Read MII registers through MDIO and MDC
891  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
892  *	Please see SiS7014 or ICS spec
893  */
894 
895 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
896 {
897 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
898 	struct sis900_private *sp = netdev_priv(net_dev);
899 	void __iomem *ioaddr = sp->ioaddr;
900 	u16 retval = 0;
901 	int i;
902 
903 	mdio_reset(sp);
904 	mdio_idle(sp);
905 
906 	for (i = 15; i >= 0; i--) {
907 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
908 
909 		sw32(mear, dataval);
910 		mdio_delay();
911 		sw32(mear, dataval | MDC);
912 		mdio_delay();
913 	}
914 
915 	/* Read the 16 data bits. */
916 	for (i = 16; i > 0; i--) {
917 		sw32(mear, 0);
918 		mdio_delay();
919 		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
920 		sw32(mear, MDC);
921 		mdio_delay();
922 	}
923 	sw32(mear, 0x00);
924 
925 	return retval;
926 }
927 
928 /**
929  *	mdio_write - write MII PHY register
930  *	@net_dev: the net device to write
931  *	@phy_id: the phy address to write
932  *	@location: the phy register id to write
933  *	@value: the register value to write with
934  *
935  *	Write MII registers with @value through MDIO and MDC
936  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
937  *	please see SiS7014 or ICS spec
938  */
939 
940 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
941 			int value)
942 {
943 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
944 	struct sis900_private *sp = netdev_priv(net_dev);
945 	void __iomem *ioaddr = sp->ioaddr;
946 	int i;
947 
948 	mdio_reset(sp);
949 	mdio_idle(sp);
950 
951 	/* Shift the command bits out. */
952 	for (i = 15; i >= 0; i--) {
953 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
954 
955 		sw8(mear, dataval);
956 		mdio_delay();
957 		sw8(mear, dataval | MDC);
958 		mdio_delay();
959 	}
960 	mdio_delay();
961 
962 	/* Shift the value bits out. */
963 	for (i = 15; i >= 0; i--) {
964 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
965 
966 		sw32(mear, dataval);
967 		mdio_delay();
968 		sw32(mear, dataval | MDC);
969 		mdio_delay();
970 	}
971 	mdio_delay();
972 
973 	/* Clear out extra bits. */
974 	for (i = 2; i > 0; i--) {
975 		sw8(mear, 0);
976 		mdio_delay();
977 		sw8(mear, MDC);
978 		mdio_delay();
979 	}
980 	sw32(mear, 0x00);
981 }
982 
983 
984 /**
985  *	sis900_reset_phy - reset sis900 mii phy.
986  *	@net_dev: the net device to write
987  *	@phy_addr: default phy address
988  *
989  *	Some specific phy can't work properly without reset.
990  *	This function will be called during initialization and
991  *	link status change from ON to DOWN.
992  */
993 
994 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
995 {
996 	int i;
997 	u16 status;
998 
999 	for (i = 0; i < 2; i++)
1000 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1001 
1002 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1003 
1004 	return status;
1005 }
1006 
1007 #ifdef CONFIG_NET_POLL_CONTROLLER
1008 /*
1009  * Polling 'interrupt' - used by things like netconsole to send skbs
1010  * without having to re-enable interrupts. It's not called while
1011  * the interrupt routine is executing.
1012 */
1013 static void sis900_poll(struct net_device *dev)
1014 {
1015 	struct sis900_private *sp = netdev_priv(dev);
1016 	const int irq = sp->pci_dev->irq;
1017 
1018 	disable_irq(irq);
1019 	sis900_interrupt(irq, dev);
1020 	enable_irq(irq);
1021 }
1022 #endif
1023 
1024 /**
1025  *	sis900_open - open sis900 device
1026  *	@net_dev: the net device to open
1027  *
1028  *	Do some initialization and start net interface.
1029  *	enable interrupts and set sis900 timer.
1030  */
1031 
1032 static int
1033 sis900_open(struct net_device *net_dev)
1034 {
1035 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1036 	void __iomem *ioaddr = sis_priv->ioaddr;
1037 	int ret;
1038 
1039 	/* Soft reset the chip. */
1040 	sis900_reset(net_dev);
1041 
1042 	/* Equalizer workaround Rule */
1043 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1044 
1045 	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1046 			  net_dev->name, net_dev);
1047 	if (ret)
1048 		return ret;
1049 
1050 	sis900_init_rxfilter(net_dev);
1051 
1052 	sis900_init_tx_ring(net_dev);
1053 	sis900_init_rx_ring(net_dev);
1054 
1055 	set_rx_mode(net_dev);
1056 
1057 	netif_start_queue(net_dev);
1058 
1059 	/* Workaround for EDB */
1060 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1061 
1062 	/* Enable all known interrupts by setting the interrupt mask. */
1063 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1064 	sw32(cr, RxENA | sr32(cr));
1065 	sw32(ier, IE);
1066 
1067 	sis900_check_mode(net_dev, sis_priv->mii);
1068 
1069 	/* Set the timer to switch to check for link beat and perhaps switch
1070 	   to an alternate media type. */
1071 	timer_setup(&sis_priv->timer, sis900_timer, 0);
1072 	sis_priv->timer.expires = jiffies + HZ;
1073 	add_timer(&sis_priv->timer);
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  *	sis900_init_rxfilter - Initialize the Rx filter
1080  *	@net_dev: the net device to initialize for
1081  *
1082  *	Set receive filter address to our MAC address
1083  *	and enable packet filtering.
