1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux. 2 Copyright 1999 Silicon Integrated System Corporation 3 Revision: 1.08.10 Apr. 2 2006 4 5 Modified from the driver which is originally written by Donald Becker. 6 7 This software may be used and distributed according to the terms 8 of the GNU General Public License (GPL), incorporated herein by reference. 9 Drivers based on this skeleton fall under the GPL and must retain 10 the authorship (implicit copyright) notice. 11 12 References: 13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support, 14 preliminary Rev. 1.0 Jan. 14, 1998 15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support, 16 preliminary Rev. 1.0 Nov. 10, 1998 17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution, 18 preliminary Rev. 1.0 Jan. 18, 1998 19 20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support 21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support 22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages 23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support 24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support 25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary 26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support 27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function 28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem 29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY 30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix 31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3 32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support 33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup 34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support 35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix 36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning 37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig 38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support 39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule 40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1 41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring 42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4 43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release 44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed 45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com) 46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release 47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx 48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support 49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/kernel.h> 55 #include <linux/sched.h> 56 #include <linux/string.h> 57 #include <linux/timer.h> 58 #include <linux/errno.h> 59 #include <linux/ioport.h> 60 #include <linux/slab.h> 61 #include <linux/interrupt.h> 62 #include <linux/pci.h> 63 #include <linux/netdevice.h> 64 #include <linux/init.h> 65 #include <linux/mii.h> 66 #include <linux/etherdevice.h> 67 #include <linux/skbuff.h> 68 #include <linux/delay.h> 69 #include <linux/ethtool.h> 70 #include <linux/crc32.h> 71 #include <linux/bitops.h> 72 #include <linux/dma-mapping.h> 73 74 #include <asm/processor.h> /* Processor type for cache alignment. */ 75 #include <asm/io.h> 76 #include <asm/irq.h> 77 #include <linux/uaccess.h> /* User space memory access functions */ 78 79 #include "sis900.h" 80 81 #define SIS900_MODULE_NAME "sis900" 82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006" 83 84 static const char version[] = 85 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n"; 86 87 static int max_interrupt_work = 40; 88 static int multicast_filter_limit = 128; 89 90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */ 91 92 #define SIS900_DEF_MSG \ 93 (NETIF_MSG_DRV | \ 94 NETIF_MSG_LINK | \ 95 NETIF_MSG_RX_ERR | \ 96 NETIF_MSG_TX_ERR) 97 98 /* Time in jiffies before concluding the transmitter is hung. */ 99 #define TX_TIMEOUT (4*HZ) 100 101 enum { 102 SIS_900 = 0, 103 SIS_7016 104 }; 105 static const char * card_names[] = { 106 "SiS 900 PCI Fast Ethernet", 107 "SiS 7016 PCI Fast Ethernet" 108 }; 109 110 static const struct pci_device_id sis900_pci_tbl[] = { 111 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900, 112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900}, 113 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016, 114 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016}, 115 {0,} 116 }; 117 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl); 118 119 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex); 120 121 static const struct mii_chip_info { 122 const char * name; 123 u16 phy_id0; 124 u16 phy_id1; 125 u8 phy_types; 126 #define HOME 0x0001 127 #define LAN 0x0002 128 #define MIX 0x0003 129 #define UNKNOWN 0x0 130 } mii_chip_table[] = { 131 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN }, 132 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN }, 133 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN }, 134 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN }, 135 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN }, 136 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN }, 137 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME}, 138 { "ICS LAN PHY", 0x0015, 0xF440, LAN }, 139 { "ICS LAN PHY", 0x0143, 0xBC70, LAN }, 140 { "NS 83851 PHY", 0x2000, 0x5C20, MIX }, 141 { "NS 83847 PHY", 0x2000, 0x5C30, MIX }, 142 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN }, 143 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN }, 144 {NULL,}, 145 }; 146 147 struct mii_phy { 148 struct mii_phy * next; 149 int phy_addr; 150 u16 phy_id0; 151 u16 phy_id1; 152 u16 status; 153 u8 phy_types; 154 }; 155 156 typedef struct _BufferDesc { 157 u32 link; 158 u32 cmdsts; 159 u32 bufptr; 160 } BufferDesc; 161 162 struct sis900_private { 163 struct pci_dev * pci_dev; 164 165 spinlock_t lock; 166 167 struct mii_phy * mii; 168 struct mii_phy * first_mii; /* record the first mii structure */ 169 unsigned int cur_phy; 170 struct mii_if_info mii_info; 171 172 void __iomem *ioaddr; 173 174 struct timer_list timer; /* Link status detection timer. */ 175 u8 autong_complete; /* 1: auto-negotiate complete */ 176 177 u32 msg_enable; 178 179 unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */ 180 unsigned int cur_tx, dirty_tx; 181 182 /* The saved address of a sent/receive-in-place packet buffer */ 183 struct sk_buff *tx_skbuff[NUM_TX_DESC]; 184 struct sk_buff *rx_skbuff[NUM_RX_DESC]; 185 BufferDesc *tx_ring; 186 BufferDesc *rx_ring; 187 188 dma_addr_t tx_ring_dma; 189 dma_addr_t rx_ring_dma; 190 191 unsigned int tx_full; /* The Tx queue is full. */ 192 u8 host_bridge_rev; 193 u8 chipset_rev; 194 }; 195 196 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>"); 197 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver"); 198 MODULE_LICENSE("GPL"); 199 200 module_param(multicast_filter_limit, int, 0444); 201 module_param(max_interrupt_work, int, 0444); 202 module_param(sis900_debug, int, 0444); 203 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses"); 204 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt"); 205 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level"); 206 207 #define sw32(reg, val) iowrite32(val, ioaddr + (reg)) 208 #define sw8(reg, val) iowrite8(val, ioaddr + (reg)) 209 #define sr32(reg) ioread32(ioaddr + (reg)) 210 #define sr16(reg) ioread16(ioaddr + (reg)) 211 212 #ifdef CONFIG_NET_POLL_CONTROLLER 213 static void sis900_poll(struct net_device *dev); 214 #endif 215 static int sis900_open(struct net_device *net_dev); 216 static int sis900_mii_probe (struct net_device * net_dev); 217 static void sis900_init_rxfilter (struct net_device * net_dev); 218 static u16 read_eeprom(void __iomem *ioaddr, int location); 219 static int mdio_read(struct net_device *net_dev, int phy_id, int location); 220 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val); 221 static void sis900_timer(struct timer_list *t); 222 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy); 223 static void sis900_tx_timeout(struct net_device *net_dev); 224 static void sis900_init_tx_ring(struct net_device *net_dev); 225 static void sis900_init_rx_ring(struct net_device *net_dev); 226 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb, 227 struct net_device *net_dev); 228 static int sis900_rx(struct net_device *net_dev); 229 static void sis900_finish_xmit (struct net_device *net_dev); 230 static irqreturn_t sis900_interrupt(int irq, void *dev_instance); 231 static int sis900_close(struct net_device *net_dev); 232 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd); 233 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision); 234 static void set_rx_mode(struct net_device *net_dev); 235 static void sis900_reset(struct net_device *net_dev); 236 static void sis630_set_eq(struct net_device *net_dev, u8 revision); 237 static int sis900_set_config(struct net_device *dev, struct ifmap *map); 238 static u16 sis900_default_phy(struct net_device * net_dev); 239 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy); 240 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr); 241 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr); 242 static void sis900_set_mode(struct sis900_private *, int speed, int duplex); 243 static const struct ethtool_ops sis900_ethtool_ops; 244 245 /** 246 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model 247 * @pci_dev: the sis900 pci device 248 * @net_dev: the net device to get address for 249 * 250 * Older SiS900 and friends, use EEPROM to store MAC address. 