xref: /openbmc/linux/drivers/net/ethernet/sis/sis900.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <linux/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 
110 static const struct pci_device_id sis900_pci_tbl[] = {
111 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
112 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
113 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
114 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
115 	{0,}
116 };
117 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
118 
119 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
120 
121 static const struct mii_chip_info {
122 	const char * name;
123 	u16 phy_id0;
124 	u16 phy_id1;
125 	u8  phy_types;
126 #define	HOME 	0x0001
127 #define LAN	0x0002
128 #define MIX	0x0003
129 #define UNKNOWN	0x0
130 } mii_chip_table[] = {
131 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
132 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
133 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
134 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
135 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
136 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
137 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
138 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
139 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
140 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
141 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
142 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
143 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
144 	{NULL,},
145 };
146 
147 struct mii_phy {
148 	struct mii_phy * next;
149 	int phy_addr;
150 	u16 phy_id0;
151 	u16 phy_id1;
152 	u16 status;
153 	u8  phy_types;
154 };
155 
156 typedef struct _BufferDesc {
157 	u32 link;
158 	u32 cmdsts;
159 	u32 bufptr;
160 } BufferDesc;
161 
162 struct sis900_private {
163 	struct pci_dev * pci_dev;
164 
165 	spinlock_t lock;
166 
167 	struct mii_phy * mii;
168 	struct mii_phy * first_mii; /* record the first mii structure */
169 	unsigned int cur_phy;
170 	struct mii_if_info mii_info;
171 
172 	void __iomem	*ioaddr;
173 
174 	struct timer_list timer; /* Link status detection timer. */
175 	u8 autong_complete; /* 1: auto-negotiate complete  */
176 
177 	u32 msg_enable;
178 
179 	unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */
180 	unsigned int cur_tx, dirty_tx;
181 
182 	/* The saved address of a sent/receive-in-place packet buffer */
183 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
184 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
185 	BufferDesc *tx_ring;
186 	BufferDesc *rx_ring;
187 
188 	dma_addr_t tx_ring_dma;
189 	dma_addr_t rx_ring_dma;
190 
191 	unsigned int tx_full; /* The Tx queue is full. */
192 	u8 host_bridge_rev;
193 	u8 chipset_rev;
194 };
195 
196 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
197 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
198 MODULE_LICENSE("GPL");
199 
200 module_param(multicast_filter_limit, int, 0444);
201 module_param(max_interrupt_work, int, 0444);
202 module_param(sis900_debug, int, 0444);
203 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
204 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
205 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
206 
207 #define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
208 #define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
209 #define sr32(reg)	ioread32(ioaddr + (reg))
210 #define sr16(reg)	ioread16(ioaddr + (reg))
211 
212 #ifdef CONFIG_NET_POLL_CONTROLLER
213 static void sis900_poll(struct net_device *dev);
214 #endif
215 static int sis900_open(struct net_device *net_dev);
216 static int sis900_mii_probe (struct net_device * net_dev);
217 static void sis900_init_rxfilter (struct net_device * net_dev);
218 static u16 read_eeprom(void __iomem *ioaddr, int location);
219 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
220 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
221 static void sis900_timer(unsigned long data);
222 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
223 static void sis900_tx_timeout(struct net_device *net_dev);
224 static void sis900_init_tx_ring(struct net_device *net_dev);
225 static void sis900_init_rx_ring(struct net_device *net_dev);
226 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
227 				     struct net_device *net_dev);
228 static int sis900_rx(struct net_device *net_dev);
229 static void sis900_finish_xmit (struct net_device *net_dev);
230 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
231 static int sis900_close(struct net_device *net_dev);
232 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
233 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
234 static void set_rx_mode(struct net_device *net_dev);
235 static void sis900_reset(struct net_device *net_dev);
236 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
237 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
238 static u16 sis900_default_phy(struct net_device * net_dev);
239 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
240 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
241 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
242 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
243 static const struct ethtool_ops sis900_ethtool_ops;
244 
245 /**
246  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
247  *	@pci_dev: the sis900 pci device
248  *	@net_dev: the net device to get address for
249  *
250  *	Older SiS900 and friends, use EEPROM to store MAC address.