1084  */
1085 
1086 static void
1087 sis900_init_rxfilter (struct net_device * net_dev)
1088 {
1089 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1090 	void __iomem *ioaddr = sis_priv->ioaddr;
1091 	u32 rfcrSave;
1092 	u32 i;
1093 
1094 	rfcrSave = sr32(rfcr);
1095 
1096 	/* disable packet filtering before setting filter */
1097 	sw32(rfcr, rfcrSave & ~RFEN);
1098 
1099 	/* load MAC addr to filter data register */
1100 	for (i = 0 ; i < 3 ; i++) {
1101 		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1102 
1103 		sw32(rfcr, i << RFADDR_shift);
1104 		sw32(rfdr, w);
1105 
1106 		if (netif_msg_hw(sis_priv)) {
1107 			printk(KERN_DEBUG "%s: Receive Filter Address[%d]=%x\n",
1108 			       net_dev->name, i, sr32(rfdr));
1109 		}
1110 	}
1111 
1112 	/* enable packet filtering */
1113 	sw32(rfcr, rfcrSave | RFEN);
1114 }
1115 
1116 /**
1117  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1118  *	@net_dev: the net device to initialize for
1119  *
1120  *	Initialize the Tx descriptor ring,
1121  */
1122 
1123 static void
1124 sis900_init_tx_ring(struct net_device *net_dev)
1125 {
1126 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1127 	void __iomem *ioaddr = sis_priv->ioaddr;
1128 	int i;
1129 
1130 	sis_priv->tx_full = 0;
1131 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1132 
1133 	for (i = 0; i < NUM_TX_DESC; i++) {
1134 		sis_priv->tx_skbuff[i] = NULL;
1135 
1136 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1137 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1138 		sis_priv->tx_ring[i].cmdsts = 0;
1139 		sis_priv->tx_ring[i].bufptr = 0;
1140 	}
1141 
1142 	/* load Transmit Descriptor Register */
1143 	sw32(txdp, sis_priv->tx_ring_dma);
1144 	if (netif_msg_hw(sis_priv))
1145 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1146 		       net_dev->name, sr32(txdp));
1147 }
1148 
1149 /**
1150  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1151  *	@net_dev: the net device to initialize for
1152  *
1153  *	Initialize the Rx descriptor ring,
1154  *	and pre-allocate receive buffers (socket buffer)
1155  */
1156 
1157 static void
1158 sis900_init_rx_ring(struct net_device *net_dev)
1159 {
1160 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1161 	void __iomem *ioaddr = sis_priv->ioaddr;
1162 	int i;
1163 
1164 	sis_priv->cur_rx = 0;
1165 	sis_priv->dirty_rx = 0;
1166 
1167 	/* init RX descriptor */
1168 	for (i = 0; i < NUM_RX_DESC; i++) {
1169 		sis_priv->rx_skbuff[i] = NULL;
1170 
1171 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1172 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1173 		sis_priv->rx_ring[i].cmdsts = 0;
1174 		sis_priv->rx_ring[i].bufptr = 0;
1175 	}
1176 
1177 	/* allocate sock buffers */
1178 	for (i = 0; i < NUM_RX_DESC; i++) {
1179 		struct sk_buff *skb;
1180 
1181 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1182 			/* not enough memory for skbuff, this makes a "hole"
1183 			   on the buffer ring, it is not clear how the
1184 			   hardware will react to this kind of degenerated
1185 			   buffer */
1186 			break;
1187 		}
1188 		sis_priv->rx_skbuff[i] = skb;
1189 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1190 		sis_priv->rx_ring[i].bufptr = dma_map_single(&sis_priv->pci_dev->dev,
1191 							     skb->data,
1192 							     RX_BUF_SIZE,
1193 							     DMA_FROM_DEVICE);
1194 		if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1195 					       sis_priv->rx_ring[i].bufptr))) {
1196 			dev_kfree_skb(skb);
1197 			sis_priv->rx_skbuff[i] = NULL;
1198 			break;
1199 		}
1200 	}
1201 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1202 
1203 	/* load Receive Descriptor Register */
1204 	sw32(rxdp, sis_priv->rx_ring_dma);
1205 	if (netif_msg_hw(sis_priv))
1206 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1207 		       net_dev->name, sr32(rxdp));
1208 }
1209 
1210 /**
1211  *	sis630_set_eq - set phy equalizer value for 630 LAN
1212  *	@net_dev: the net device to set equalizer value
1213  *	@revision: 630 LAN revision number
1214  *
1215  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1216  *	PHY register 14h(Test)
1217  *	Bit 14: 0 -- Automatically detect (default)
1218  *		1 -- Manually set Equalizer filter
1219  *	Bit 13: 0 -- (Default)
1220  *		1 -- Speed up convergence of equalizer setting
1221  *	Bit 9 : 0 -- (Default)
1222  *		1 -- Disable Baseline Wander
1223  *	Bit 3~7   -- Equalizer filter setting
1224  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1225  *	Then calculate equalizer value
1226  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1227  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1228  *	Calculate Equalizer value:
1229  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1230  *	When the equalizer is stable, this value is not a fixed value. It will be within
1231  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1232  *	0 <= max <= 4  --> set equalizer to max
1233  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1234  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1235  */
1236 
1237 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1238 {
1239 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1240 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1241 	int i, maxcount=10;
1242 
1243 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1244 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1245 		return;
1246 
1247 	if (netif_carrier_ok(net_dev)) {
1248 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1249 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1250 					(0x2200 | reg14h) & 0xBFFF);
1251 		for (i=0; i < maxcount; i++) {
1252 			eq_value = (0x00F8 & mdio_read(net_dev,
1253 					sis_priv->cur_phy, MII_RESV)) >> 3;
1254 			if (i == 0)
1255 				max_value=min_value=eq_value;
1256 			max_value = (eq_value > max_value) ?
1257 						eq_value : max_value;
1258 			min_value = (eq_value < min_value) ?
1259 						eq_value : min_value;
1260 		}
1261 		/* 630E rule to determine the equalizer value */
1262 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1263 		    revision == SIS630ET_900_REV) {
1264 			if (max_value < 5)
1265 				eq_value = max_value;
1266 			else if (max_value >= 5 && max_value < 15)
1267 				eq_value = (max_value == min_value) ?
1268 						max_value+2 : max_value+1;
1269 			else if (max_value >= 15)
1270 				eq_value=(max_value == min_value) ?
1271 						max_value+6 : max_value+5;
1272 		}
1273 		/* 630B0&B1 rule to determine the equalizer value */
1274 		if (revision == SIS630A_900_REV &&
1275 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1276 		     sis_priv->host_bridge_rev == SIS630B1)) {
1277 			if (max_value == 0)
1278 				eq_value = 3;
1279 			else
1280 				eq_value = (max_value + min_value + 1)/2;
1281 		}
1282 		/* write equalizer value and setting */
1283 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1284 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1285 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1286 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1287 	} else {
1288 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1289 		if (revision == SIS630A_900_REV &&
1290 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1291 		     sis_priv->host_bridge_rev == SIS630B1))
1292 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1293 						(reg14h | 0x2200) & 0xBFFF);
1294 		else
1295 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1296 						(reg14h | 0x2000) & 0xBFFF);
1297 	}
1298 }
1299 
1300 /**
1301  *	sis900_timer - sis900 timer routine
1302  *	@t: timer list containing a pointer to sis900 net device
1303  *
1304  *	On each timer ticks we check two things,
1305  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1306  */
1307 
1308 static void sis900_timer(struct timer_list *t)
1309 {
1310 	struct sis900_private *sis_priv = from_timer(sis_priv, t, timer);
1311 	struct net_device *net_dev = sis_priv->mii_info.dev;
1312 	struct mii_phy *mii_phy = sis_priv->mii;
1313 	static const int next_tick = 5*HZ;
1314 	int speed = 0, duplex = 0;
1315 	u16 status;
1316 
1317 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1318 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1319 
1320 	/* Link OFF -> ON */
1321 	if (!netif_carrier_ok(net_dev)) {
1322 	LookForLink:
1323 		/* Search for new PHY */
1324 		status = sis900_default_phy(net_dev);
1325 		mii_phy = sis_priv->mii;
1326 
1327 		if (status & MII_STAT_LINK) {
1328 			WARN_ON(!(status & MII_STAT_AUTO_DONE));
1329 
1330 			sis900_read_mode(net_dev, &speed, &duplex);
1331 			if (duplex) {
1332 				sis900_set_mode(sis_priv, speed, duplex);
1333 				sis630_set_eq(net_dev, sis_priv->chipset_rev);
1334 				netif_carrier_on(net_dev);
1335 			}
1336 		}
1337 	} else {
1338 	/* Link ON -> OFF */
1339                 if (!(status & MII_STAT_LINK)){
1340 			netif_carrier_off(net_dev);
1341 			if(netif_msg_link(sis_priv))
1342 				printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1343 
1344 			/* Change mode issue */
1345 			if ((mii_phy->phy_id0 == 0x001D) &&
1346 				((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1347 					sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1348 
1349 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1350 
1351 			goto LookForLink;
1352                 }
1353 	}
1354 
1355 	sis_priv->timer.expires = jiffies + next_tick;
1356 	add_timer(&sis_priv->timer);
1357 }
1358 
1359 /**
1360  *	sis900_check_mode - check the media mode for sis900
1361  *	@net_dev: the net device to be checked
1362  *	@mii_phy: the mii phy
1363  *
1364  *	Older driver gets the media mode from mii status output
1365  *	register. Now we set our media capability and auto-negotiate
1366  *	to get the upper bound of speed and duplex between two ends.