251 * MAC address is read from read_eeprom() into @net_dev->dev_addr. 252 */ 253 254 static int sis900_get_mac_addr(struct pci_dev *pci_dev, 255 struct net_device *net_dev) 256 { 257 struct sis900_private *sis_priv = netdev_priv(net_dev); 258 void __iomem *ioaddr = sis_priv->ioaddr; 259 u16 signature; 260 int i; 261 262 /* check to see if we have sane EEPROM */ 263 signature = (u16) read_eeprom(ioaddr, EEPROMSignature); 264 if (signature == 0xffff || signature == 0x0000) { 265 printk (KERN_WARNING "%s: Error EEPROM read %x\n", 266 pci_name(pci_dev), signature); 267 return 0; 268 } 269 270 /* get MAC address from EEPROM */ 271 for (i = 0; i < 3; i++) 272 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr); 273 274 return 1; 275 } 276 277 /** 278 * sis630e_get_mac_addr - Get MAC address for SiS630E model 279 * @pci_dev: the sis900 pci device 280 * @net_dev: the net device to get address for 281 * 282 * SiS630E model, use APC CMOS RAM to store MAC address. 283 * APC CMOS RAM is accessed through ISA bridge. 284 * MAC address is read into @net_dev->dev_addr. 285 */ 286 287 static int sis630e_get_mac_addr(struct pci_dev *pci_dev, 288 struct net_device *net_dev) 289 { 290 struct pci_dev *isa_bridge = NULL; 291 u8 reg; 292 int i; 293 294 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge); 295 if (!isa_bridge) 296 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge); 297 if (!isa_bridge) { 298 printk(KERN_WARNING "%s: Can not find ISA bridge\n", 299 pci_name(pci_dev)); 300 return 0; 301 } 302 pci_read_config_byte(isa_bridge, 0x48, ®); 303 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40); 304 305 for (i = 0; i < 6; i++) { 306 outb(0x09 + i, 0x70); 307 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71); 308 } 309 310 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40); 311 pci_dev_put(isa_bridge); 312 313 return 1; 314 } 315 316 317 /** 318 * sis635_get_mac_addr - Get MAC address for SIS635 model 319 * @pci_dev: the sis900 pci device 320 * @net_dev: the net device to get address for 321 * 322 * SiS635 model, set MAC Reload Bit to load Mac address from APC 323 * to rfdr. rfdr is accessed through rfcr. MAC address is read into 324 * @net_dev->dev_addr. 325 */ 326 327 static int sis635_get_mac_addr(struct pci_dev *pci_dev, 328 struct net_device *net_dev) 329 { 330 struct sis900_private *sis_priv = netdev_priv(net_dev); 331 void __iomem *ioaddr = sis_priv->ioaddr; 332 u32 rfcrSave; 333 u32 i; 334 335 rfcrSave = sr32(rfcr); 336 337 sw32(cr, rfcrSave | RELOAD); 338 sw32(cr, 0); 339 340 /* disable packet filtering before setting filter */ 341 sw32(rfcr, rfcrSave & ~RFEN); 342 343 /* load MAC addr to filter data register */ 344 for (i = 0 ; i < 3 ; i++) { 345 sw32(rfcr, (i << RFADDR_shift)); 346 *( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr); 347 } 348 349 /* enable packet filtering */ 350 sw32(rfcr, rfcrSave | RFEN); 351 352 return 1; 353 } 354 355 /** 356 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model 357 * @pci_dev: the sis900 pci device 358 * @net_dev: the net device to get address for 359 * 360 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM 361 * is shared by 362 * LAN and 1394. When accessing EEPROM, send EEREQ signal to hardware first 363 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be accessed 364 * by LAN, otherwise it is not. After MAC address is read from EEPROM, send 365 * EEDONE signal to refuse EEPROM access by LAN. 366 * The EEPROM map of SiS962 or SiS963 is different to SiS900. 367 * The signature field in SiS962 or SiS963 spec is meaningless. 368 * MAC address is read into @net_dev->dev_addr. 369 */ 370 371 static int sis96x_get_mac_addr(struct pci_dev *pci_dev, 372 struct net_device *net_dev) 373 { 374 struct sis900_private *sis_priv = netdev_priv(net_dev); 375 void __iomem *ioaddr = sis_priv->ioaddr; 376 int wait, rc = 0; 377 378 sw32(mear, EEREQ); 379 for (wait = 0; wait < 2000; wait++) { 380 if (sr32(mear) & EEGNT) { 381 u16 *mac = (u16 *)net_dev->dev_addr; 382 int i; 383 384 /* get MAC address from EEPROM */ 385 for (i = 0; i < 3; i++) 386 mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr); 387 388 rc = 1; 389 break; 390 } 391 udelay(1); 392 } 393 sw32(mear, EEDONE); 394 return rc; 395 } 396 397 static const struct net_device_ops sis900_netdev_ops = { 398 .ndo_open = sis900_open, 399 .ndo_stop = sis900_close, 400 .ndo_start_xmit = sis900_start_xmit, 401 .ndo_set_config = sis900_set_config, 402 .ndo_set_rx_mode = set_rx_mode, 403 .ndo_validate_addr = eth_validate_addr, 404 .ndo_set_mac_address = eth_mac_addr, 405 .ndo_do_ioctl = mii_ioctl, 406 .ndo_tx_timeout = sis900_tx_timeout, 407 #ifdef CONFIG_NET_POLL_CONTROLLER 408 .ndo_poll_controller = sis900_poll, 409 #endif 410 }; 411 412 /** 413 * sis900_probe - Probe for sis900 device 414 * @pci_dev: the sis900 pci device 415 * @pci_id: the pci device ID 416 * 417 * Check and probe sis900 net device for @pci_dev. 418 * Get mac address according to the chip revision, 419 * and assign SiS900-specific entries in the device structure. 420 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc. 421 */ 422 423 static int sis900_probe(struct pci_dev *pci_dev, 424 const struct pci_device_id *pci_id) 425 { 426 struct sis900_private *sis_priv; 427 struct net_device *net_dev; 428 struct pci_dev *dev; 429 dma_addr_t ring_dma; 430 void *ring_space; 431 void __iomem *ioaddr; 432 int i, ret; 433 const char *card_name = card_names[pci_id->driver_data]; 434 const char *dev_name = pci_name(pci_dev); 435 436 /* when built into the kernel, we only print version if device is found */ 437 #ifndef MODULE 438 static int printed_version; 439 if (!printed_version++) 440 printk(version); 441 #endif 442 443 /* setup various bits in PCI command register */ 444 ret = pci_enable_device(pci_dev); 445 if(ret) return ret; 446 447 i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)); 448 if(i){ 449 printk(KERN_ERR "sis900.c: architecture does not support " 450 "32bit PCI busmaster DMA\n"); 451 return i; 452 } 453 454 pci_set_master(pci_dev); 455 456 net_dev = alloc_etherdev(sizeof(struct sis900_private)); 457 if (!net_dev) 458 return -ENOMEM; 459 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 460 461 /* We do a request_region() to register /proc/ioports info. */ 462 ret = pci_request_regions(pci_dev, "sis900"); 463 if (ret) 464 goto err_out; 465 466 /* IO region. */ 467 ioaddr = pci_iomap(pci_dev, 0, 0); 468 if (!ioaddr) { 469 ret = -ENOMEM; 470 goto err_out_cleardev; 471 } 472 473 sis_priv = netdev_priv(net_dev); 474 sis_priv->ioaddr = ioaddr; 475 sis_priv->pci_dev = pci_dev; 476 spin_lock_init(&sis_priv->lock); 477 478 pci_set_drvdata(pci_dev, net_dev); 479 480 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma); 481 if (!ring_space) { 482 ret = -ENOMEM; 483 goto err_out_unmap; 484 } 485 sis_priv->tx_ring = ring_space; 486 sis_priv->tx_ring_dma = ring_dma; 487 488 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma); 489 if (!ring_space) { 490 ret = -ENOMEM; 491 goto err_unmap_tx; 492 } 493 sis_priv->rx_ring = ring_space; 494 sis_priv->rx_ring_dma = ring_dma; 495 496 /* The SiS900-specific entries in the device structure. */ 497 net_dev->netdev_ops = &sis900_netdev_ops; 498 net_dev->watchdog_timeo = TX_TIMEOUT; 499 net_dev->ethtool_ops = &sis900_ethtool_ops; 500 501 if (sis900_debug > 0) 502 sis_priv->msg_enable = sis900_debug; 503 else 504 sis_priv->msg_enable = SIS900_DEF_MSG; 505 506 sis_priv->mii_info.dev = net_dev; 507 sis_priv->mii_info.mdio_read = mdio_read; 508 sis_priv->mii_info.mdio_write = mdio_write; 509 sis_priv->mii_info.phy_id_mask = 0x1f; 510 sis_priv->mii_info.reg_num_mask = 0x1f; 511 512 /* Get Mac address according to the chip revision */ 513 sis_priv->chipset_rev = pci_dev->revision; 514 if(netif_msg_probe(sis_priv)) 515 printk(KERN_DEBUG "%s: detected revision %2.2x, " 516 "trying to get MAC address...\n", 517 dev_name, sis_priv->chipset_rev); 518 519 ret = 0; 520 if (sis_priv->chipset_rev == SIS630E_900_REV) 521 ret = sis630e_get_mac_addr(pci_dev, net_dev); 522 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) ) 523 ret = sis635_get_mac_addr(pci_dev, net_dev); 524 else if (sis_priv->chipset_rev == SIS96x_900_REV) 525 ret = sis96x_get_mac_addr(pci_dev, net_dev); 526 else 527 ret = sis900_get_mac_addr(pci_dev, net_dev); 528 529 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) { 530 eth_hw_addr_random(net_dev); 531 printk(KERN_WARNING "%s: Unreadable or invalid MAC address," 532 "using random generated one\n", dev_name); 533 } 534 535 /* 630ET : set the mii access mode as software-mode */ 536 if (sis_priv->chipset_rev == SIS630ET_900_REV) 537 sw32(cr, ACCESSMODE | sr32(cr)); 538 539 /* probe for mii transceiver */ 540 if (sis900_mii_probe(net_dev) == 0) { 541 printk(KERN_WARNING "%s: Error probing MII device.\n", 542 dev_name); 543 ret = -ENODEV; 544 goto err_unmap_rx; 545 } 546 547 /* save our host bridge revision */ 548 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL); 549 if (dev) { 550 sis_priv->host_bridge_rev = dev->revision; 551 pci_dev_put(dev); 552 } 553 554 ret = register_netdev(net_dev); 555 if (ret) 556 goto err_unmap_rx; 557 558 /* print some information about our NIC */ 559 printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n", 560 net_dev->name, card_name, ioaddr, pci_dev->irq, 561 net_dev->dev_addr); 562 563 /* Detect Wake on Lan support */ 564 ret = (sr32(CFGPMC) & PMESP) >> 27; 565 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0) 566 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name); 567 568 return 0; 569 570 err_unmap_rx: 571 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring, 572 sis_priv->rx_ring_dma); 573 err_unmap_tx: 574 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring, 575 sis_priv->tx_ring_dma); 576 err_out_unmap: 577 pci_iounmap(pci_dev, ioaddr); 578 err_out_cleardev: 579 pci_release_regions(pci_dev); 580 err_out: 581 free_netdev(net_dev); 582 return ret; 583 } 584 585 /** 586 * sis900_mii_probe - Probe MII PHY for sis900 587 * @net_dev: the net device to probe for 588 * 589 * Search for total of 32 possible mii phy addresses. 590 * Identify and set current phy if found one, 591 * return error if it failed to found. 