251  *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
252  */
253 
254 static int sis900_get_mac_addr(struct pci_dev *pci_dev,
255 			       struct net_device *net_dev)
256 {
257 	struct sis900_private *sis_priv = netdev_priv(net_dev);
258 	void __iomem *ioaddr = sis_priv->ioaddr;
259 	u16 signature;
260 	int i;
261 
262 	/* check to see if we have sane EEPROM */
263 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
264 	if (signature == 0xffff || signature == 0x0000) {
265 		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
266 			pci_name(pci_dev), signature);
267 		return 0;
268 	}
269 
270 	/* get MAC address from EEPROM */
271 	for (i = 0; i < 3; i++)
272 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
273 
274 	return 1;
275 }
276 
277 /**
278  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
279  *	@pci_dev: the sis900 pci device
280  *	@net_dev: the net device to get address for
281  *
282  *	SiS630E model, use APC CMOS RAM to store MAC address.
283  *	APC CMOS RAM is accessed through ISA bridge.
284  *	MAC address is read into @net_dev->dev_addr.
285  */
286 
287 static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
288 				struct net_device *net_dev)
289 {
290 	struct pci_dev *isa_bridge = NULL;
291 	u8 reg;
292 	int i;
293 
294 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
295 	if (!isa_bridge)
296 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
297 	if (!isa_bridge) {
298 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
299 		       pci_name(pci_dev));
300 		return 0;
301 	}
302 	pci_read_config_byte(isa_bridge, 0x48, &reg);
303 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
304 
305 	for (i = 0; i < 6; i++) {
306 		outb(0x09 + i, 0x70);
307 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
308 	}
309 
310 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
311 	pci_dev_put(isa_bridge);
312 
313 	return 1;
314 }
315 
316 
317 /**
318  *	sis635_get_mac_addr - Get MAC address for SIS635 model
319  *	@pci_dev: the sis900 pci device
320  *	@net_dev: the net device to get address for
321  *
322  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
323  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
324  *	@net_dev->dev_addr.
325  */
326 
327 static int sis635_get_mac_addr(struct pci_dev *pci_dev,
328 			       struct net_device *net_dev)
329 {
330 	struct sis900_private *sis_priv = netdev_priv(net_dev);
331 	void __iomem *ioaddr = sis_priv->ioaddr;
332 	u32 rfcrSave;
333 	u32 i;
334 
335 	rfcrSave = sr32(rfcr);
336 
337 	sw32(cr, rfcrSave | RELOAD);
338 	sw32(cr, 0);
339 
340 	/* disable packet filtering before setting filter */
341 	sw32(rfcr, rfcrSave & ~RFEN);
342 
343 	/* load MAC addr to filter data register */
344 	for (i = 0 ; i < 3 ; i++) {
345 		sw32(rfcr, (i << RFADDR_shift));
346 		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
347 	}
348 
349 	/* enable packet filtering */
350 	sw32(rfcr, rfcrSave | RFEN);
351 
352 	return 1;
353 }
354 
355 /**
356  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
357  *	@pci_dev: the sis900 pci device
358  *	@net_dev: the net device to get address for
359  *
360  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
361  *	is shared by
362  *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
363  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
364  *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
365  *	EEDONE signal to refuse EEPROM access by LAN.
366  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
367  *	The signature field in SiS962 or SiS963 spec is meaningless.
368  *	MAC address is read into @net_dev->dev_addr.
369  */
370 
371 static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
372 			       struct net_device *net_dev)
373 {
374 	struct sis900_private *sis_priv = netdev_priv(net_dev);
375 	void __iomem *ioaddr = sis_priv->ioaddr;
376 	int wait, rc = 0;
377 
378 	sw32(mear, EEREQ);
379 	for (wait = 0; wait < 2000; wait++) {
380 		if (sr32(mear) & EEGNT) {
381 			u16 *mac = (u16 *)net_dev->dev_addr;
382 			int i;
383 
384 			/* get MAC address from EEPROM */
385 			for (i = 0; i < 3; i++)
386 			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
387 
388 			rc = 1;
389 			break;
390 		}
391 		udelay(1);
392 	}
393 	sw32(mear, EEDONE);
394 	return rc;
395 }
396 
397 static const struct net_device_ops sis900_netdev_ops = {
398 	.ndo_open		 = sis900_open,
399 	.ndo_stop		= sis900_close,
400 	.ndo_start_xmit		= sis900_start_xmit,
401 	.ndo_set_config		= sis900_set_config,
402 	.ndo_set_rx_mode	= set_rx_mode,
403 	.ndo_validate_addr	= eth_validate_addr,
404 	.ndo_set_mac_address 	= eth_mac_addr,
405 	.ndo_do_ioctl		= mii_ioctl,
406 	.ndo_tx_timeout		= sis900_tx_timeout,
407 #ifdef CONFIG_NET_POLL_CONTROLLER
408         .ndo_poll_controller	= sis900_poll,
409 #endif
410 };
411 
412 /**
413  *	sis900_probe - Probe for sis900 device
414  *	@pci_dev: the sis900 pci device
415  *	@pci_id: the pci device ID
416  *
417  *	Check and probe sis900 net device for @pci_dev.