1367  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1368  *	and autong_complete should be set to 1.
1369  */
1370 
1371 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1372 {
1373 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1374 	void __iomem *ioaddr = sis_priv->ioaddr;
1375 	int speed, duplex;
1376 
1377 	if (mii_phy->phy_types == LAN) {
1378 		sw32(cfg, ~EXD & sr32(cfg));
1379 		sis900_set_capability(net_dev , mii_phy);
1380 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1381 	} else {
1382 		sw32(cfg, EXD | sr32(cfg));
1383 		speed = HW_SPEED_HOME;
1384 		duplex = FDX_CAPABLE_HALF_SELECTED;
1385 		sis900_set_mode(sis_priv, speed, duplex);
1386 		sis_priv->autong_complete = 1;
1387 	}
1388 }
1389 
1390 /**
1391  *	sis900_set_mode - Set the media mode of mac register.
1392  *	@sp:     the device private data
1393  *	@speed : the transmit speed to be determined
1394  *	@duplex: the duplex mode to be determined
1395  *
1396  *	Set the media mode of mac register txcfg/rxcfg according to
1397  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1398  *	bus is used instead of PCI bus. When this bit is set 1, the
1399  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1400  *	double words.
1401  */
1402 
1403 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1404 {
1405 	void __iomem *ioaddr = sp->ioaddr;
1406 	u32 tx_flags = 0, rx_flags = 0;
1407 
1408 	if (sr32( cfg) & EDB_MASTER_EN) {
1409 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1410 					(TX_FILL_THRESH << TxFILLT_shift);
1411 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1412 	} else {
1413 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1414 					(TX_FILL_THRESH << TxFILLT_shift);
1415 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1416 	}
1417 
1418 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1419 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1420 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1421 	} else {
1422 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1423 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1424 	}
1425 
1426 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1427 		tx_flags |= (TxCSI | TxHBI);
1428 		rx_flags |= RxATX;
1429 	}
1430 
1431 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1432 	/* Can accept Jumbo packet */
1433 	rx_flags |= RxAJAB;
1434 #endif
1435 
1436 	sw32(txcfg, tx_flags);
1437 	sw32(rxcfg, rx_flags);
1438 }
1439 
1440 /**
1441  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1442  *	@net_dev: the net device to read mode for
1443  *	@phy_addr: mii phy address
1444  *
1445  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1446  *	autong_complete should be set to 0 when starting auto-negotiation.
1447  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1448  *	sis900_timer will wait for link on again if autong_complete = 0.
1449  */
1450 
1451 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1452 {
1453 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1454 	int i = 0;
1455 	u32 status;
1456 
1457 	for (i = 0; i < 2; i++)
1458 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1459 
1460 	if (!(status & MII_STAT_LINK)){
1461 		if(netif_msg_link(sis_priv))
1462 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1463 		sis_priv->autong_complete = 1;
1464 		netif_carrier_off(net_dev);
1465 		return;
1466 	}
1467 
1468 	/* (Re)start AutoNegotiate */
1469 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1470 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1471 	sis_priv->autong_complete = 0;
1472 }
1473 
1474 
1475 /**
1476  *	sis900_read_mode - read media mode for sis900 internal phy
1477  *	@net_dev: the net device to read mode for
1478  *	@speed  : the transmit speed to be determined
1479  *	@duplex : the duplex mode to be determined
1480  *
1481  *	The capability of remote end will be put in mii register autorec
1482  *	after auto-negotiation. Use AND operation to get the upper bound
1483  *	of speed and duplex between two ends.
1484  */
1485 
1486 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1487 {
1488 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1489 	struct mii_phy *phy = sis_priv->mii;
1490 	int phy_addr = sis_priv->cur_phy;
1491 	u32 status;
1492 	u16 autoadv, autorec;
1493 	int i;
1494 
1495 	for (i = 0; i < 2; i++)
1496 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1497 
1498 	if (!(status & MII_STAT_LINK))
1499 		return;
1500 
1501 	/* AutoNegotiate completed */
1502 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1503 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1504 	status = autoadv & autorec;
1505 
1506 	*speed = HW_SPEED_10_MBPS;
1507 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1508 
1509 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1510 		*speed = HW_SPEED_100_MBPS;
1511 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1512 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1513 
1514 	sis_priv->autong_complete = 1;
1515 
1516 	/* Workaround for Realtek RTL8201 PHY issue */
1517 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1518 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1519 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1520 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1521 			*speed = HW_SPEED_100_MBPS;
1522 	}
1523 
1524 	if(netif_msg_link(sis_priv))
1525 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1526 	       				net_dev->name,
1527 	       				*speed == HW_SPEED_100_MBPS ?
1528 	       					"100mbps" : "10mbps",
1529 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1530 	       					"full" : "half");
1531 }
1532 
1533 /**
1534  *	sis900_tx_timeout - sis900 transmit timeout routine
1535  *	@net_dev: the net device to transmit
1536  *	@txqueue: index of hanging queue
1537  *
1538  *	print transmit timeout status
1539  *	disable interrupts and do some tasks
1540  */
1541 
1542 static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
1543 {
1544 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1545 	void __iomem *ioaddr = sis_priv->ioaddr;
1546 	unsigned long flags;
1547 	int i;
1548 
1549 	if (netif_msg_tx_err(sis_priv)) {
1550 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1551 			net_dev->name, sr32(cr), sr32(isr));
1552 	}
1553 
1554 	/* Disable interrupts by clearing the interrupt mask. */
1555 	sw32(imr, 0x0000);
1556 
1557 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1558 	spin_lock_irqsave(&sis_priv->lock, flags);
1559 
1560 	/* discard unsent packets */
1561 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1562 	for (i = 0; i < NUM_TX_DESC; i++) {
1563 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1564 
1565 		if (skb) {
1566 			dma_unmap_single(&sis_priv->pci_dev->dev,
1567 					 sis_priv->tx_ring[i].bufptr,
1568 					 skb->len, DMA_TO_DEVICE);
1569 			dev_kfree_skb_irq(skb);
1570 			sis_priv->tx_skbuff[i] = NULL;
1571 			sis_priv->tx_ring[i].cmdsts = 0;
1572 			sis_priv->tx_ring[i].bufptr = 0;
1573 			net_dev->stats.tx_dropped++;
1574 		}
1575 	}
1576 	sis_priv->tx_full = 0;
1577 	netif_wake_queue(net_dev);
1578 
1579 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1580 
1581 	netif_trans_update(net_dev); /* prevent tx timeout */
1582 
1583 	/* load Transmit Descriptor Register */
1584 	sw32(txdp, sis_priv->tx_ring_dma);
1585 
1586 	/* Enable all known interrupts by setting the interrupt mask. */
1587 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1588 }
1589 
1590 /**
1591  *	sis900_start_xmit - sis900 start transmit routine
1592  *	@skb: socket buffer pointer to put the data being transmitted
1593  *	@net_dev: the net device to transmit with
1594  *
1595  *	Set the transmit buffer descriptor,
1596  *	and write TxENA to enable transmit state machine.