592 */ 593 594 static int sis900_mii_probe(struct net_device *net_dev) 595 { 596 struct sis900_private *sis_priv = netdev_priv(net_dev); 597 const char *dev_name = pci_name(sis_priv->pci_dev); 598 u16 poll_bit = MII_STAT_LINK, status = 0; 599 unsigned long timeout = jiffies + 5 * HZ; 600 int phy_addr; 601 602 sis_priv->mii = NULL; 603 604 /* search for total of 32 possible mii phy addresses */ 605 for (phy_addr = 0; phy_addr < 32; phy_addr++) { 606 struct mii_phy * mii_phy = NULL; 607 u16 mii_status; 608 int i; 609 610 mii_phy = NULL; 611 for(i = 0; i < 2; i++) 612 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS); 613 614 if (mii_status == 0xffff || mii_status == 0x0000) { 615 if (netif_msg_probe(sis_priv)) 616 printk(KERN_DEBUG "%s: MII at address %d" 617 " not accessible\n", 618 dev_name, phy_addr); 619 continue; 620 } 621 622 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) { 623 mii_phy = sis_priv->first_mii; 624 while (mii_phy) { 625 struct mii_phy *phy; 626 phy = mii_phy; 627 mii_phy = mii_phy->next; 628 kfree(phy); 629 } 630 return 0; 631 } 632 633 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0); 634 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1); 635 mii_phy->phy_addr = phy_addr; 636 mii_phy->status = mii_status; 637 mii_phy->next = sis_priv->mii; 638 sis_priv->mii = mii_phy; 639 sis_priv->first_mii = mii_phy; 640 641 for (i = 0; mii_chip_table[i].phy_id1; i++) 642 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) && 643 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){ 644 mii_phy->phy_types = mii_chip_table[i].phy_types; 645 if (mii_chip_table[i].phy_types == MIX) 646 mii_phy->phy_types = 647 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME; 648 printk(KERN_INFO "%s: %s transceiver found " 649 "at address %d.\n", 650 dev_name, 651 mii_chip_table[i].name, 652 phy_addr); 653 break; 654 } 655 656 if( !mii_chip_table[i].phy_id1 ) { 657 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n", 658 dev_name, phy_addr); 659 mii_phy->phy_types = UNKNOWN; 660 } 661 } 662 663 if (sis_priv->mii == NULL) { 664 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name); 665 return 0; 666 } 667 668 /* select default PHY for mac */ 669 sis_priv->mii = NULL; 670 sis900_default_phy( net_dev ); 671 672 /* Reset phy if default phy is internal sis900 */ 673 if ((sis_priv->mii->phy_id0 == 0x001D) && 674 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000)) 675 status = sis900_reset_phy(net_dev, sis_priv->cur_phy); 676 677 /* workaround for ICS1893 PHY */ 678 if ((sis_priv->mii->phy_id0 == 0x0015) && 679 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440)) 680 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200); 681 682 if(status & MII_STAT_LINK){ 683 while (poll_bit) { 684 yield(); 685 686 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit); 687 if (time_after_eq(jiffies, timeout)) { 688 printk(KERN_WARNING "%s: reset phy and link down now\n", 689 dev_name); 690 return -ETIME; 691 } 692 } 693 } 694 695 if (sis_priv->chipset_rev == SIS630E_900_REV) { 696 /* SiS 630E has some bugs on default value of PHY registers */ 697 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1); 698 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22); 699 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00); 700 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0); 701 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000); 702 } 703 704 if (sis_priv->mii->status & MII_STAT_LINK) 705 netif_carrier_on(net_dev); 706 else 707 netif_carrier_off(net_dev); 708 709 return 1; 710 } 711 712 /** 713 * sis900_default_phy - Select default PHY for sis900 mac. 714 * @net_dev: the net device to probe for 715 * 716 * Select first detected PHY with link as default. 717 * If no one is link on, select PHY whose types is HOME as default. 718 * If HOME doesn't exist, select LAN. 719 */ 720 721 static u16 sis900_default_phy(struct net_device * net_dev) 722 { 723 struct sis900_private *sis_priv = netdev_priv(net_dev); 724 struct mii_phy *phy = NULL, *phy_home = NULL, 725 *default_phy = NULL, *phy_lan = NULL; 726 u16 status; 727 728 for (phy=sis_priv->first_mii; phy; phy=phy->next) { 729 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 730 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 731 732 /* Link ON & Not select default PHY & not ghost PHY */ 733 if ((status & MII_STAT_LINK) && !default_phy && 734 (phy->phy_types != UNKNOWN)) { 735 default_phy = phy; 736 } else { 737 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL); 738 mdio_write(net_dev, phy->phy_addr, MII_CONTROL, 739 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE); 740 if (phy->phy_types == HOME) 741 phy_home = phy; 742 else if(phy->phy_types == LAN) 743 phy_lan = phy; 744 } 745 } 746 747 if (!default_phy && phy_home) 748 default_phy = phy_home; 749 else if (!default_phy && phy_lan) 750 default_phy = phy_lan; 751 else if (!default_phy) 752 default_phy = sis_priv->first_mii; 753 754 if (sis_priv->mii != default_phy) { 755 sis_priv->mii = default_phy; 756 sis_priv->cur_phy = default_phy->phy_addr; 757 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n", 758 pci_name(sis_priv->pci_dev), sis_priv->cur_phy); 759 } 760 761 sis_priv->mii_info.phy_id = sis_priv->cur_phy; 762 763 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL); 764 status &= (~MII_CNTL_ISOLATE); 765 766 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status); 767 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 768 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 769 770 return status; 771 } 772 773 774 /** 775 * sis900_set_capability - set the media capability of network adapter. 776 * @net_dev : the net device to probe for 777 * @phy : default PHY 778 * 779 * Set the media capability of network adapter according to 780 * mii status register. It's necessary before auto-negotiate. 781 */ 782 783 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy) 784 { 785 u16 cap; 786 u16 status; 787 788 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 789 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS); 790 791 cap = MII_NWAY_CSMA_CD | 792 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) | 793 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) | 794 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)| 795 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0); 796 797 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap); 798 } 799 800 801 /* Delay between EEPROM clock transitions. */ 802 #define eeprom_delay() sr32(mear) 803 804 /** 805 * read_eeprom - Read Serial EEPROM 806 * @ioaddr: base i/o address 807 * @location: the EEPROM location to read 808 * 809 * Read Serial EEPROM through EEPROM Access Register. 810 * Note that location is in word (16 bits) unit 811 */ 812 813 static u16 read_eeprom(void __iomem *ioaddr, int location) 814 { 815 u32 read_cmd = location | EEread; 816 int i; 817 u16 retval = 0; 818 819 sw32(mear, 0); 820 eeprom_delay(); 821 sw32(mear, EECS); 822 eeprom_delay(); 823 824 /* Shift the read command (9) bits out. */ 825 for (i = 8; i >= 0; i--) { 826 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS; 827 828 sw32(mear, dataval); 829 eeprom_delay(); 830 sw32(mear, dataval | EECLK); 831 eeprom_delay(); 832 } 833 sw32(mear, EECS); 834 eeprom_delay(); 835 836 /* read the 16-bits data in */ 837 for (i = 16; i > 0; i--) { 838 sw32(mear, EECS); 839 eeprom_delay(); 840 sw32(mear, EECS | EECLK); 841 eeprom_delay(); 842 retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0); 843 eeprom_delay(); 844 } 845 846 /* Terminate the EEPROM access. */ 847 sw32(mear, 0); 848 eeprom_delay(); 849 850 return retval; 851 } 852 853 /* Read and write the MII management registers using software-generated 854 serial MDIO protocol. Note that the command bits and data bits are 855 send out separately */ 856 #define mdio_delay() sr32(mear) 857 858 static void mdio_idle(struct sis900_private *sp) 859 { 860 void __iomem *ioaddr = sp->ioaddr; 861 862 sw32(mear, MDIO | MDDIR); 863 mdio_delay(); 864 sw32(mear, MDIO | MDDIR | MDC); 865 } 866 867 /* Synchronize the MII management interface by shifting 32 one bits out. */ 868 static void mdio_reset(struct sis900_private *sp) 869 { 870 void __iomem *ioaddr = sp->ioaddr; 871 int i; 872 873 for (i = 31; i >= 0; i--) { 874 sw32(mear, MDDIR | MDIO); 875 mdio_delay(); 876 sw32(mear, MDDIR | MDIO | MDC); 877 mdio_delay(); 878 } 879 } 880 881 /** 882 * mdio_read - read MII PHY register 883 * @net_dev: the net device to read 884 * @phy_id: the phy address to read 885 * @location: the phy register id to read 886 * 887 * Read MII registers through MDIO and MDC 888 * using MDIO management frame structure and protocol(defined by ISO/IEC). 889 * Please see SiS7014 or ICS spec 890 */ 891 892 static int mdio_read(struct net_device *net_dev, int phy_id, int location) 893 { 894 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift); 895 struct sis900_private *sp = netdev_priv(net_dev); 896 void __iomem *ioaddr = sp->ioaddr; 897 u16 retval = 0; 898 int i; 899 900 mdio_reset(sp); 901 mdio_idle(sp); 902 903 for (i = 15; i >= 0; i--) { 904 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; 905 906 sw32(mear, dataval); 907 mdio_delay(); 908 sw32(mear, dataval | MDC); 909 mdio_delay(); 910 } 911 912 /* Read the 16 data bits. */ 913 for (i = 16; i > 0; i--) { 914 sw32(mear, 0); 915 mdio_delay(); 916 retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0); 917 sw32(mear, MDC); 918 mdio_delay(); 919 } 920 sw32(mear, 0x00); 921 922 return retval; 923 } 924 925 /** 926 * mdio_write - write MII PHY register 927 * @net_dev: the net device to write 928 * @phy_id: the phy address to write 929 * @location: the phy register id to write 930 * @value: the register value to write with 931 * 932 * Write MII registers with @value through MDIO and MDC 933 * using MDIO management frame structure and protocol(defined by ISO/IEC) 934 * please see SiS7014 or ICS spec 935 */ 936 937 static void mdio_write(struct net_device *net_dev, int phy_id, int location, 938 int value) 939 { 940 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift); 941 struct sis900_private *sp = netdev_priv(net_dev); 942 void __iomem *ioaddr = sp->ioaddr; 943 int i; 944 945 mdio_reset(sp); 946 mdio_idle(sp); 947 948 /* Shift the command bits out. */ 949 for (i = 15; i >= 0; i--) { 950 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; 951 952 sw8(mear, dataval); 953 mdio_delay(); 954 sw8(mear, dataval | MDC); 955 mdio_delay(); 956 } 957 mdio_delay(); 958 959 /* Shift the value bits out. */ 960 for (i = 15; i >= 0; i--) { 961 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR; 962 963 sw32(mear, dataval); 964 mdio_delay(); 965 sw32(mear, dataval | MDC); 966 mdio_delay(); 967 } 968 mdio_delay(); 969 970 /* Clear out extra bits. */ 971 for (i = 2; i > 0; i--) { 972 sw8(mear, 0); 973 mdio_delay(); 974 sw8(mear, MDC); 975 mdio_delay(); 976 } 977 sw32(mear, 0x00); 978 } 979 980 981 /** 982 * sis900_reset_phy - reset sis900 mii phy. 983 * @net_dev: the net device to write 984 * @phy_addr: default phy address 985 * 986 * Some specific phy can't work properly without reset. 