418  *	Get mac address according to the chip revision,
419  *	and assign SiS900-specific entries in the device structure.
420  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
421  */
422 
423 static int sis900_probe(struct pci_dev *pci_dev,
424 			const struct pci_device_id *pci_id)
425 {
426 	struct sis900_private *sis_priv;
427 	struct net_device *net_dev;
428 	struct pci_dev *dev;
429 	dma_addr_t ring_dma;
430 	void *ring_space;
431 	void __iomem *ioaddr;
432 	int i, ret;
433 	const char *card_name = card_names[pci_id->driver_data];
434 	const char *dev_name = pci_name(pci_dev);
435 
436 /* when built into the kernel, we only print version if device is found */
437 #ifndef MODULE
438 	static int printed_version;
439 	if (!printed_version++)
440 		printk(version);
441 #endif
442 
443 	/* setup various bits in PCI command register */
444 	ret = pci_enable_device(pci_dev);
445 	if(ret) return ret;
446 
447 	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
448 	if(i){
449 		printk(KERN_ERR "sis900.c: architecture does not support "
450 			"32bit PCI busmaster DMA\n");
451 		return i;
452 	}
453 
454 	pci_set_master(pci_dev);
455 
456 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
457 	if (!net_dev)
458 		return -ENOMEM;
459 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
460 
461 	/* We do a request_region() to register /proc/ioports info. */
462 	ret = pci_request_regions(pci_dev, "sis900");
463 	if (ret)
464 		goto err_out;
465 
466 	/* IO region. */
467 	ioaddr = pci_iomap(pci_dev, 0, 0);
468 	if (!ioaddr) {
469 		ret = -ENOMEM;
470 		goto err_out_cleardev;
471 	}
472 
473 	sis_priv = netdev_priv(net_dev);
474 	sis_priv->ioaddr = ioaddr;
475 	sis_priv->pci_dev = pci_dev;
476 	spin_lock_init(&sis_priv->lock);
477 
478 	pci_set_drvdata(pci_dev, net_dev);
479 
480 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
481 	if (!ring_space) {
482 		ret = -ENOMEM;
483 		goto err_out_unmap;
484 	}
485 	sis_priv->tx_ring = ring_space;
486 	sis_priv->tx_ring_dma = ring_dma;
487 
488 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
489 	if (!ring_space) {
490 		ret = -ENOMEM;
491 		goto err_unmap_tx;
492 	}
493 	sis_priv->rx_ring = ring_space;
494 	sis_priv->rx_ring_dma = ring_dma;
495 
496 	/* The SiS900-specific entries in the device structure. */
497 	net_dev->netdev_ops = &sis900_netdev_ops;
498 	net_dev->watchdog_timeo = TX_TIMEOUT;
499 	net_dev->ethtool_ops = &sis900_ethtool_ops;
500 
501 	if (sis900_debug > 0)
502 		sis_priv->msg_enable = sis900_debug;
503 	else
504 		sis_priv->msg_enable = SIS900_DEF_MSG;
505 
506 	sis_priv->mii_info.dev = net_dev;
507 	sis_priv->mii_info.mdio_read = mdio_read;
508 	sis_priv->mii_info.mdio_write = mdio_write;
509 	sis_priv->mii_info.phy_id_mask = 0x1f;
510 	sis_priv->mii_info.reg_num_mask = 0x1f;
511 
512 	/* Get Mac address according to the chip revision */
513 	sis_priv->chipset_rev = pci_dev->revision;
514 	if(netif_msg_probe(sis_priv))
515 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
516 				"trying to get MAC address...\n",
517 				dev_name, sis_priv->chipset_rev);
518 
519 	ret = 0;
520 	if (sis_priv->chipset_rev == SIS630E_900_REV)
521 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
522 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
523 		ret = sis635_get_mac_addr(pci_dev, net_dev);
524 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
525 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
526 	else
527 		ret = sis900_get_mac_addr(pci_dev, net_dev);
528 
529 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
530 		eth_hw_addr_random(net_dev);
531 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
532 				"using random generated one\n", dev_name);
533 	}
534 
535 	/* 630ET : set the mii access mode as software-mode */
536 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
537 		sw32(cr, ACCESSMODE | sr32(cr));
538 
539 	/* probe for mii transceiver */
540 	if (sis900_mii_probe(net_dev) == 0) {
541 		printk(KERN_WARNING "%s: Error probing MII device.\n",
542 		       dev_name);
543 		ret = -ENODEV;
544 		goto err_unmap_rx;
545 	}
546 
547 	/* save our host bridge revision */