1597  *	tell upper layer if the buffer is full
1598  */
1599 
1600 static netdev_tx_t
1601 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1602 {
1603 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1604 	void __iomem *ioaddr = sis_priv->ioaddr;
1605 	unsigned int  entry;
1606 	unsigned long flags;
1607 	unsigned int  index_cur_tx, index_dirty_tx;
1608 	unsigned int  count_dirty_tx;
1609 
1610 	spin_lock_irqsave(&sis_priv->lock, flags);
1611 
1612 	/* Calculate the next Tx descriptor entry. */
1613 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1614 	sis_priv->tx_skbuff[entry] = skb;
1615 
1616 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1617 	sis_priv->tx_ring[entry].bufptr = dma_map_single(&sis_priv->pci_dev->dev,
1618 							 skb->data, skb->len,
1619 							 DMA_TO_DEVICE);
1620 	if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1621 				       sis_priv->tx_ring[entry].bufptr))) {
1622 			dev_kfree_skb_any(skb);
1623 			sis_priv->tx_skbuff[entry] = NULL;
1624 			net_dev->stats.tx_dropped++;
1625 			spin_unlock_irqrestore(&sis_priv->lock, flags);
1626 			return NETDEV_TX_OK;
1627 	}
1628 	sis_priv->tx_ring[entry].cmdsts = (OWN | INTR | skb->len);
1629 	sw32(cr, TxENA | sr32(cr));
1630 
1631 	sis_priv->cur_tx ++;
1632 	index_cur_tx = sis_priv->cur_tx;
1633 	index_dirty_tx = sis_priv->dirty_tx;
1634 
1635 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1636 		count_dirty_tx ++;
1637 
1638 	if (index_cur_tx == index_dirty_tx) {
1639 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1640 		sis_priv->tx_full = 1;
1641 		netif_stop_queue(net_dev);
1642 	} else if (count_dirty_tx < NUM_TX_DESC) {
1643 		/* Typical path, tell upper layer that more transmission is possible */
1644 		netif_start_queue(net_dev);
1645 	} else {
1646 		/* buffer full, tell upper layer no more transmission */
1647 		sis_priv->tx_full = 1;
1648 		netif_stop_queue(net_dev);
1649 	}
1650 
1651 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1652 
1653 	if (netif_msg_tx_queued(sis_priv))
1654 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1655 		       "to slot %d.\n",
1656 		       net_dev->name, skb->data, (int)skb->len, entry);
1657 
1658 	return NETDEV_TX_OK;
1659 }
1660 
1661 /**
1662  *	sis900_interrupt - sis900 interrupt handler
1663  *	@irq: the irq number
1664  *	@dev_instance: the client data object
1665  *
1666  *	The interrupt handler does all of the Rx thread work,
1667  *	and cleans up after the Tx thread
1668  */
1669 
1670 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1671 {
1672 	struct net_device *net_dev = dev_instance;
1673 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1674 	int boguscnt = max_interrupt_work;
1675 	void __iomem *ioaddr = sis_priv->ioaddr;
1676 	u32 status;
1677 	unsigned int handled = 0;
1678 
1679 	spin_lock (&sis_priv->lock);
1680 
1681 	do {
1682 		status = sr32(isr);
1683 
1684 		if ((status & (HIBERR|TxURN|TxERR|TxDESC|RxORN|RxERR|RxOK)) == 0)
1685 			/* nothing interesting happened */
1686 			break;
1687 		handled = 1;
1688 
1689 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1690 		if (status & (RxORN | RxERR | RxOK))
1691 			/* Rx interrupt */
1692 			sis900_rx(net_dev);
1693 
1694 		if (status & (TxURN | TxERR | TxDESC))
1695 			/* Tx interrupt */
1696 			sis900_finish_xmit(net_dev);
1697 
1698 		/* something strange happened !!! */
1699 		if (status & HIBERR) {
1700 			if(netif_msg_intr(sis_priv))
1701 				printk(KERN_INFO "%s: Abnormal interrupt, "
1702 					"status %#8.8x.\n", net_dev->name, status);
1703 			break;
1704 		}
1705 		if (--boguscnt < 0) {
1706 			if(netif_msg_intr(sis_priv))
1707 				printk(KERN_INFO "%s: Too much work at interrupt, "
1708 					"interrupt status = %#8.8x.\n",
1709 					net_dev->name, status);
1710 			break;
1711 		}
1712 	} while (1);
1713 
1714 	if(netif_msg_intr(sis_priv))
1715 		printk(KERN_DEBUG "%s: exiting interrupt, "
1716 		       "interrupt status = %#8.8x\n",
1717 		       net_dev->name, sr32(isr));
1718 
1719 	spin_unlock (&sis_priv->lock);
1720 	return IRQ_RETVAL(handled);
1721 }
1722 
1723 /**
1724  *	sis900_rx - sis900 receive routine
1725  *	@net_dev: the net device which receives data
1726  *
1727  *	Process receive interrupt events,
1728  *	put buffer to higher layer and refill buffer pool
1729  *	Note: This function is called by interrupt handler,
1730  *	don't do "too much" work here
1731  */
1732 
1733 static int sis900_rx(struct net_device *net_dev)
1734 {
1735 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1736 	void __iomem *ioaddr = sis_priv->ioaddr;
1737 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1738 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1739 	int rx_work_limit;
1740 
1741 	if (netif_msg_rx_status(sis_priv))
1742 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1743 		       "status:0x%8.8x\n",
1744 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1745 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1746 
1747 	while (rx_status & OWN) {
1748 		unsigned int rx_size;
1749 		unsigned int data_size;
1750 
1751 		if (--rx_work_limit < 0)
1752 			break;
1753 
1754 		data_size = rx_status & DSIZE;
1755 		rx_size = data_size - CRC_SIZE;
1756 
1757 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1758 		/* ``TOOLONG'' flag means jumbo packet received. */
1759 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1760 			rx_status &= (~ ((unsigned int)TOOLONG));
1761 #endif
1762 
1763 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1764 			/* corrupted packet received */
1765 			if (netif_msg_rx_err(sis_priv))
1766 				printk(KERN_DEBUG "%s: Corrupted packet "
1767 				       "received, buffer status = 0x%8.8x/%d.\n",
1768 				       net_dev->name, rx_status, data_size);
1769 			net_dev->stats.rx_errors++;
1770 			if (rx_status & OVERRUN)
1771 				net_dev->stats.rx_over_errors++;
1772 			if (rx_status & (TOOLONG|RUNT))
1773 				net_dev->stats.rx_length_errors++;
1774 			if (rx_status & (RXISERR | FAERR))
1775 				net_dev->stats.rx_frame_errors++;
1776 			if (rx_status & CRCERR)
1777 				net_dev->stats.rx_crc_errors++;
1778 			/* reset buffer descriptor state */
1779 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1780 		} else {
1781 			struct sk_buff * skb;
1782 			struct sk_buff * rx_skb;
1783 
1784 			dma_unmap_single(&sis_priv->pci_dev->dev,
1785 					 sis_priv->rx_ring[entry].bufptr,
1786 					 RX_BUF_SIZE, DMA_FROM_DEVICE);
1787 
1788 			/* refill the Rx buffer, what if there is not enough