987 * This function will be called during initialization and 988 * link status change from ON to DOWN. 989 */ 990 991 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr) 992 { 993 int i; 994 u16 status; 995 996 for (i = 0; i < 2; i++) 997 status = mdio_read(net_dev, phy_addr, MII_STATUS); 998 999 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET ); 1000 1001 return status; 1002 } 1003 1004 #ifdef CONFIG_NET_POLL_CONTROLLER 1005 /* 1006 * Polling 'interrupt' - used by things like netconsole to send skbs 1007 * without having to re-enable interrupts. It's not called while 1008 * the interrupt routine is executing. 1009 */ 1010 static void sis900_poll(struct net_device *dev) 1011 { 1012 struct sis900_private *sp = netdev_priv(dev); 1013 const int irq = sp->pci_dev->irq; 1014 1015 disable_irq(irq); 1016 sis900_interrupt(irq, dev); 1017 enable_irq(irq); 1018 } 1019 #endif 1020 1021 /** 1022 * sis900_open - open sis900 device 1023 * @net_dev: the net device to open 1024 * 1025 * Do some initialization and start net interface. 1026 * enable interrupts and set sis900 timer. 1027 */ 1028 1029 static int 1030 sis900_open(struct net_device *net_dev) 1031 { 1032 struct sis900_private *sis_priv = netdev_priv(net_dev); 1033 void __iomem *ioaddr = sis_priv->ioaddr; 1034 int ret; 1035 1036 /* Soft reset the chip. */ 1037 sis900_reset(net_dev); 1038 1039 /* Equalizer workaround Rule */ 1040 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1041 1042 ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED, 1043 net_dev->name, net_dev); 1044 if (ret) 1045 return ret; 1046 1047 sis900_init_rxfilter(net_dev); 1048 1049 sis900_init_tx_ring(net_dev); 1050 sis900_init_rx_ring(net_dev); 1051 1052 set_rx_mode(net_dev); 1053 1054 netif_start_queue(net_dev); 1055 1056 /* Workaround for EDB */ 1057 sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED); 1058 1059 /* Enable all known interrupts by setting the interrupt mask. */ 1060 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC); 1061 sw32(cr, RxENA | sr32(cr)); 1062 sw32(ier, IE); 1063 1064 sis900_check_mode(net_dev, sis_priv->mii); 1065 1066 /* Set the timer to switch to check for link beat and perhaps switch 1067 to an alternate media type. */ 1068 timer_setup(&sis_priv->timer, sis900_timer, 0); 1069 sis_priv->timer.expires = jiffies + HZ; 1070 add_timer(&sis_priv->timer); 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * sis900_init_rxfilter - Initialize the Rx filter 1077 * @net_dev: the net device to initialize for 1078 * 1079 * Set receive filter address to our MAC address 1080 * and enable packet filtering. 1081 */ 1082 1083 static void 1084 sis900_init_rxfilter (struct net_device * net_dev) 1085 { 1086 struct sis900_private *sis_priv = netdev_priv(net_dev); 1087 void __iomem *ioaddr = sis_priv->ioaddr; 1088 u32 rfcrSave; 1089 u32 i; 1090 1091 rfcrSave = sr32(rfcr); 1092 1093 /* disable packet filtering before setting filter */ 1094 sw32(rfcr, rfcrSave & ~RFEN); 1095 1096 /* load MAC addr to filter data register */ 1097 for (i = 0 ; i < 3 ; i++) { 1098 u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i); 1099 1100 sw32(rfcr, i << RFADDR_shift); 1101 sw32(rfdr, w); 1102 1103 if (netif_msg_hw(sis_priv)) { 1104 printk(KERN_DEBUG "%s: Receive Filter Address[%d]=%x\n", 1105 net_dev->name, i, sr32(rfdr)); 1106 } 1107 } 1108 1109 /* enable packet filtering */ 1110 sw32(rfcr, rfcrSave | RFEN); 1111 } 1112 1113 /** 1114 * sis900_init_tx_ring - Initialize the Tx descriptor ring 1115 * @net_dev: the net device to initialize for 1116 * 1117 * Initialize the Tx descriptor ring, 1118 */ 1119 1120 static void 1121 sis900_init_tx_ring(struct net_device *net_dev) 1122 { 1123 struct sis900_private *sis_priv = netdev_priv(net_dev); 1124 void __iomem *ioaddr = sis_priv->ioaddr; 1125 int i; 1126 1127 sis_priv->tx_full = 0; 1128 sis_priv->dirty_tx = sis_priv->cur_tx = 0; 1129 1130 for (i = 0; i < NUM_TX_DESC; i++) { 1131 sis_priv->tx_skbuff[i] = NULL; 1132 1133 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma + 1134 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc); 1135 sis_priv->tx_ring[i].cmdsts = 0; 1136 sis_priv->tx_ring[i].bufptr = 0; 1137 } 1138 1139 /* load Transmit Descriptor Register */ 1140 sw32(txdp, sis_priv->tx_ring_dma); 1141 if (netif_msg_hw(sis_priv)) 1142 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n", 1143 net_dev->name, sr32(txdp)); 1144 } 1145 1146 /** 1147 * sis900_init_rx_ring - Initialize the Rx descriptor ring 1148 * @net_dev: the net device to initialize for 1149 * 1150 * Initialize the Rx descriptor ring, 1151 * and pre-allocate receive buffers (socket buffer) 1152 */ 1153 1154 static void 1155 sis900_init_rx_ring(struct net_device *net_dev) 1156 { 1157 struct sis900_private *sis_priv = netdev_priv(net_dev); 1158 void __iomem *ioaddr = sis_priv->ioaddr; 1159 int i; 1160 1161 sis_priv->cur_rx = 0; 1162 sis_priv->dirty_rx = 0; 1163 1164 /* init RX descriptor */ 1165 for (i = 0; i < NUM_RX_DESC; i++) { 1166 sis_priv->rx_skbuff[i] = NULL; 1167 1168 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma + 1169 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc); 1170 sis_priv->rx_ring[i].cmdsts = 0; 1171 sis_priv->rx_ring[i].bufptr = 0; 1172 } 1173 1174 /* allocate sock buffers */ 1175 for (i = 0; i < NUM_RX_DESC; i++) { 1176 struct sk_buff *skb; 1177 1178 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) { 1179 /* not enough memory for skbuff, this makes a "hole" 1180 on the buffer ring, it is not clear how the 1181 hardware will react to this kind of degenerated 1182 buffer */ 1183 break; 1184 } 1185 sis_priv->rx_skbuff[i] = skb; 1186 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE; 1187 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev, 1188 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1189 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev, 1190 sis_priv->rx_ring[i].bufptr))) { 1191 dev_kfree_skb(skb); 1192 sis_priv->rx_skbuff[i] = NULL; 1193 break; 1194 } 1195 } 1196 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC); 1197 1198 /* load Receive Descriptor Register */ 1199 sw32(rxdp, sis_priv->rx_ring_dma); 1200 if (netif_msg_hw(sis_priv)) 1201 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n", 1202 net_dev->name, sr32(rxdp)); 1203 } 1204 1205 /** 1206 * sis630_set_eq - set phy equalizer value for 630 LAN 1207 * @net_dev: the net device to set equalizer value 1208 * @revision: 630 LAN revision number 1209 * 1210 * 630E equalizer workaround rule(Cyrus Huang 08/15) 1211 * PHY register 14h(Test) 1212 * Bit 14: 0 -- Automatically detect (default) 1213 * 1 -- Manually set Equalizer filter 1214 * Bit 13: 0 -- (Default) 1215 * 1 -- Speed up convergence of equalizer setting 1216 * Bit 9 : 0 -- (Default) 1217 * 1 -- Disable Baseline Wander 1218 * Bit 3~7 -- Equalizer filter setting 1219 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0 1220 * Then calculate equalizer value 1221 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0 1222 * Link Off:Set Bit 13 to 1, Bit 14 to 0 1223 * Calculate Equalizer value: 1224 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value. 1225 * When the equalizer is stable, this value is not a fixed value. It will be within 1226 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9) 1227 * 0 <= max <= 4 --> set equalizer to max 1228 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min 1229 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min 1230 */ 1231 1232 static void sis630_set_eq(struct net_device *net_dev, u8 revision) 1233 { 1234 struct sis900_private *sis_priv = netdev_priv(net_dev); 1235 u16 reg14h, eq_value=0, max_value=0, min_value=0; 1236 int i, maxcount=10; 1237 1238 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV || 1239 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) ) 1240 return; 1241 1242 if (netif_carrier_ok(net_dev)) { 1243 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1244 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1245 (0x2200 | reg14h) & 0xBFFF); 1246 for (i=0; i < maxcount; i++) { 1247 eq_value = (0x00F8 & mdio_read(net_dev, 1248 sis_priv->cur_phy, MII_RESV)) >> 3; 1249 if (i == 0) 1250 max_value=min_value=eq_value; 1251 max_value = (eq_value > max_value) ? 1252 eq_value : max_value; 1253 min_value = (eq_value < min_value) ? 1254 eq_value : min_value; 1255 } 1256 /* 630E rule to determine the equalizer value */ 1257 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV || 1258 revision == SIS630ET_900_REV) { 1259 if (max_value < 5) 1260 eq_value = max_value; 1261 else if (max_value >= 5 && max_value < 15) 1262 eq_value = (max_value == min_value) ? 1263 max_value+2 : max_value+1; 1264 else if (max_value >= 15) 1265 eq_value=(max_value == min_value) ? 