548 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
549 	if (dev) {
550 		sis_priv->host_bridge_rev = dev->revision;
551 		pci_dev_put(dev);
552 	}
553 
554 	ret = register_netdev(net_dev);
555 	if (ret)
556 		goto err_unmap_rx;
557 
558 	/* print some information about our NIC */
559 	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
560 	       net_dev->name, card_name, ioaddr, pci_dev->irq,
561 	       net_dev->dev_addr);
562 
563 	/* Detect Wake on Lan support */
564 	ret = (sr32(CFGPMC) & PMESP) >> 27;
565 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
566 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
567 
568 	return 0;
569 
570 err_unmap_rx:
571 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
572 		sis_priv->rx_ring_dma);
573 err_unmap_tx:
574 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
575 		sis_priv->tx_ring_dma);
576 err_out_unmap:
577 	pci_iounmap(pci_dev, ioaddr);
578 err_out_cleardev:
579 	pci_release_regions(pci_dev);
580  err_out:
581 	free_netdev(net_dev);
582 	return ret;
583 }
584 
585 /**
586  *	sis900_mii_probe - Probe MII PHY for sis900
587  *	@net_dev: the net device to probe for
588  *
589  *	Search for total of 32 possible mii phy addresses.
590  *	Identify and set current phy if found one,
591  *	return error if it failed to found.
592  */
593 
594 static int sis900_mii_probe(struct net_device *net_dev)
595 {
596 	struct sis900_private *sis_priv = netdev_priv(net_dev);
597 	const char *dev_name = pci_name(sis_priv->pci_dev);
598 	u16 poll_bit = MII_STAT_LINK, status = 0;
599 	unsigned long timeout = jiffies + 5 * HZ;
600 	int phy_addr;
601 
602 	sis_priv->mii = NULL;
603 
604 	/* search for total of 32 possible mii phy addresses */
605 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
606 		struct mii_phy * mii_phy = NULL;
607 		u16 mii_status;
608 		int i;
609 
610 		mii_phy = NULL;
611 		for(i = 0; i < 2; i++)
612 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
613 
614 		if (mii_status == 0xffff || mii_status == 0x0000) {
615 			if (netif_msg_probe(sis_priv))
616 				printk(KERN_DEBUG "%s: MII at address %d"
617 						" not accessible\n",
618 						dev_name, phy_addr);
619 			continue;
620 		}
621 
622 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
623 			mii_phy = sis_priv->first_mii;
624 			while (mii_phy) {
625 				struct mii_phy *phy;
626 				phy = mii_phy;
627 				mii_phy = mii_phy->next;
628 				kfree(phy);
629 			}
630 			return 0;
631 		}
632 
633 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
634 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
635 		mii_phy->phy_addr = phy_addr;
636 		mii_phy->status = mii_status;
637 		mii_phy->next = sis_priv->mii;
638 		sis_priv->mii = mii_phy;
639 		sis_priv->first_mii = mii_phy;
640 
641 		for (i = 0; mii_chip_table[i].phy_id1; i++)
642 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
643 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
644 				mii_phy->phy_types = mii_chip_table[i].phy_types;
645 				if (mii_chip_table[i].phy_types == MIX)
646 					mii_phy->phy_types =
647 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
648 				printk(KERN_INFO "%s: %s transceiver found "
649 							"at address %d.\n",
650 							dev_name,
651 							mii_chip_table[i].name,
652 							phy_addr);
653 				break;
654 			}
655 
656 		if( !mii_chip_table[i].phy_id1 ) {
657 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
658 			       dev_name, phy_addr);
659 			mii_phy->phy_types = UNKNOWN;
660 		}
661 	}
662 
663 	if (sis_priv->mii == NULL) {
664 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
665 		return 0;
666 	}
667 
668 	/* select default PHY for mac */
669 	sis_priv->mii = NULL;
670 	sis900_default_phy( net_dev );
671 
672 	/* Reset phy if default phy is internal sis900 */
673         if ((sis_priv->mii->phy_id0 == 0x001D) &&
674 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
675         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
676 
677         /* workaround for ICS1893 PHY */
678         if ((sis_priv->mii->phy_id0 == 0x0015) &&
679             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
680             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