1789 			 * memory for new socket buffer ?? */
1790 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1791 				/*
1792 				 * Not enough memory to refill the buffer
1793 				 * so we need to recycle the old one so
1794 				 * as to avoid creating a memory hole
1795 				 * in the rx ring
1796 				 */
1797 				skb = sis_priv->rx_skbuff[entry];
1798 				net_dev->stats.rx_dropped++;
1799 				goto refill_rx_ring;
1800 			}
1801 
1802 			/* This situation should never happen, but due to
1803 			   some unknown bugs, it is possible that
1804 			   we are working on NULL sk_buff :-( */
1805 			if (sis_priv->rx_skbuff[entry] == NULL) {
1806 				if (netif_msg_rx_err(sis_priv))
1807 					printk(KERN_WARNING "%s: NULL pointer "
1808 					      "encountered in Rx ring\n"
1809 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1810 					      net_dev->name, sis_priv->cur_rx,
1811 					      sis_priv->dirty_rx);
1812 				dev_kfree_skb(skb);
1813 				break;
1814 			}
1815 
1816 			/* give the socket buffer to upper layers */
1817 			rx_skb = sis_priv->rx_skbuff[entry];
1818 			skb_put(rx_skb, rx_size);
1819 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1820 			netif_rx(rx_skb);
1821 
1822 			/* some network statistics */
1823 			if ((rx_status & BCAST) == MCAST)
1824 				net_dev->stats.multicast++;
1825 			net_dev->stats.rx_bytes += rx_size;
1826 			net_dev->stats.rx_packets++;
1827 			sis_priv->dirty_rx++;
1828 refill_rx_ring:
1829 			sis_priv->rx_skbuff[entry] = skb;
1830 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1831 			sis_priv->rx_ring[entry].bufptr =
1832 				dma_map_single(&sis_priv->pci_dev->dev,
1833 					       skb->data, RX_BUF_SIZE,
1834 					       DMA_FROM_DEVICE);
1835 			if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1836 						       sis_priv->rx_ring[entry].bufptr))) {
1837 				dev_kfree_skb_irq(skb);
1838 				sis_priv->rx_skbuff[entry] = NULL;
1839 				break;
1840 			}
1841 		}
1842 		sis_priv->cur_rx++;
1843 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1844 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1845 	} // while
1846 
1847 	/* refill the Rx buffer, what if the rate of refilling is slower
1848 	 * than consuming ?? */
1849 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1850 		struct sk_buff *skb;
1851 
1852 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1853 
1854 		if (sis_priv->rx_skbuff[entry] == NULL) {
1855 			skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1856 			if (skb == NULL) {
1857 				/* not enough memory for skbuff, this makes a
1858 				 * "hole" on the buffer ring, it is not clear
1859 				 * how the hardware will react to this kind
1860 				 * of degenerated buffer */
1861 				net_dev->stats.rx_dropped++;
1862 				break;
1863 			}
1864 			sis_priv->rx_skbuff[entry] = skb;
1865 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1866 			sis_priv->rx_ring[entry].bufptr =
1867 				dma_map_single(&sis_priv->pci_dev->dev,
1868 					       skb->data, RX_BUF_SIZE,
1869 					       DMA_FROM_DEVICE);
1870 			if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1871 						       sis_priv->rx_ring[entry].bufptr))) {
1872 				dev_kfree_skb_irq(skb);
1873 				sis_priv->rx_skbuff[entry] = NULL;
1874 				break;
1875 			}
1876 		}
1877 	}
1878 	/* re-enable the potentially idle receive state matchine */
1879 	sw32(cr , RxENA | sr32(cr));
1880 
1881 	return 0;
1882 }
1883 
1884 /**
1885  *	sis900_finish_xmit - finish up transmission of packets
1886  *	@net_dev: the net device to be transmitted on
1887  *
1888  *	Check for error condition and free socket buffer etc
1889  *	schedule for more transmission as needed
1890  *	Note: This function is called by interrupt handler,
1891  *	don't do "too much" work here
1892  */
1893 
1894 static void sis900_finish_xmit (struct net_device *net_dev)
1895 {
1896 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1897 
1898 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1899 		struct sk_buff *skb;
1900 		unsigned int entry;
1901 		u32 tx_status;
1902 
1903 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1904 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1905 
1906 		if (tx_status & OWN) {
1907 			/* The packet is not transmitted yet (owned by hardware) !
1908 			 * Note: this is an almost impossible condition
1909 			 * on TxDESC interrupt ('descriptor interrupt') */
1910 			break;
1911 		}
1912 
1913 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1914 			/* packet unsuccessfully transmitted */
1915 			if (netif_msg_tx_err(sis_priv))
1916 				printk(KERN_DEBUG "%s: Transmit "
1917 				       "error, Tx status %8.8x.\n",
1918 				       net_dev->name, tx_status);
1919 			net_dev->stats.tx_errors++;
1920 			if (tx_status & UNDERRUN)
1921 				net_dev->stats.tx_fifo_errors++;
1922 			if (tx_status & ABORT)
1923 				net_dev->stats.tx_aborted_errors++;
1924 			if (tx_status & NOCARRIER)
1925 				net_dev->stats.tx_carrier_errors++;
1926 			if (tx_status & OWCOLL)
1927 				net_dev->stats.tx_window_errors++;
1928 		} else {
1929 			/* packet successfully transmitted */
1930 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1931 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1932 			net_dev->stats.tx_packets++;
1933 		}
1934 		/* Free the original skb. */
1935 		skb = sis_priv->tx_skbuff[entry];
1936 		dma_unmap_single(&sis_priv->pci_dev->dev,
1937 				 sis_priv->tx_ring[entry].bufptr, skb->len,
1938 				 DMA_TO_DEVICE);
1939 		dev_consume_skb_irq(skb);
1940 		sis_priv->tx_skbuff[entry] = NULL;
1941 		sis_priv->tx_ring[entry].bufptr = 0;
1942 		sis_priv->tx_ring[entry].cmdsts = 0;
1943 	}
1944 
1945 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1946 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1947 		/* The ring is no longer full, clear tx_full and schedule
1948 		 * more transmission by netif_wake_queue(net_dev) */
1949 		sis_priv->tx_full = 0;
1950 		netif_wake_queue (net_dev);
1951 	}
1952 }
1953 
1954 /**
1955  *	sis900_close - close sis900 device
1956  *	@net_dev: the net device to be closed
1957  *
1958  *	Disable interrupts, stop the Tx and Rx Status Machine
1959  *	free Tx and RX socket buffer
1960  */
1961 
1962 static int sis900_close(struct net_device *net_dev)
1963 {
1964 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1965 	struct pci_dev *pdev = sis_priv->pci_dev;
1966 	void __iomem *ioaddr = sis_priv->ioaddr;
1967 	struct sk_buff *skb;
1968 	int i;
1969 
1970 	netif_stop_queue(net_dev);
1971 
1972 	/* Disable interrupts by clearing the interrupt mask. */