1266 max_value+6 : max_value+5; 1267 } 1268 /* 630B0&B1 rule to determine the equalizer value */ 1269 if (revision == SIS630A_900_REV && 1270 (sis_priv->host_bridge_rev == SIS630B0 || 1271 sis_priv->host_bridge_rev == SIS630B1)) { 1272 if (max_value == 0) 1273 eq_value = 3; 1274 else 1275 eq_value = (max_value + min_value + 1)/2; 1276 } 1277 /* write equalizer value and setting */ 1278 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1279 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8); 1280 reg14h = (reg14h | 0x6000) & 0xFDFF; 1281 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h); 1282 } else { 1283 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV); 1284 if (revision == SIS630A_900_REV && 1285 (sis_priv->host_bridge_rev == SIS630B0 || 1286 sis_priv->host_bridge_rev == SIS630B1)) 1287 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1288 (reg14h | 0x2200) & 0xBFFF); 1289 else 1290 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, 1291 (reg14h | 0x2000) & 0xBFFF); 1292 } 1293 } 1294 1295 /** 1296 * sis900_timer - sis900 timer routine 1297 * @data: pointer to sis900 net device 1298 * 1299 * On each timer ticks we check two things, 1300 * link status (ON/OFF) and link mode (10/100/Full/Half) 1301 */ 1302 1303 static void sis900_timer(struct timer_list *t) 1304 { 1305 struct sis900_private *sis_priv = from_timer(sis_priv, t, timer); 1306 struct net_device *net_dev = sis_priv->mii_info.dev; 1307 struct mii_phy *mii_phy = sis_priv->mii; 1308 static const int next_tick = 5*HZ; 1309 int speed = 0, duplex = 0; 1310 u16 status; 1311 1312 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 1313 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS); 1314 1315 /* Link OFF -> ON */ 1316 if (!netif_carrier_ok(net_dev)) { 1317 LookForLink: 1318 /* Search for new PHY */ 1319 status = sis900_default_phy(net_dev); 1320 mii_phy = sis_priv->mii; 1321 1322 if (status & MII_STAT_LINK) { 1323 WARN_ON(!(status & MII_STAT_AUTO_DONE)); 1324 1325 sis900_read_mode(net_dev, &speed, &duplex); 1326 if (duplex) { 1327 sis900_set_mode(sis_priv, speed, duplex); 1328 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1329 netif_carrier_on(net_dev); 1330 } 1331 } 1332 } else { 1333 /* Link ON -> OFF */ 1334 if (!(status & MII_STAT_LINK)){ 1335 netif_carrier_off(net_dev); 1336 if(netif_msg_link(sis_priv)) 1337 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name); 1338 1339 /* Change mode issue */ 1340 if ((mii_phy->phy_id0 == 0x001D) && 1341 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000)) 1342 sis900_reset_phy(net_dev, sis_priv->cur_phy); 1343 1344 sis630_set_eq(net_dev, sis_priv->chipset_rev); 1345 1346 goto LookForLink; 1347 } 1348 } 1349 1350 sis_priv->timer.expires = jiffies + next_tick; 1351 add_timer(&sis_priv->timer); 1352 } 1353 1354 /** 1355 * sis900_check_mode - check the media mode for sis900 1356 * @net_dev: the net device to be checked 1357 * @mii_phy: the mii phy 1358 * 1359 * Older driver gets the media mode from mii status output 1360 * register. Now we set our media capability and auto-negotiate 1361 * to get the upper bound of speed and duplex between two ends. 1362 * If the types of mii phy is HOME, it doesn't need to auto-negotiate 1363 * and autong_complete should be set to 1. 1364 */ 1365 1366 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy) 1367 { 1368 struct sis900_private *sis_priv = netdev_priv(net_dev); 1369 void __iomem *ioaddr = sis_priv->ioaddr; 1370 int speed, duplex; 1371 1372 if (mii_phy->phy_types == LAN) { 1373 sw32(cfg, ~EXD & sr32(cfg)); 1374 sis900_set_capability(net_dev , mii_phy); 1375 sis900_auto_negotiate(net_dev, sis_priv->cur_phy); 1376 } else { 1377 sw32(cfg, EXD | sr32(cfg)); 1378 speed = HW_SPEED_HOME; 1379 duplex = FDX_CAPABLE_HALF_SELECTED; 1380 sis900_set_mode(sis_priv, speed, duplex); 1381 sis_priv->autong_complete = 1; 1382 } 1383 } 1384 1385 /** 1386 * sis900_set_mode - Set the media mode of mac register. 1387 * @sp: the device private data 1388 * @speed : the transmit speed to be determined 1389 * @duplex: the duplex mode to be determined 1390 * 1391 * Set the media mode of mac register txcfg/rxcfg according to 1392 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB 1393 * bus is used instead of PCI bus. When this bit is set 1, the 1394 * Max DMA Burst Size for TX/RX DMA should be no larger than 16 1395 * double words. 1396 */ 1397 1398 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex) 1399 { 1400 void __iomem *ioaddr = sp->ioaddr; 1401 u32 tx_flags = 0, rx_flags = 0; 1402 1403 if (sr32( cfg) & EDB_MASTER_EN) { 1404 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) | 1405 (TX_FILL_THRESH << TxFILLT_shift); 1406 rx_flags = DMA_BURST_64 << RxMXDMA_shift; 1407 } else { 1408 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) | 1409 (TX_FILL_THRESH << TxFILLT_shift); 1410 rx_flags = DMA_BURST_512 << RxMXDMA_shift; 1411 } 1412 1413 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) { 1414 rx_flags |= (RxDRNT_10 << RxDRNT_shift); 1415 tx_flags |= (TxDRNT_10 << TxDRNT_shift); 1416 } else { 1417 rx_flags |= (RxDRNT_100 << RxDRNT_shift); 1418 tx_flags |= (TxDRNT_100 << TxDRNT_shift); 1419 } 1420 1421 if (duplex == FDX_CAPABLE_FULL_SELECTED) { 1422 tx_flags |= (TxCSI | TxHBI); 1423 rx_flags |= RxATX; 1424 } 1425 1426 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1427 /* Can accept Jumbo packet */ 1428 rx_flags |= RxAJAB; 1429 #endif 1430 1431 sw32(txcfg, tx_flags); 1432 sw32(rxcfg, rx_flags); 1433 } 1434 1435 /** 1436 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit. 1437 * @net_dev: the net device to read mode for 1438 * @phy_addr: mii phy address 1439 * 1440 * If the adapter is link-on, set the auto-negotiate enable/reset bit. 1441 * autong_complete should be set to 0 when starting auto-negotiation. 1442 * autong_complete should be set to 1 if we didn't start auto-negotiation. 1443 * sis900_timer will wait for link on again if autong_complete = 0. 1444 */ 1445 1446 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr) 1447 { 1448 struct sis900_private *sis_priv = netdev_priv(net_dev); 1449 int i = 0; 1450 u32 status; 1451 1452 for (i = 0; i < 2; i++) 1453 status = mdio_read(net_dev, phy_addr, MII_STATUS); 1454 1455 if (!(status & MII_STAT_LINK)){ 1456 if(netif_msg_link(sis_priv)) 1457 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name); 1458 sis_priv->autong_complete = 1; 1459 netif_carrier_off(net_dev); 1460 return; 1461 } 1462 1463 /* (Re)start AutoNegotiate */ 1464 mdio_write(net_dev, phy_addr, MII_CONTROL, 1465 MII_CNTL_AUTO | MII_CNTL_RST_AUTO); 1466 sis_priv->autong_complete = 0; 1467 } 1468 1469 1470 /** 1471 * sis900_read_mode - read media mode for sis900 internal phy 1472 * @net_dev: the net device to read mode for 1473 * @speed : the transmit speed to be determined 1474 * @duplex : the duplex mode to be determined 1475 * 1476 * The capability of remote end will be put in mii register autorec 1477 * after auto-negotiation. Use AND operation to get the upper bound 1478 * of speed and duplex between two ends. 1479 */ 1480 1481 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex) 1482 { 1483 struct sis900_private *sis_priv = netdev_priv(net_dev); 1484 struct mii_phy *phy = sis_priv->mii; 1485 int phy_addr = sis_priv->cur_phy; 1486 u32 status; 1487 u16 autoadv, autorec; 1488 int i; 1489 1490 for (i = 0; i < 2; i++) 1491 status = mdio_read(net_dev, phy_addr, MII_STATUS); 1492 1493 if (!(status & MII_STAT_LINK)) 1494 return; 1495 1496 /* AutoNegotiate completed */ 1497 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV); 1498 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR); 1499 status = autoadv & autorec; 1500 1501 *speed = HW_SPEED_10_MBPS; 1502 *duplex = FDX_CAPABLE_HALF_SELECTED; 1503 1504 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX)) 1505 *speed = HW_SPEED_100_MBPS; 1506 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX)) 1507 *duplex = FDX_CAPABLE_FULL_SELECTED; 1508 1509 sis_priv->autong_complete = 1; 1510 1511 /* Workaround for Realtek RTL8201 PHY issue */ 1512 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) { 1513 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX) 1514 *duplex = FDX_CAPABLE_FULL_SELECTED; 1515 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01) 1516 *speed = HW_SPEED_100_MBPS; 1517 } 1518 1519 if(netif_msg_link(sis_priv)) 1520 printk(KERN_INFO "%s: Media Link On %s %s-duplex\n", 1521 net_dev->name, 1522 *speed == HW_SPEED_100_MBPS ? 1523 "100mbps" : "10mbps", 1524 *duplex == FDX_CAPABLE_FULL_SELECTED ? 1525 "full" : "half"); 1526 } 1527 1528 /** 1529 * sis900_tx_timeout - sis900 transmit timeout routine 1530 * @net_dev: the net device to transmit 1531 * 1532 * print transmit timeout status 1533 * disable interrupts and do some tasks 1534 */ 1535 1536 static void sis900_tx_timeout(struct net_device *net_dev) 1537 { 1538 struct sis900_private *sis_priv = netdev_priv(net_dev); 1539 void __iomem *ioaddr = sis_priv->ioaddr; 1540 unsigned long flags; 1541 int i; 1542 1543 if (netif_msg_tx_err(sis_priv)) { 1544 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n", 1545 net_dev->name, sr32(cr), sr32(isr)); 1546 } 1547 1548 /* Disable interrupts by clearing the interrupt mask. */ 1549 sw32(imr, 0x0000); 1550 1551 /* use spinlock to prevent interrupt handler accessing buffer ring */ 1552 spin_lock_irqsave(&sis_priv->lock, flags); 1553 1554 /* discard unsent packets */ 1555 sis_priv->dirty_tx = sis_priv->cur_tx = 0; 1556 for (i = 0; i < NUM_TX_DESC; i++) { 1557 struct sk_buff *skb = sis_priv->tx_skbuff[i]; 1558 1559 if (skb) { 1560 pci_unmap_single(sis_priv->pci_dev, 1561 sis_priv->tx_ring[i].bufptr, skb->len, 1562 PCI_DMA_TODEVICE); 1563 dev_kfree_skb_irq(skb); 1564 sis_priv->tx_skbuff[i] = NULL; 1565 sis_priv->tx_ring[i].cmdsts = 0; 1566 sis_priv->tx_ring[i].bufptr = 0; 1567 net_dev->stats.tx_dropped++; 1568 } 1569 } 1570 sis_priv->tx_full = 0; 1571 netif_wake_queue(net_dev); 1572 1573 spin_unlock_irqrestore(&sis_priv->lock, flags); 1574 1575 netif_trans_update(net_dev); /* prevent tx timeout */ 1576 1577 /* load Transmit Descriptor Register */ 1578 sw32(txdp, sis_priv->tx_ring_dma); 1579 1580 /* Enable all known interrupts by setting the interrupt mask. */ 1581 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC); 1582 } 1583 1584 /** 1585 * sis900_start_xmit - sis900 start transmit routine 1586 * @skb: socket buffer pointer to put the data being transmitted 1587 * @net_dev: the net device to transmit with 1588 * 1589 * Set the transmit buffer descriptor, 1590 * and write TxENA to enable transmit state machine. 