681 
682 	if(status & MII_STAT_LINK){
683 		while (poll_bit) {
684 			yield();
685 
686 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
687 			if (time_after_eq(jiffies, timeout)) {
688 				printk(KERN_WARNING "%s: reset phy and link down now\n",
689 				       dev_name);
690 				return -ETIME;
691 			}
692 		}
693 	}
694 
695 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
696 		/* SiS 630E has some bugs on default value of PHY registers */
697 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
698 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
699 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
700 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
701 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
702 	}
703 
704 	if (sis_priv->mii->status & MII_STAT_LINK)
705 		netif_carrier_on(net_dev);
706 	else
707 		netif_carrier_off(net_dev);
708 
709 	return 1;
710 }
711 
712 /**
713  *	sis900_default_phy - Select default PHY for sis900 mac.
714  *	@net_dev: the net device to probe for
715  *
716  *	Select first detected PHY with link as default.
717  *	If no one is link on, select PHY whose types is HOME as default.
718  *	If HOME doesn't exist, select LAN.
719  */
720 
721 static u16 sis900_default_phy(struct net_device * net_dev)
722 {
723 	struct sis900_private *sis_priv = netdev_priv(net_dev);
724  	struct mii_phy *phy = NULL, *phy_home = NULL,
725 		*default_phy = NULL, *phy_lan = NULL;
726 	u16 status;
727 
728         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
729 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
730 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
731 
732 		/* Link ON & Not select default PHY & not ghost PHY */
733 		 if ((status & MII_STAT_LINK) && !default_phy &&
734 					(phy->phy_types != UNKNOWN))
735 		 	default_phy = phy;
736 		 else {
737 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
738 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
739 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
740 			if (phy->phy_types == HOME)
741 				phy_home = phy;
742 			else if(phy->phy_types == LAN)
743 				phy_lan = phy;
744 		 }
745 	}
746 
747 	if (!default_phy && phy_home)
748 		default_phy = phy_home;
749 	else if (!default_phy && phy_lan)
750 		default_phy = phy_lan;
751 	else if (!default_phy)
752 		default_phy = sis_priv->first_mii;
753 
754 	if (sis_priv->mii != default_phy) {
755 		sis_priv->mii = default_phy;
756 		sis_priv->cur_phy = default_phy->phy_addr;
757 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
758 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
759 	}
760 
761 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
762 
763 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
764 	status &= (~MII_CNTL_ISOLATE);
765 
766 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
767 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
768 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
769 
770 	return status;
771 }
772 
773 
774 /**
775  * 	sis900_set_capability - set the media capability of network adapter.
776  *	@net_dev : the net device to probe for
777  *	@phy : default PHY
778  *
779  *	Set the media capability of network adapter according to
780  *	mii status register. It's necessary before auto-negotiate.
781  */
782 
783 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
784 {
785 	u16 cap;
786 	u16 status;
787 
788 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
789 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
790 
791 	cap = MII_NWAY_CSMA_CD |
792 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
793 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
794 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
795 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
796 
797 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
798 }
799 
800 
801 /* Delay between EEPROM clock transitions. */
802 #define eeprom_delay()	sr32(mear)
803 
804 /**
805  *	read_eeprom - Read Serial EEPROM
806  *	@ioaddr: base i/o address
807  *	@location: the EEPROM location to read
808  *
809  *	Read Serial EEPROM through EEPROM Access Register.