1973 	sw32(imr, 0x0000);
1974 	sw32(ier, 0x0000);
1975 
1976 	/* Stop the chip's Tx and Rx Status Machine */
1977 	sw32(cr, RxDIS | TxDIS | sr32(cr));
1978 
1979 	del_timer(&sis_priv->timer);
1980 
1981 	free_irq(pdev->irq, net_dev);
1982 
1983 	/* Free Tx and RX skbuff */
1984 	for (i = 0; i < NUM_RX_DESC; i++) {
1985 		skb = sis_priv->rx_skbuff[i];
1986 		if (skb) {
1987 			dma_unmap_single(&pdev->dev,
1988 					 sis_priv->rx_ring[i].bufptr,
1989 					 RX_BUF_SIZE, DMA_FROM_DEVICE);
1990 			dev_kfree_skb(skb);
1991 			sis_priv->rx_skbuff[i] = NULL;
1992 		}
1993 	}
1994 	for (i = 0; i < NUM_TX_DESC; i++) {
1995 		skb = sis_priv->tx_skbuff[i];
1996 		if (skb) {
1997 			dma_unmap_single(&pdev->dev,
1998 					 sis_priv->tx_ring[i].bufptr,
1999 					 skb->len, DMA_TO_DEVICE);
2000 			dev_kfree_skb(skb);
2001 			sis_priv->tx_skbuff[i] = NULL;
2002 		}
2003 	}
2004 
2005 	/* Green! Put the chip in low-power mode. */
2006 
2007 	return 0;
2008 }
2009 
2010 /**
2011  *	sis900_get_drvinfo - Return information about driver
2012  *	@net_dev: the net device to probe
2013  *	@info: container for info returned
2014  *
2015  *	Process ethtool command such as "ehtool -i" to show information
2016  */
2017 
2018 static void sis900_get_drvinfo(struct net_device *net_dev,
2019 			       struct ethtool_drvinfo *info)
2020 {
2021 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2022 
2023 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2024 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2025 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2026 		sizeof(info->bus_info));
2027 }
2028 
2029 static u32 sis900_get_msglevel(struct net_device *net_dev)
2030 {
2031 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2032 	return sis_priv->msg_enable;
2033 }
2034 
2035 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2036 {
2037 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2038 	sis_priv->msg_enable = value;
2039 }
2040 
2041 static u32 sis900_get_link(struct net_device *net_dev)
2042 {
2043 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2044 	return mii_link_ok(&sis_priv->mii_info);
2045 }
2046 
2047 static int sis900_get_link_ksettings(struct net_device *net_dev,
2048 				     struct ethtool_link_ksettings *cmd)
2049 {
2050 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2051 	spin_lock_irq(&sis_priv->lock);
2052 	mii_ethtool_get_link_ksettings(&sis_priv->mii_info, cmd);
2053 	spin_unlock_irq(&sis_priv->lock);
2054 	return 0;
2055 }
2056 
2057 static int sis900_set_link_ksettings(struct net_device *net_dev,
2058 				     const struct ethtool_link_ksettings *cmd)
2059 {
2060 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2061 	int rt;
2062 	spin_lock_irq(&sis_priv->lock);
2063 	rt = mii_ethtool_set_link_ksettings(&sis_priv->mii_info, cmd);
2064 	spin_unlock_irq(&sis_priv->lock);
2065 	return rt;
2066 }
2067 
2068 static int sis900_nway_reset(struct net_device *net_dev)
2069 {
2070 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2071 	return mii_nway_restart(&sis_priv->mii_info);
2072 }
2073 
2074 /**
2075  *	sis900_set_wol - Set up Wake on Lan registers
2076  *	@net_dev: the net device to probe
2077  *	@wol: container for info passed to the driver
2078  *
2079  *	Process ethtool command "wol" to setup wake on lan features.
2080  *	SiS900 supports sending WoL events if a correct packet is received,
2081  *	but there is no simple way to filter them to only a subset (broadcast,
2082  *	multicast, unicast or arp).
2083  */
2084 
2085 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2086 {
2087 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2088 	void __iomem *ioaddr = sis_priv->ioaddr;
2089 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2090 
2091 	if (wol->wolopts == 0) {
2092 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2093 		cfgpmcsr &= ~PME_EN;
2094 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2095 		sw32(pmctrl, pmctrl_bits);
2096 		if (netif_msg_wol(sis_priv))
2097 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2098 		return 0;
2099 	}
2100 
2101 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2102 				| WAKE_BCAST | WAKE_ARP))
2103 		return -EINVAL;
2104 
2105 	if (wol->wolopts & WAKE_MAGIC)
2106 		pmctrl_bits |= MAGICPKT;
2107 	if (wol->wolopts & WAKE_PHY)
2108 		pmctrl_bits |= LINKON;
2109 
2110 	sw32(pmctrl, pmctrl_bits);
2111 
2112 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2113 	cfgpmcsr |= PME_EN;
2114 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2115 	if (netif_msg_wol(sis_priv))
2116 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2117 
2118 	return 0;
2119 }
2120 
2121 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2122 {
2123 	struct sis900_private *sp = netdev_priv(net_dev);
2124 	void __iomem *ioaddr = sp->ioaddr;
2125 	u32 pmctrl_bits;
2126 
2127 	pmctrl_bits = sr32(pmctrl);
2128 	if (pmctrl_bits & MAGICPKT)
2129 		wol->wolopts |= WAKE_MAGIC;
2130 	if (pmctrl_bits & LINKON)
2131 		wol->wolopts |= WAKE_PHY;
2132 
2133 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2134 }
2135 
2136 static int sis900_get_eeprom_len(struct net_device *dev)
2137 {
2138 	struct sis900_private *sis_priv = netdev_priv(dev);
2139 
2140 	return sis_priv->eeprom_size;
2141 }
2142 
2143 static int sis900_read_eeprom(struct net_device *net_dev, u8 *buf)
2144 {
2145 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2146 	void __iomem *ioaddr = sis_priv->ioaddr;
2147 	int wait, ret = -EAGAIN;
2148 	u16 signature;
2149 	u16 *ebuf = (u16 *)buf;
2150 	int i;
2151 
2152 	if (sis_priv->chipset_rev == SIS96x_900_REV) {
2153 		sw32(mear, EEREQ);
2154 		for (wait = 0; wait < 2000; wait++) {
2155 			if (sr32(mear) & EEGNT) {
2156 				/* read 16 bits, and index by 16 bits */
2157 				for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2158 					ebuf[i] = (u16)read_eeprom(ioaddr, i);
2159 				ret = 0;
2160 				break;
2161 			}
2162 			udelay(1);
2163 		}
2164 		sw32(mear, EEDONE);
2165 	} else {
2166 		signature = (u16)read_eeprom(ioaddr, EEPROMSignature);
2167 		if (signature != 0xffff && signature != 0x0000) {
2168 			/* read 16 bits, and index by 16 bits */
2169 			for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2170 				ebuf[i] = (u16)read_eeprom(ioaddr, i);
2171 			ret = 0;
2172 		}
2173 	}
2174 	return ret;
2175 }
2176 
2177 #define SIS900_EEPROM_MAGIC	0xBABE
2178 static int sis900_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2179 {
2180 	struct sis900_private *sis_priv = netdev_priv(dev);