1591 * tell upper layer if the buffer is full 1592 */ 1593 1594 static netdev_tx_t 1595 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 1596 { 1597 struct sis900_private *sis_priv = netdev_priv(net_dev); 1598 void __iomem *ioaddr = sis_priv->ioaddr; 1599 unsigned int entry; 1600 unsigned long flags; 1601 unsigned int index_cur_tx, index_dirty_tx; 1602 unsigned int count_dirty_tx; 1603 1604 spin_lock_irqsave(&sis_priv->lock, flags); 1605 1606 /* Calculate the next Tx descriptor entry. */ 1607 entry = sis_priv->cur_tx % NUM_TX_DESC; 1608 sis_priv->tx_skbuff[entry] = skb; 1609 1610 /* set the transmit buffer descriptor and enable Transmit State Machine */ 1611 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev, 1612 skb->data, skb->len, PCI_DMA_TODEVICE); 1613 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev, 1614 sis_priv->tx_ring[entry].bufptr))) { 1615 dev_kfree_skb_any(skb); 1616 sis_priv->tx_skbuff[entry] = NULL; 1617 net_dev->stats.tx_dropped++; 1618 spin_unlock_irqrestore(&sis_priv->lock, flags); 1619 return NETDEV_TX_OK; 1620 } 1621 sis_priv->tx_ring[entry].cmdsts = (OWN | INTR | skb->len); 1622 sw32(cr, TxENA | sr32(cr)); 1623 1624 sis_priv->cur_tx ++; 1625 index_cur_tx = sis_priv->cur_tx; 1626 index_dirty_tx = sis_priv->dirty_tx; 1627 1628 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++) 1629 count_dirty_tx ++; 1630 1631 if (index_cur_tx == index_dirty_tx) { 1632 /* dirty_tx is met in the cycle of cur_tx, buffer full */ 1633 sis_priv->tx_full = 1; 1634 netif_stop_queue(net_dev); 1635 } else if (count_dirty_tx < NUM_TX_DESC) { 1636 /* Typical path, tell upper layer that more transmission is possible */ 1637 netif_start_queue(net_dev); 1638 } else { 1639 /* buffer full, tell upper layer no more transmission */ 1640 sis_priv->tx_full = 1; 1641 netif_stop_queue(net_dev); 1642 } 1643 1644 spin_unlock_irqrestore(&sis_priv->lock, flags); 1645 1646 if (netif_msg_tx_queued(sis_priv)) 1647 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d " 1648 "to slot %d.\n", 1649 net_dev->name, skb->data, (int)skb->len, entry); 1650 1651 return NETDEV_TX_OK; 1652 } 1653 1654 /** 1655 * sis900_interrupt - sis900 interrupt handler 1656 * @irq: the irq number 1657 * @dev_instance: the client data object 1658 * 1659 * The interrupt handler does all of the Rx thread work, 1660 * and cleans up after the Tx thread 1661 */ 1662 1663 static irqreturn_t sis900_interrupt(int irq, void *dev_instance) 1664 { 1665 struct net_device *net_dev = dev_instance; 1666 struct sis900_private *sis_priv = netdev_priv(net_dev); 1667 int boguscnt = max_interrupt_work; 1668 void __iomem *ioaddr = sis_priv->ioaddr; 1669 u32 status; 1670 unsigned int handled = 0; 1671 1672 spin_lock (&sis_priv->lock); 1673 1674 do { 1675 status = sr32(isr); 1676 1677 if ((status & (HIBERR|TxURN|TxERR|TxDESC|RxORN|RxERR|RxOK)) == 0) 1678 /* nothing interesting happened */ 1679 break; 1680 handled = 1; 1681 1682 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */ 1683 if (status & (RxORN | RxERR | RxOK)) 1684 /* Rx interrupt */ 1685 sis900_rx(net_dev); 1686 1687 if (status & (TxURN | TxERR | TxDESC)) 1688 /* Tx interrupt */ 1689 sis900_finish_xmit(net_dev); 1690 1691 /* something strange happened !!! */ 1692 if (status & HIBERR) { 1693 if(netif_msg_intr(sis_priv)) 1694 printk(KERN_INFO "%s: Abnormal interrupt, " 1695 "status %#8.8x.\n", net_dev->name, status); 1696 break; 1697 } 1698 if (--boguscnt < 0) { 1699 if(netif_msg_intr(sis_priv)) 1700 printk(KERN_INFO "%s: Too much work at interrupt, " 1701 "interrupt status = %#8.8x.\n", 1702 net_dev->name, status); 1703 break; 1704 } 1705 } while (1); 1706 1707 if(netif_msg_intr(sis_priv)) 1708 printk(KERN_DEBUG "%s: exiting interrupt, " 1709 "interrupt status = %#8.8x\n", 1710 net_dev->name, sr32(isr)); 1711 1712 spin_unlock (&sis_priv->lock); 1713 return IRQ_RETVAL(handled); 1714 } 1715 1716 /** 1717 * sis900_rx - sis900 receive routine 1718 * @net_dev: the net device which receives data 1719 * 1720 * Process receive interrupt events, 1721 * put buffer to higher layer and refill buffer pool 1722 * Note: This function is called by interrupt handler, 1723 * don't do "too much" work here 1724 */ 1725 1726 static int sis900_rx(struct net_device *net_dev) 1727 { 1728 struct sis900_private *sis_priv = netdev_priv(net_dev); 1729 void __iomem *ioaddr = sis_priv->ioaddr; 1730 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC; 1731 u32 rx_status = sis_priv->rx_ring[entry].cmdsts; 1732 int rx_work_limit; 1733 1734 if (netif_msg_rx_status(sis_priv)) 1735 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d " 1736 "status:0x%8.8x\n", 1737 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status); 1738 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx; 1739 1740 while (rx_status & OWN) { 1741 unsigned int rx_size; 1742 unsigned int data_size; 1743 1744 if (--rx_work_limit < 0) 1745 break; 1746 1747 data_size = rx_status & DSIZE; 1748 rx_size = data_size - CRC_SIZE; 1749 1750 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1751 /* ``TOOLONG'' flag means jumbo packet received. */ 1752 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE) 1753 rx_status &= (~ ((unsigned int)TOOLONG)); 1754 #endif 1755 1756 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) { 1757 /* corrupted packet received */ 1758 if (netif_msg_rx_err(sis_priv)) 1759 printk(KERN_DEBUG "%s: Corrupted packet " 1760 "received, buffer status = 0x%8.8x/%d.\n", 1761 net_dev->name, rx_status, data_size); 1762 net_dev->stats.rx_errors++; 1763 if (rx_status & OVERRUN) 1764 net_dev->stats.rx_over_errors++; 1765 if (rx_status & (TOOLONG|RUNT)) 1766 net_dev->stats.rx_length_errors++; 1767 if (rx_status & (RXISERR | FAERR)) 1768 net_dev->stats.rx_frame_errors++; 1769 if (rx_status & CRCERR) 1770 net_dev->stats.rx_crc_errors++; 1771 /* reset buffer descriptor state */ 1772 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1773 } else { 1774 struct sk_buff * skb; 1775 struct sk_buff * rx_skb; 1776 1777 pci_unmap_single(sis_priv->pci_dev, 1778 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE, 1779 PCI_DMA_FROMDEVICE); 1780 1781 /* refill the Rx buffer, what if there is not enough 1782 * memory for new socket buffer ?? */ 1783 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) { 1784 /* 1785 * Not enough memory to refill the buffer 1786 * so we need to recycle the old one so 1787 * as to avoid creating a memory hole 1788 * in the rx ring 1789 */ 1790 skb = sis_priv->rx_skbuff[entry]; 1791 net_dev->stats.rx_dropped++; 1792 goto refill_rx_ring; 1793 } 1794 1795 /* This situation should never happen, but due to 1796 some unknown bugs, it is possible that 1797 we are working on NULL sk_buff :-( */ 1798 if (sis_priv->rx_skbuff[entry] == NULL) { 1799 if (netif_msg_rx_err(sis_priv)) 1800 printk(KERN_WARNING "%s: NULL pointer " 1801 "encountered in Rx ring\n" 1802 "cur_rx:%4.4d, dirty_rx:%4.4d\n", 1803 net_dev->name, sis_priv->cur_rx, 1804 sis_priv->dirty_rx); 1805 dev_kfree_skb(skb); 1806 break; 1807 } 1808 1809 /* give the socket buffer to upper layers */ 1810 rx_skb = sis_priv->rx_skbuff[entry]; 1811 skb_put(rx_skb, rx_size); 1812 rx_skb->protocol = eth_type_trans(rx_skb, net_dev); 1813 netif_rx(rx_skb); 1814 1815 /* some network statistics */ 1816 if ((rx_status & BCAST) == MCAST) 1817 net_dev->stats.multicast++; 1818 net_dev->stats.rx_bytes += rx_size; 1819 net_dev->stats.rx_packets++; 1820 sis_priv->dirty_rx++; 1821 refill_rx_ring: 1822 sis_priv->rx_skbuff[entry] = skb; 1823 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1824 sis_priv->rx_ring[entry].bufptr = 1825 pci_map_single(sis_priv->pci_dev, skb->data, 1826 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1827 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev, 1828 sis_priv->rx_ring[entry].bufptr))) { 1829 dev_kfree_skb_irq(skb); 1830 sis_priv->rx_skbuff[entry] = NULL; 1831 break; 1832 } 1833 } 1834 sis_priv->cur_rx++; 1835 entry = sis_priv->cur_rx % NUM_RX_DESC; 1836 rx_status = sis_priv->rx_ring[entry].cmdsts; 1837 } // while 1838 1839 /* refill the Rx buffer, what if the rate of refilling is slower 1840 * than consuming ?? */ 1841 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) { 1842 struct sk_buff *skb; 1843 1844 entry = sis_priv->dirty_rx % NUM_RX_DESC; 1845 1846 if (sis_priv->rx_skbuff[entry] == NULL) { 1847 skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE); 1848 if (skb == NULL) { 1849 /* not enough memory for skbuff, this makes a 1850 * "hole" on the buffer ring, it is not clear 1851 * how the hardware will react to this kind 1852 * of degenerated buffer */ 1853 net_dev->stats.rx_dropped++; 1854 break; 1855 } 1856 sis_priv->rx_skbuff[entry] = skb; 1857 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE; 1858 sis_priv->rx_ring[entry].bufptr = 1859 pci_map_single(sis_priv->pci_dev, skb->data, 1860 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1861 if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev, 1862 sis_priv->rx_ring[entry].bufptr))) { 1863 dev_kfree_skb_irq(skb); 1864 sis_priv->rx_skbuff[entry] = NULL; 1865 break; 1866 } 1867 } 1868 } 1869 /* re-enable the potentially idle receive state matchine */ 1870 sw32(cr , RxENA | sr32(cr)); 1871 1872 return 0; 1873 } 1874 1875 /** 1876 * sis900_finish_xmit - finish up transmission of packets 1877 * @net_dev: the net device to be transmitted on 1878 * 1879 * Check for error condition and free socket buffer etc 1880 * schedule for more transmission as needed 1881 * Note: This function is called by interrupt handler, 1882 * don't do "too much" work here 1883 */ 1884 1885 static void sis900_finish_xmit (struct net_device *net_dev) 1886 { 1887 struct sis900_private *sis_priv = netdev_priv(net_dev); 1888 1889 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) { 1890 struct sk_buff *skb; 1891 unsigned int entry; 1892 u32 tx_status; 1893 1894 entry = sis_priv->dirty_tx % NUM_TX_DESC; 1895 tx_status = sis_priv->tx_ring[entry].cmdsts; 1896 1897 if (tx_status & OWN) { 1898 /* The packet is not transmitted yet (owned by hardware) ! 