810  *	Note that location is in word (16 bits) unit
811  */
812 
813 static u16 read_eeprom(void __iomem *ioaddr, int location)
814 {
815 	u32 read_cmd = location | EEread;
816 	int i;
817 	u16 retval = 0;
818 
819 	sw32(mear, 0);
820 	eeprom_delay();
821 	sw32(mear, EECS);
822 	eeprom_delay();
823 
824 	/* Shift the read command (9) bits out. */
825 	for (i = 8; i >= 0; i--) {
826 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
827 
828 		sw32(mear, dataval);
829 		eeprom_delay();
830 		sw32(mear, dataval | EECLK);
831 		eeprom_delay();
832 	}
833 	sw32(mear, EECS);
834 	eeprom_delay();
835 
836 	/* read the 16-bits data in */
837 	for (i = 16; i > 0; i--) {
838 		sw32(mear, EECS);
839 		eeprom_delay();
840 		sw32(mear, EECS | EECLK);
841 		eeprom_delay();
842 		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
843 		eeprom_delay();
844 	}
845 
846 	/* Terminate the EEPROM access. */
847 	sw32(mear, 0);
848 	eeprom_delay();
849 
850 	return retval;
851 }
852 
853 /* Read and write the MII management registers using software-generated
854    serial MDIO protocol. Note that the command bits and data bits are
855    send out separately */
856 #define mdio_delay()	sr32(mear)
857 
858 static void mdio_idle(struct sis900_private *sp)
859 {
860 	void __iomem *ioaddr = sp->ioaddr;
861 
862 	sw32(mear, MDIO | MDDIR);
863 	mdio_delay();
864 	sw32(mear, MDIO | MDDIR | MDC);
865 }
866 
867 /* Synchronize the MII management interface by shifting 32 one bits out. */
868 static void mdio_reset(struct sis900_private *sp)
869 {
870 	void __iomem *ioaddr = sp->ioaddr;
871 	int i;
872 
873 	for (i = 31; i >= 0; i--) {
874 		sw32(mear, MDDIR | MDIO);
875 		mdio_delay();
876 		sw32(mear, MDDIR | MDIO | MDC);
877 		mdio_delay();
878 	}
879 }
880 
881 /**
882  *	mdio_read - read MII PHY register
883  *	@net_dev: the net device to read
884  *	@phy_id: the phy address to read
885  *	@location: the phy regiester id to read
886  *
887  *	Read MII registers through MDIO and MDC
888  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
889  *	Please see SiS7014 or ICS spec
890  */
891 
892 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
893 {
894 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
895 	struct sis900_private *sp = netdev_priv(net_dev);
896 	void __iomem *ioaddr = sp->ioaddr;
897 	u16 retval = 0;
898 	int i;
899 
900 	mdio_reset(sp);
901 	mdio_idle(sp);
902 
903 	for (i = 15; i >= 0; i--) {
904 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
905 
906 		sw32(mear, dataval);
907 		mdio_delay();
908 		sw32(mear, dataval | MDC);
909 		mdio_delay();
910 	}
911 
912 	/* Read the 16 data bits. */
913 	for (i = 16; i > 0; i--) {
914 		sw32(mear, 0);
915 		mdio_delay();
916 		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
917 		sw32(mear, MDC);
918 		mdio_delay();
919 	}
920 	sw32(mear, 0x00);
921 
922 	return retval;
923 }
924 
925 /**
926  *	mdio_write - write MII PHY register
927  *	@net_dev: the net device to write
928  *	@phy_id: the phy address to write
929  *	@location: the phy regiester id to write
930  *	@value: the register value to write with
931  *
932  *	Write MII registers with @value through MDIO and MDC
933  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
934  *	please see SiS7014 or ICS spec
935  */
936 
937 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
938 			int value)
939 {
940 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
941 	struct sis900_private *sp = netdev_priv(net_dev);
942 	void __iomem *ioaddr = sp->ioaddr;
943 	int i;
944 
945 	mdio_reset(sp);
946 	mdio_idle(sp);
947 
948 	/* Shift the command bits out. */
949 	for (i = 15; i >= 0; i--) {
950 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
951 
952 		sw8(mear, dataval);
953 		mdio_delay();
954 		sw8(mear, dataval | MDC);
955 		mdio_delay();
956 	}
957 	mdio_delay();
958 
959 	/* Shift the value bits out. */
960 	for (i = 15; i >= 0; i--) {
961 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
962 
963 		sw32(mear, dataval);
964 		mdio_delay();
965 		sw32(mear, dataval | MDC);
966 		mdio_delay();
967 	}
968 	mdio_delay();
969 
970 	/* Clear out extra bits. */
971 	for (i = 2; i > 0; i--) {
972 		sw8(mear, 0);
973 		mdio_delay();
974 		sw8(mear, MDC);
975 		mdio_delay();
976 	}
977 	sw32(mear, 0x00);
978 }
979 
980 
981 /**
982  *	sis900_reset_phy - reset sis900 mii phy.