2181 	u8 *eebuf;
2182 	int res;
2183 
2184 	eebuf = kmalloc(sis_priv->eeprom_size, GFP_KERNEL);
2185 	if (!eebuf)
2186 		return -ENOMEM;
2187 
2188 	eeprom->magic = SIS900_EEPROM_MAGIC;
2189 	spin_lock_irq(&sis_priv->lock);
2190 	res = sis900_read_eeprom(dev, eebuf);
2191 	spin_unlock_irq(&sis_priv->lock);
2192 	if (!res)
2193 		memcpy(data, eebuf + eeprom->offset, eeprom->len);
2194 	kfree(eebuf);
2195 	return res;
2196 }
2197 
2198 static const struct ethtool_ops sis900_ethtool_ops = {
2199 	.get_drvinfo 	= sis900_get_drvinfo,
2200 	.get_msglevel	= sis900_get_msglevel,
2201 	.set_msglevel	= sis900_set_msglevel,
2202 	.get_link	= sis900_get_link,
2203 	.nway_reset	= sis900_nway_reset,
2204 	.get_wol	= sis900_get_wol,
2205 	.set_wol	= sis900_set_wol,
2206 	.get_link_ksettings = sis900_get_link_ksettings,
2207 	.set_link_ksettings = sis900_set_link_ksettings,
2208 	.get_eeprom_len = sis900_get_eeprom_len,
2209 	.get_eeprom = sis900_get_eeprom,
2210 };
2211 
2212 /**
2213  *	mii_ioctl - process MII i/o control command
2214  *	@net_dev: the net device to command for
2215  *	@rq: parameter for command
2216  *	@cmd: the i/o command
2217  *
2218  *	Process MII command like read/write MII register
2219  */
2220 
2221 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2222 {
2223 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2224 	struct mii_ioctl_data *data = if_mii(rq);
2225 
2226 	switch(cmd) {
2227 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2228 		data->phy_id = sis_priv->mii->phy_addr;
2229 		fallthrough;
2230 
2231 	case SIOCGMIIREG:		/* Read MII PHY register. */
2232 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2233 		return 0;
2234 
2235 	case SIOCSMIIREG:		/* Write MII PHY register. */
2236 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2237 		return 0;
2238 	default:
2239 		return -EOPNOTSUPP;
2240 	}
2241 }
2242 
2243 /**
2244  *	sis900_set_config - Set media type by net_device.set_config
2245  *	@dev: the net device for media type change
2246  *	@map: ifmap passed by ifconfig
2247  *
2248  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2249  *	we support only port changes. All other runtime configuration
2250  *	changes will be ignored
2251  */
2252 
2253 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2254 {
2255 	struct sis900_private *sis_priv = netdev_priv(dev);
2256 	struct mii_phy *mii_phy = sis_priv->mii;
2257 
2258 	u16 status;
2259 
2260 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2261 		/* we switch on the ifmap->port field. I couldn't find anything
2262 		 * like a definition or standard for the values of that field.
2263 		 * I think the meaning of those values is device specific. But
2264 		 * since I would like to change the media type via the ifconfig
2265 		 * command I use the definition from linux/netdevice.h
2266 		 * (which seems to be different from the ifport(pcmcia) definition) */
2267 		switch(map->port){
2268 		case IF_PORT_UNKNOWN: /* use auto here */
2269 			dev->if_port = map->port;
2270 			/* we are going to change the media type, so the Link
2271 			 * will be temporary down and we need to reflect that
2272 			 * here. When the Link comes up again, it will be
2273 			 * sensed by the sis_timer procedure, which also does
2274 			 * all the rest for us */
2275 			netif_carrier_off(dev);
2276 
2277 			/* read current state */
2278 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2279 
2280 			/* enable auto negotiation and reset the negotioation
2281 			 * (I don't really know what the auto negatiotiation
2282 			 * reset really means, but it sounds for me right to
2283 			 * do one here) */
2284 			mdio_write(dev, mii_phy->phy_addr,
2285 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2286 
2287 			break;
2288 
2289 		case IF_PORT_10BASET: /* 10BaseT */
2290 			dev->if_port = map->port;
2291 
2292 			/* we are going to change the media type, so the Link
2293 			 * will be temporary down and we need to reflect that
2294 			 * here. When the Link comes up again, it will be
2295 			 * sensed by the sis_timer procedure, which also does
2296 			 * all the rest for us */
2297 			netif_carrier_off(dev);
2298 
2299 			/* set Speed to 10Mbps */
2300 			/* read current state */
2301 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2302 
2303 			/* disable auto negotiation and force 10MBit mode*/
2304 			mdio_write(dev, mii_phy->phy_addr,
2305 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2306 					MII_CNTL_AUTO));
2307 			break;
2308 
2309 		case IF_PORT_100BASET: /* 100BaseT */
2310 		case IF_PORT_100BASETX: /* 100BaseTx */
2311 			dev->if_port = map->port;
2312 
2313 			/* we are going to change the media type, so the Link
2314 			 * will be temporary down and we need to reflect that
2315 			 * here. When the Link comes up again, it will be
2316 			 * sensed by the sis_timer procedure, which also does
2317 			 * all the rest for us */
2318 			netif_carrier_off(dev);
2319 
2320 			/* set Speed to 100Mbps */
2321 			/* disable auto negotiation and enable 100MBit Mode */
2322 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2323 			mdio_write(dev, mii_phy->phy_addr,
2324 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2325 				   MII_CNTL_SPEED);
2326 
2327 			break;
2328 
2329 		case IF_PORT_10BASE2: /* 10Base2 */
2330 		case IF_PORT_AUI: /* AUI */
2331 		case IF_PORT_100BASEFX: /* 100BaseFx */
2332 			/* These Modes are not supported (are they?)*/
2333 			return -EOPNOTSUPP;
2334 
2335 		default:
2336 			return -EINVAL;
2337 		}
2338 	}
2339 	return 0;
2340 }
2341 
2342 /**
2343  *	sis900_mcast_bitnr - compute hashtable index
2344  *	@addr: multicast address
2345  *	@revision: revision id of chip
2346  *
2347  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2348  *	hash table, which makes this function a little bit different from other drivers
2349  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2350  *   	multicast hash table.
2351  */
2352 
2353 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2354 {
2355 
2356 	u32 crc = ether_crc(6, addr);
2357 
2358 	/* leave 8 or 7 most siginifant bits */
2359 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2360 		return (int)(crc >> 24);
2361 	else
2362 		return (int)(crc >> 25);
2363 }
2364 
2365 /**
2366  *	set_rx_mode - Set SiS900 receive mode
2367  *	@net_dev: the net device to be set
2368  *
2369  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2370  *	And set the appropriate multicast filter.