1899 * Note: this is an almost impossible condition 1900 * on TxDESC interrupt ('descriptor interrupt') */ 1901 break; 1902 } 1903 1904 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) { 1905 /* packet unsuccessfully transmitted */ 1906 if (netif_msg_tx_err(sis_priv)) 1907 printk(KERN_DEBUG "%s: Transmit " 1908 "error, Tx status %8.8x.\n", 1909 net_dev->name, tx_status); 1910 net_dev->stats.tx_errors++; 1911 if (tx_status & UNDERRUN) 1912 net_dev->stats.tx_fifo_errors++; 1913 if (tx_status & ABORT) 1914 net_dev->stats.tx_aborted_errors++; 1915 if (tx_status & NOCARRIER) 1916 net_dev->stats.tx_carrier_errors++; 1917 if (tx_status & OWCOLL) 1918 net_dev->stats.tx_window_errors++; 1919 } else { 1920 /* packet successfully transmitted */ 1921 net_dev->stats.collisions += (tx_status & COLCNT) >> 16; 1922 net_dev->stats.tx_bytes += tx_status & DSIZE; 1923 net_dev->stats.tx_packets++; 1924 } 1925 /* Free the original skb. */ 1926 skb = sis_priv->tx_skbuff[entry]; 1927 pci_unmap_single(sis_priv->pci_dev, 1928 sis_priv->tx_ring[entry].bufptr, skb->len, 1929 PCI_DMA_TODEVICE); 1930 dev_consume_skb_irq(skb); 1931 sis_priv->tx_skbuff[entry] = NULL; 1932 sis_priv->tx_ring[entry].bufptr = 0; 1933 sis_priv->tx_ring[entry].cmdsts = 0; 1934 } 1935 1936 if (sis_priv->tx_full && netif_queue_stopped(net_dev) && 1937 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) { 1938 /* The ring is no longer full, clear tx_full and schedule 1939 * more transmission by netif_wake_queue(net_dev) */ 1940 sis_priv->tx_full = 0; 1941 netif_wake_queue (net_dev); 1942 } 1943 } 1944 1945 /** 1946 * sis900_close - close sis900 device 1947 * @net_dev: the net device to be closed 1948 * 1949 * Disable interrupts, stop the Tx and Rx Status Machine 1950 * free Tx and RX socket buffer 1951 */ 1952 1953 static int sis900_close(struct net_device *net_dev) 1954 { 1955 struct sis900_private *sis_priv = netdev_priv(net_dev); 1956 struct pci_dev *pdev = sis_priv->pci_dev; 1957 void __iomem *ioaddr = sis_priv->ioaddr; 1958 struct sk_buff *skb; 1959 int i; 1960 1961 netif_stop_queue(net_dev); 1962 1963 /* Disable interrupts by clearing the interrupt mask. */ 1964 sw32(imr, 0x0000); 1965 sw32(ier, 0x0000); 1966 1967 /* Stop the chip's Tx and Rx Status Machine */ 1968 sw32(cr, RxDIS | TxDIS | sr32(cr)); 1969 1970 del_timer(&sis_priv->timer); 1971 1972 free_irq(pdev->irq, net_dev); 1973 1974 /* Free Tx and RX skbuff */ 1975 for (i = 0; i < NUM_RX_DESC; i++) { 1976 skb = sis_priv->rx_skbuff[i]; 1977 if (skb) { 1978 pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr, 1979 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1980 dev_kfree_skb(skb); 1981 sis_priv->rx_skbuff[i] = NULL; 1982 } 1983 } 1984 for (i = 0; i < NUM_TX_DESC; i++) { 1985 skb = sis_priv->tx_skbuff[i]; 1986 if (skb) { 1987 pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr, 1988 skb->len, PCI_DMA_TODEVICE); 1989 dev_kfree_skb(skb); 1990 sis_priv->tx_skbuff[i] = NULL; 1991 } 1992 } 1993 1994 /* Green! Put the chip in low-power mode. */ 1995 1996 return 0; 1997 } 1998 1999 /** 2000 * sis900_get_drvinfo - Return information about driver 2001 * @net_dev: the net device to probe 2002 * @info: container for info returned 2003 * 2004 * Process ethtool command such as "ehtool -i" to show information 2005 */ 2006 2007 static void sis900_get_drvinfo(struct net_device *net_dev, 2008 struct ethtool_drvinfo *info) 2009 { 2010 struct sis900_private *sis_priv = netdev_priv(net_dev); 2011 2012 strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver)); 2013 strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version)); 2014 strlcpy(info->bus_info, pci_name(sis_priv->pci_dev), 2015 sizeof(info->bus_info)); 2016 } 2017 2018 static u32 sis900_get_msglevel(struct net_device *net_dev) 2019 { 2020 struct sis900_private *sis_priv = netdev_priv(net_dev); 2021 return sis_priv->msg_enable; 2022 } 2023 2024 static void sis900_set_msglevel(struct net_device *net_dev, u32 value) 2025 { 2026 struct sis900_private *sis_priv = netdev_priv(net_dev); 2027 sis_priv->msg_enable = value; 2028 } 2029 2030 static u32 sis900_get_link(struct net_device *net_dev) 2031 { 2032 struct sis900_private *sis_priv = netdev_priv(net_dev); 2033 return mii_link_ok(&sis_priv->mii_info); 2034 } 2035 2036 static int sis900_get_link_ksettings(struct net_device *net_dev, 2037 struct ethtool_link_ksettings *cmd) 2038 { 2039 struct sis900_private *sis_priv = netdev_priv(net_dev); 2040 spin_lock_irq(&sis_priv->lock); 2041 mii_ethtool_get_link_ksettings(&sis_priv->mii_info, cmd); 2042 spin_unlock_irq(&sis_priv->lock); 2043 return 0; 2044 } 2045 2046 static int sis900_set_link_ksettings(struct net_device *net_dev, 2047 const struct ethtool_link_ksettings *cmd) 2048 { 2049 struct sis900_private *sis_priv = netdev_priv(net_dev); 2050 int rt; 2051 spin_lock_irq(&sis_priv->lock); 2052 rt = mii_ethtool_set_link_ksettings(&sis_priv->mii_info, cmd); 2053 spin_unlock_irq(&sis_priv->lock); 2054 return rt; 2055 } 2056 2057 static int sis900_nway_reset(struct net_device *net_dev) 2058 { 2059 struct sis900_private *sis_priv = netdev_priv(net_dev); 2060 return mii_nway_restart(&sis_priv->mii_info); 2061 } 2062 2063 /** 2064 * sis900_set_wol - Set up Wake on Lan registers 2065 * @net_dev: the net device to probe 2066 * @wol: container for info passed to the driver 2067 * 2068 * Process ethtool command "wol" to setup wake on lan features. 2069 * SiS900 supports sending WoL events if a correct packet is received, 2070 * but there is no simple way to filter them to only a subset (broadcast, 2071 * multicast, unicast or arp). 2072 */ 2073 2074 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol) 2075 { 2076 struct sis900_private *sis_priv = netdev_priv(net_dev); 2077 void __iomem *ioaddr = sis_priv->ioaddr; 2078 u32 cfgpmcsr = 0, pmctrl_bits = 0; 2079 2080 if (wol->wolopts == 0) { 2081 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr); 2082 cfgpmcsr &= ~PME_EN; 2083 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr); 2084 sw32(pmctrl, pmctrl_bits); 2085 if (netif_msg_wol(sis_priv)) 2086 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name); 2087 return 0; 2088 } 2089 2090 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST 2091 | WAKE_BCAST | WAKE_ARP)) 2092 return -EINVAL; 2093 2094 if (wol->wolopts & WAKE_MAGIC) 2095 pmctrl_bits |= MAGICPKT; 2096 if (wol->wolopts & WAKE_PHY) 2097 pmctrl_bits |= LINKON; 2098 2099 sw32(pmctrl, pmctrl_bits); 2100 2101 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr); 2102 cfgpmcsr |= PME_EN; 2103 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr); 2104 if (netif_msg_wol(sis_priv)) 2105 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name); 2106 2107 return 0; 2108 } 2109 2110 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol) 2111 { 2112 struct sis900_private *sp = netdev_priv(net_dev); 2113 void __iomem *ioaddr = sp->ioaddr; 2114 u32 pmctrl_bits; 2115 2116 pmctrl_bits = sr32(pmctrl); 2117 if (pmctrl_bits & MAGICPKT) 2118 wol->wolopts |= WAKE_MAGIC; 2119 if (pmctrl_bits & LINKON) 2120 wol->wolopts |= WAKE_PHY; 2121 2122 wol->supported = (WAKE_PHY | WAKE_MAGIC); 2123 } 2124 2125 static const struct ethtool_ops sis900_ethtool_ops = { 2126 .get_drvinfo = sis900_get_drvinfo, 2127 .get_msglevel = sis900_get_msglevel, 2128 .set_msglevel = sis900_set_msglevel, 2129 .get_link = sis900_get_link, 2130 .nway_reset = sis900_nway_reset, 2131 .get_wol = sis900_get_wol, 2132 .set_wol = sis900_set_wol, 2133 .get_link_ksettings = sis900_get_link_ksettings, 2134 .set_link_ksettings = sis900_set_link_ksettings, 2135 }; 2136 2137 /** 2138 * mii_ioctl - process MII i/o control command 2139 * @net_dev: the net device to command for 2140 * @rq: parameter for command 2141 * @cmd: the i/o command 2142 * 2143 * Process MII command like read/write MII register 2144 */ 2145 2146 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 2147 { 2148 struct sis900_private *sis_priv = netdev_priv(net_dev); 2149 struct mii_ioctl_data *data = if_mii(rq); 2150 2151 switch(cmd) { 2152 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2153 data->phy_id = sis_priv->mii->phy_addr; 2154 /* Fall Through */ 2155 2156 case SIOCGMIIREG: /* Read MII PHY register. */ 2157 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f); 2158 return 0; 2159 2160 case SIOCSMIIREG: /* Write MII PHY register. */ 2161 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); 2162 return 0; 2163 default: 2164 return -EOPNOTSUPP; 2165 } 2166 } 2167 2168 /** 2169 * sis900_set_config - Set media type by net_device.set_config 2170 * @dev: the net device for media type change 2171 * @map: ifmap passed by ifconfig 2172 * 2173 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig 2174 * we support only port changes. All other runtime configuration 2175 * changes will be ignored 2176 */ 2177 2178 static int sis900_set_config(struct net_device *dev, struct ifmap *map) 2179 { 2180 struct sis900_private *sis_priv = netdev_priv(dev); 2181 struct mii_phy *mii_phy = sis_priv->mii; 2182 2183 u16 status; 2184 2185 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) { 2186 /* we switch on the ifmap->port field. I couldn't find anything 2187 * like a definition or standard for the values of that field. 