983  *	@net_dev: the net device to write
984  *	@phy_addr: default phy address
985  *
986  *	Some specific phy can't work properly without reset.
987  *	This function will be called during initialization and
988  *	link status change from ON to DOWN.
989  */
990 
991 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
992 {
993 	int i;
994 	u16 status;
995 
996 	for (i = 0; i < 2; i++)
997 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
998 
999 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1000 
1001 	return status;
1002 }
1003 
1004 #ifdef CONFIG_NET_POLL_CONTROLLER
1005 /*
1006  * Polling 'interrupt' - used by things like netconsole to send skbs
1007  * without having to re-enable interrupts. It's not called while
1008  * the interrupt routine is executing.
1009 */
1010 static void sis900_poll(struct net_device *dev)
1011 {
1012 	struct sis900_private *sp = netdev_priv(dev);
1013 	const int irq = sp->pci_dev->irq;
1014 
1015 	disable_irq(irq);
1016 	sis900_interrupt(irq, dev);
1017 	enable_irq(irq);
1018 }
1019 #endif
1020 
1021 /**
1022  *	sis900_open - open sis900 device
1023  *	@net_dev: the net device to open
1024  *
1025  *	Do some initialization and start net interface.
1026  *	enable interrupts and set sis900 timer.
1027  */
1028 
1029 static int
1030 sis900_open(struct net_device *net_dev)
1031 {
1032 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1033 	void __iomem *ioaddr = sis_priv->ioaddr;
1034 	int ret;
1035 
1036 	/* Soft reset the chip. */
1037 	sis900_reset(net_dev);
1038 
1039 	/* Equalizer workaround Rule */
1040 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1041 
1042 	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1043 			  net_dev->name, net_dev);
1044 	if (ret)
1045 		return ret;
1046 
1047 	sis900_init_rxfilter(net_dev);
1048 
1049 	sis900_init_tx_ring(net_dev);
1050 	sis900_init_rx_ring(net_dev);
1051 
1052 	set_rx_mode(net_dev);
1053 
1054 	netif_start_queue(net_dev);
1055 
1056 	/* Workaround for EDB */
1057 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1058 
1059 	/* Enable all known interrupts by setting the interrupt mask. */
1060 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1061 	sw32(cr, RxENA | sr32(cr));
1062 	sw32(ier, IE);
1063 
1064 	sis900_check_mode(net_dev, sis_priv->mii);
1065 
1066 	/* Set the timer to switch to check for link beat and perhaps switch
1067 	   to an alternate media type. */
1068 	init_timer(&sis_priv->timer);
1069 	sis_priv->timer.expires = jiffies + HZ;
1070 	sis_priv->timer.data = (unsigned long)net_dev;
1071 	sis_priv->timer.function = sis900_timer;
1072 	add_timer(&sis_priv->timer);
1073 
1074 	return 0;
1075 }
1076 
1077 /**
1078  *	sis900_init_rxfilter - Initialize the Rx filter
1079  *	@net_dev: the net device to initialize for
1080  *
1081  *	Set receive filter address to our MAC address
1082  *	and enable packet filtering.