2371  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2372  */
2373 
2374 static void set_rx_mode(struct net_device *net_dev)
2375 {
2376 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2377 	void __iomem *ioaddr = sis_priv->ioaddr;
2378 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2379 	int i, table_entries;
2380 	u32 rx_mode;
2381 
2382 	/* 635 Hash Table entries = 256(2^16) */
2383 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2384 			(sis_priv->chipset_rev == SIS900B_900_REV))
2385 		table_entries = 16;
2386 	else
2387 		table_entries = 8;
2388 
2389 	if (net_dev->flags & IFF_PROMISC) {
2390 		/* Accept any kinds of packets */
2391 		rx_mode = RFPromiscuous;
2392 		for (i = 0; i < table_entries; i++)
2393 			mc_filter[i] = 0xffff;
2394 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2395 		   (net_dev->flags & IFF_ALLMULTI)) {
2396 		/* too many multicast addresses or accept all multicast packet */
2397 		rx_mode = RFAAB | RFAAM;
2398 		for (i = 0; i < table_entries; i++)
2399 			mc_filter[i] = 0xffff;
2400 	} else {
2401 		/* Accept Broadcast packet, destination address matchs our
2402 		 * MAC address, use Receive Filter to reject unwanted MCAST
2403 		 * packets */
2404 		struct netdev_hw_addr *ha;
2405 		rx_mode = RFAAB;
2406 
2407 		netdev_for_each_mc_addr(ha, net_dev) {
2408 			unsigned int bit_nr;
2409 
2410 			bit_nr = sis900_mcast_bitnr(ha->addr,
2411 						    sis_priv->chipset_rev);
2412 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2413 		}
2414 	}
2415 
2416 	/* update Multicast Hash Table in Receive Filter */
2417 	for (i = 0; i < table_entries; i++) {
2418                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2419 		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2420 		sw32(rfdr, mc_filter[i]);
2421 	}
2422 
2423 	sw32(rfcr, RFEN | rx_mode);
2424 
2425 	/* sis900 is capable of looping back packets at MAC level for
2426 	 * debugging purpose */
2427 	if (net_dev->flags & IFF_LOOPBACK) {
2428 		u32 cr_saved;
2429 		/* We must disable Tx/Rx before setting loopback mode */
2430 		cr_saved = sr32(cr);
2431 		sw32(cr, cr_saved | TxDIS | RxDIS);
2432 		/* enable loopback */
2433 		sw32(txcfg, sr32(txcfg) | TxMLB);
2434 		sw32(rxcfg, sr32(rxcfg) | RxATX);
2435 		/* restore cr */
2436 		sw32(cr, cr_saved);
2437 	}
2438 }
2439 
2440 /**
2441  *	sis900_reset - Reset sis900 MAC
2442  *	@net_dev: the net device to reset
2443  *
2444  *	reset sis900 MAC and wait until finished
2445  *	reset through command register
2446  *	change backoff algorithm for 900B0 & 635 M/B
2447  */
2448 
2449 static void sis900_reset(struct net_device *net_dev)
2450 {
2451 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2452 	void __iomem *ioaddr = sis_priv->ioaddr;
2453 	u32 status = TxRCMP | RxRCMP;
2454 	int i;
2455 
2456 	sw32(ier, 0);
2457 	sw32(imr, 0);
2458 	sw32(rfcr, 0);
2459 
2460 	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2461 
2462 	/* Check that the chip has finished the reset. */
2463 	for (i = 0; status && (i < 1000); i++)
2464 		status ^= sr32(isr) & status;
2465 
2466 	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2467 	    sis_priv->chipset_rev == SIS900B_900_REV)
2468 		sw32(cfg, PESEL | RND_CNT);
2469 	else
2470 		sw32(cfg, PESEL);
2471 }
2472 
2473 /**
2474  *	sis900_remove - Remove sis900 device
2475  *	@pci_dev: the pci device to be removed
2476  *
2477  *	remove and release SiS900 net device
2478  */
2479 
2480 static void sis900_remove(struct pci_dev *pci_dev)
2481 {
2482 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2483 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2484 
2485 	unregister_netdev(net_dev);
2486 
2487 	while (sis_priv->first_mii) {
2488 		struct mii_phy *phy = sis_priv->first_mii;
2489 
2490 		sis_priv->first_mii = phy->next;
2491 		kfree(phy);
2492 	}
2493 
2494 	dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2495 			  sis_priv->rx_ring_dma);
2496 	dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2497 			  sis_priv->tx_ring_dma);
2498 	pci_iounmap(pci_dev, sis_priv->ioaddr);
2499 	free_netdev(net_dev);
2500 }
2501 
2502 static int __maybe_unused sis900_suspend(struct device *dev)
2503 {
2504 	struct net_device *net_dev = dev_get_drvdata(dev);
2505 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2506 	void __iomem *ioaddr = sis_priv->ioaddr;
2507 
2508 	if(!netif_running(net_dev))
2509 		return 0;
2510 
2511 	netif_stop_queue(net_dev);
2512 	netif_device_detach(net_dev);
2513 
2514 	/* Stop the chip's Tx and Rx Status Machine */
2515 	sw32(cr, RxDIS | TxDIS | sr32(cr));
2516 
2517 	return 0;
2518 }
2519 
2520 static int __maybe_unused sis900_resume(struct device *dev)
2521 {
2522 	struct net_device *net_dev = dev_get_drvdata(dev);
2523 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2524 	void __iomem *ioaddr = sis_priv->ioaddr;
2525 
2526 	if(!netif_running(net_dev))
2527 		return 0;
2528 
2529 	sis900_init_rxfilter(net_dev);
2530 
2531 	sis900_init_tx_ring(net_dev);
2532 	sis900_init_rx_ring(net_dev);
2533 
2534 	set_rx_mode(net_dev);
2535 
2536 	netif_device_attach(net_dev);
2537 	netif_start_queue(net_dev);
2538 
2539 	/* Workaround for EDB */
2540 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2541 
2542 	/* Enable all known interrupts by setting the interrupt mask. */
2543 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
2544 	sw32(cr, RxENA | sr32(cr));
2545 	sw32(ier, IE);
2546 
2547 	sis900_check_mode(net_dev, sis_priv->mii);
2548 
2549 	return 0;
2550 }
2551 
2552 static SIMPLE_DEV_PM_OPS(sis900_pm_ops, sis900_suspend, sis900_resume);
2553 
2554 static struct pci_driver sis900_pci_driver = {
2555 	.name		= SIS900_MODULE_NAME,
2556 	.id_table	= sis900_pci_tbl,
2557 	.probe		= sis900_probe,
2558 	.remove		= sis900_remove,
2559 	.driver.pm	= &sis900_pm_ops,
2560 };
2561 
2562 static int __init sis900_init_module(void)
2563 {
2564 /* when a module, this is printed whether or not devices are found in probe */
2565 #ifdef MODULE
2566 	printk(version);
2567 #endif
2568 
2569 	return pci_register_driver(&sis900_pci_driver);
2570 }
2571 
2572 static void __exit sis900_cleanup_module(void)
2573 {
2574 	pci_unregister_driver(&sis900_pci_driver);
2575 }
2576 
2577 module_init(sis900_init_module);
2578 module_exit(sis900_cleanup_module);
2579 
2580