2188 * I think the meaning of those values is device specific. But 2189 * since I would like to change the media type via the ifconfig 2190 * command I use the definition from linux/netdevice.h 2191 * (which seems to be different from the ifport(pcmcia) definition) */ 2192 switch(map->port){ 2193 case IF_PORT_UNKNOWN: /* use auto here */ 2194 dev->if_port = map->port; 2195 /* we are going to change the media type, so the Link 2196 * will be temporary down and we need to reflect that 2197 * here. When the Link comes up again, it will be 2198 * sensed by the sis_timer procedure, which also does 2199 * all the rest for us */ 2200 netif_carrier_off(dev); 2201 2202 /* read current state */ 2203 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2204 2205 /* enable auto negotiation and reset the negotioation 2206 * (I don't really know what the auto negatiotiation 2207 * reset really means, but it sounds for me right to 2208 * do one here) */ 2209 mdio_write(dev, mii_phy->phy_addr, 2210 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); 2211 2212 break; 2213 2214 case IF_PORT_10BASET: /* 10BaseT */ 2215 dev->if_port = map->port; 2216 2217 /* we are going to change the media type, so the Link 2218 * will be temporary down and we need to reflect that 2219 * here. When the Link comes up again, it will be 2220 * sensed by the sis_timer procedure, which also does 2221 * all the rest for us */ 2222 netif_carrier_off(dev); 2223 2224 /* set Speed to 10Mbps */ 2225 /* read current state */ 2226 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2227 2228 /* disable auto negotiation and force 10MBit mode*/ 2229 mdio_write(dev, mii_phy->phy_addr, 2230 MII_CONTROL, status & ~(MII_CNTL_SPEED | 2231 MII_CNTL_AUTO)); 2232 break; 2233 2234 case IF_PORT_100BASET: /* 100BaseT */ 2235 case IF_PORT_100BASETX: /* 100BaseTx */ 2236 dev->if_port = map->port; 2237 2238 /* we are going to change the media type, so the Link 2239 * will be temporary down and we need to reflect that 2240 * here. When the Link comes up again, it will be 2241 * sensed by the sis_timer procedure, which also does 2242 * all the rest for us */ 2243 netif_carrier_off(dev); 2244 2245 /* set Speed to 100Mbps */ 2246 /* disable auto negotiation and enable 100MBit Mode */ 2247 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL); 2248 mdio_write(dev, mii_phy->phy_addr, 2249 MII_CONTROL, (status & ~MII_CNTL_SPEED) | 2250 MII_CNTL_SPEED); 2251 2252 break; 2253 2254 case IF_PORT_10BASE2: /* 10Base2 */ 2255 case IF_PORT_AUI: /* AUI */ 2256 case IF_PORT_100BASEFX: /* 100BaseFx */ 2257 /* These Modes are not supported (are they?)*/ 2258 return -EOPNOTSUPP; 2259 2260 default: 2261 return -EINVAL; 2262 } 2263 } 2264 return 0; 2265 } 2266 2267 /** 2268 * sis900_mcast_bitnr - compute hashtable index 2269 * @addr: multicast address 2270 * @revision: revision id of chip 2271 * 2272 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast 2273 * hash table, which makes this function a little bit different from other drivers 2274 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits 2275 * multicast hash table. 2276 */ 2277 2278 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision) 2279 { 2280 2281 u32 crc = ether_crc(6, addr); 2282 2283 /* leave 8 or 7 most siginifant bits */ 2284 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV)) 2285 return (int)(crc >> 24); 2286 else 2287 return (int)(crc >> 25); 2288 } 2289 2290 /** 2291 * set_rx_mode - Set SiS900 receive mode 2292 * @net_dev: the net device to be set 2293 * 2294 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode. 2295 * And set the appropriate multicast filter. 2296 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0. 2297 */ 2298 2299 static void set_rx_mode(struct net_device *net_dev) 2300 { 2301 struct sis900_private *sis_priv = netdev_priv(net_dev); 2302 void __iomem *ioaddr = sis_priv->ioaddr; 2303 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */ 2304 int i, table_entries; 2305 u32 rx_mode; 2306 2307 /* 635 Hash Table entries = 256(2^16) */ 2308 if((sis_priv->chipset_rev >= SIS635A_900_REV) || 2309 (sis_priv->chipset_rev == SIS900B_900_REV)) 2310 table_entries = 16; 2311 else 2312 table_entries = 8; 2313 2314 if (net_dev->flags & IFF_PROMISC) { 2315 /* Accept any kinds of packets */ 2316 rx_mode = RFPromiscuous; 2317 for (i = 0; i < table_entries; i++) 2318 mc_filter[i] = 0xffff; 2319 } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) || 2320 (net_dev->flags & IFF_ALLMULTI)) { 2321 /* too many multicast addresses or accept all multicast packet */ 2322 rx_mode = RFAAB | RFAAM; 2323 for (i = 0; i < table_entries; i++) 2324 mc_filter[i] = 0xffff; 2325 } else { 2326 /* Accept Broadcast packet, destination address matchs our 2327 * MAC address, use Receive Filter to reject unwanted MCAST 2328 * packets */ 2329 struct netdev_hw_addr *ha; 2330 rx_mode = RFAAB; 2331 2332 netdev_for_each_mc_addr(ha, net_dev) { 2333 unsigned int bit_nr; 2334 2335 bit_nr = sis900_mcast_bitnr(ha->addr, 2336 sis_priv->chipset_rev); 2337 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf)); 2338 } 2339 } 2340 2341 /* update Multicast Hash Table in Receive Filter */ 2342 for (i = 0; i < table_entries; i++) { 2343 /* why plus 0x04 ??, That makes the correct value for hash table. */ 2344 sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift); 2345 sw32(rfdr, mc_filter[i]); 2346 } 2347 2348 sw32(rfcr, RFEN | rx_mode); 2349 2350 /* sis900 is capable of looping back packets at MAC level for 2351 * debugging purpose */ 2352 if (net_dev->flags & IFF_LOOPBACK) { 2353 u32 cr_saved; 2354 /* We must disable Tx/Rx before setting loopback mode */ 2355 cr_saved = sr32(cr); 2356 sw32(cr, cr_saved | TxDIS | RxDIS); 2357 /* enable loopback */ 2358 sw32(txcfg, sr32(txcfg) | TxMLB); 2359 sw32(rxcfg, sr32(rxcfg) | RxATX); 2360 /* restore cr */ 2361 sw32(cr, cr_saved); 2362 } 2363 } 2364 2365 /** 2366 * sis900_reset - Reset sis900 MAC 2367 * @net_dev: the net device to reset 2368 * 2369 * reset sis900 MAC and wait until finished 2370 * reset through command register 2371 * change backoff algorithm for 900B0 & 635 M/B 2372 */ 2373 2374 static void sis900_reset(struct net_device *net_dev) 2375 { 2376 struct sis900_private *sis_priv = netdev_priv(net_dev); 2377 void __iomem *ioaddr = sis_priv->ioaddr; 2378 u32 status = TxRCMP | RxRCMP; 2379 int i; 2380 2381 sw32(ier, 0); 2382 sw32(imr, 0); 2383 sw32(rfcr, 0); 2384 2385 sw32(cr, RxRESET | TxRESET | RESET | sr32(cr)); 2386 2387 /* Check that the chip has finished the reset. */ 2388 for (i = 0; status && (i < 1000); i++) 2389 status ^= sr32(isr) & status; 2390 2391 if (sis_priv->chipset_rev >= SIS635A_900_REV || 2392 sis_priv->chipset_rev == SIS900B_900_REV) 2393 sw32(cfg, PESEL | RND_CNT); 2394 else 2395 sw32(cfg, PESEL); 2396 } 2397 2398 /** 2399 * sis900_remove - Remove sis900 device 2400 * @pci_dev: the pci device to be removed 2401 * 2402 * remove and release SiS900 net device 2403 */ 2404 2405 static void sis900_remove(struct pci_dev *pci_dev) 2406 { 2407 struct net_device *net_dev = pci_get_drvdata(pci_dev); 2408 struct sis900_private *sis_priv = netdev_priv(net_dev); 2409 2410 unregister_netdev(net_dev); 2411 2412 while (sis_priv->first_mii) { 2413 struct mii_phy *phy = sis_priv->first_mii; 2414 2415 sis_priv->first_mii = phy->next; 2416 kfree(phy); 2417 } 2418 2419 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring, 2420 sis_priv->rx_ring_dma); 2421 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring, 2422 sis_priv->tx_ring_dma); 2423 pci_iounmap(pci_dev, sis_priv->ioaddr); 2424 free_netdev(net_dev); 2425 pci_release_regions(pci_dev); 2426 } 2427 2428 #ifdef CONFIG_PM 2429 2430 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state) 2431 { 2432 struct net_device *net_dev = pci_get_drvdata(pci_dev); 2433 struct sis900_private *sis_priv = netdev_priv(net_dev); 2434 void __iomem *ioaddr = sis_priv->ioaddr; 2435 2436 if(!netif_running(net_dev)) 2437 return 0; 2438 2439 netif_stop_queue(net_dev); 2440 netif_device_detach(net_dev); 2441 2442 /* Stop the chip's Tx and Rx Status Machine */ 2443 sw32(cr, RxDIS | TxDIS | sr32(cr)); 2444 2445 pci_set_power_state(pci_dev, PCI_D3hot); 2446 pci_save_state(pci_dev); 2447 2448 return 0; 2449 } 2450 2451 static int sis900_resume(struct pci_dev *pci_dev) 2452 { 2453 struct net_device *net_dev = pci_get_drvdata(pci_dev); 2454 struct sis900_private *sis_priv = netdev_priv(net_dev); 2455 void __iomem *ioaddr = sis_priv->ioaddr; 2456 2457 if(!netif_running(net_dev)) 2458 return 0; 2459 pci_restore_state(pci_dev); 2460 pci_set_power_state(pci_dev, PCI_D0); 2461 2462 sis900_init_rxfilter(net_dev); 2463 2464 sis900_init_tx_ring(net_dev); 2465 sis900_init_rx_ring(net_dev); 2466 2467 set_rx_mode(net_dev); 2468 2469 netif_device_attach(net_dev); 2470 netif_start_queue(net_dev); 2471 2472 /* Workaround for EDB */ 2473 sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED); 2474 2475 /* Enable all known interrupts by setting the interrupt mask. */ 2476 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC); 2477 sw32(cr, RxENA | sr32(cr)); 2478 sw32(ier, IE); 2479 2480 sis900_check_mode(net_dev, sis_priv->mii); 2481 2482 return 0; 2483 } 2484 #endif /* CONFIG_PM */ 2485 2486 static struct pci_driver sis900_pci_driver = { 2487 .name = SIS900_MODULE_NAME, 2488 .id_table = sis900_pci_tbl, 2489 .probe = sis900_probe, 2490 .remove = sis900_remove, 2491 #ifdef CONFIG_PM 2492 .suspend = sis900_suspend, 2493 .resume = sis900_resume, 2494 #endif /* CONFIG_PM */ 2495 }; 2496 2497 static int __init sis900_init_module(void) 2498 { 2499 /* when a module, this is printed whether or not devices are found in probe */ 2500 #ifdef MODULE 2501 printk(version); 2502 #endif 2503 2504 return pci_register_driver(&sis900_pci_driver); 2505 } 2506 2507 static void __exit sis900_cleanup_module(void) 2508 { 2509 pci_unregister_driver(&sis900_pci_driver); 2510 } 2511 2512 module_init(sis900_init_module); 2513 module_exit(sis900_cleanup_module); 2514 2515