1083  */
1084 
1085 static void
1086 sis900_init_rxfilter (struct net_device * net_dev)
1087 {
1088 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1089 	void __iomem *ioaddr = sis_priv->ioaddr;
1090 	u32 rfcrSave;
1091 	u32 i;
1092 
1093 	rfcrSave = sr32(rfcr);
1094 
1095 	/* disable packet filtering before setting filter */
1096 	sw32(rfcr, rfcrSave & ~RFEN);
1097 
1098 	/* load MAC addr to filter data register */
1099 	for (i = 0 ; i < 3 ; i++) {
1100 		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1101 
1102 		sw32(rfcr, i << RFADDR_shift);
1103 		sw32(rfdr, w);
1104 
1105 		if (netif_msg_hw(sis_priv)) {
1106 			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1107 			       net_dev->name, i, sr32(rfdr));
1108 		}
1109 	}
1110 
1111 	/* enable packet filtering */
1112 	sw32(rfcr, rfcrSave | RFEN);
1113 }
1114 
1115 /**
1116  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1117  *	@net_dev: the net device to initialize for
1118  *
1119  *	Initialize the Tx descriptor ring,
1120  */
1121 
1122 static void
1123 sis900_init_tx_ring(struct net_device *net_dev)
1124 {
1125 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1126 	void __iomem *ioaddr = sis_priv->ioaddr;
1127 	int i;
1128 
1129 	sis_priv->tx_full = 0;
1130 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1131 
1132 	for (i = 0; i < NUM_TX_DESC; i++) {
1133 		sis_priv->tx_skbuff[i] = NULL;
1134 
1135 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1136 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1137 		sis_priv->tx_ring[i].cmdsts = 0;
1138 		sis_priv->tx_ring[i].bufptr = 0;
1139 	}
1140 
1141 	/* load Transmit Descriptor Register */
1142 	sw32(txdp, sis_priv->tx_ring_dma);
1143 	if (netif_msg_hw(sis_priv))
1144 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1145 		       net_dev->name, sr32(txdp));
1146 }
1147 
1148 /**
1149  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1150  *	@net_dev: the net device to initialize for
1151  *
1152  *	Initialize the Rx descriptor ring,
1153  *	and pre-allocate recevie buffers (socket buffer)
1154  */
1155 
1156 static void
1157 sis900_init_rx_ring(struct net_device *net_dev)
1158 {
1159 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1160 	void __iomem *ioaddr = sis_priv->ioaddr;
1161 	int i;
1162 
1163 	sis_priv->cur_rx = 0;
1164 	sis_priv->dirty_rx = 0;
1165 
1166 	/* init RX descriptor */
1167 	for (i = 0; i < NUM_RX_DESC; i++) {
1168 		sis_priv->rx_skbuff[i] = NULL;
1169 
1170 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1171 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1172 		sis_priv->rx_ring[i].cmdsts = 0;
1173 		sis_priv->rx_ring[i].bufptr = 0;
1174 	}
1175 
1176 	/* allocate sock buffers */
1177 	for (i = 0; i < NUM_RX_DESC; i++) {
1178 		struct sk_buff *skb;
1179 
1180 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1181 			/* not enough memory for skbuff, this makes a "hole"
1182 			   on the buffer ring, it is not clear how the
1183 			   hardware will react to this kind of degenerated
1184 			   buffer */
1185 			break;
1186 		}
1187 		sis_priv->rx_skbuff[i] = skb;
1188 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1189 		sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1190 				skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1191 		if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1192 				sis_priv->rx_ring[i].bufptr))) {
1193 			dev_kfree_skb(skb);
1194 			sis_priv->rx_skbuff[i] = NULL;
1195 			break;
1196 		}
1197 	}
1198 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1199 
1200 	/* load Receive Descriptor Register */
1201 	sw32(rxdp, sis_priv->rx_ring_dma);
1202 	if (netif_msg_hw(sis_priv))
1203 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1204 		       net_dev->name, sr32(rxdp));
1205 }
1206 
1207 /**
1208  *	sis630_set_eq - set phy equalizer value for 630 LAN
1209  *	@net_dev: the net device to set equalizer value
1210  *	@revision: 630 LAN revision number
1211  *
1212  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1213  *	PHY register 14h(Test)
1214  *	Bit 14: 0 -- Automatically detect (default)
1215  *		1 -- Manually set Equalizer filter
1216  *	Bit 13: 0 -- (Default)
1217  *		1 -- Speed up convergence of equalizer setting
1218  *	Bit 9 : 0 -- (Default)
1219  *		1 -- Disable Baseline Wander
1220  *	Bit 3~7   -- Equalizer filter setting
1221  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1222  *	Then calculate equalizer value
1223  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1224  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1225  *	Calculate Equalizer value:
1226  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1227  *	When the equalizer is stable, this value is not a fixed value. It will be within
1228  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1229  *	0 <= max <= 4  --> set equalizer to max
1230  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1231  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1232  */
1233 
1234 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1235 {
1236 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1237 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1238 	int i, maxcount=10;
1239 
1240 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1241 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1242 		return;
1243 
1244 	if (netif_carrier_ok(net_dev)) {
1245 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1246 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1247 					(0x2200 | reg14h) & 0xBFFF);
1248 		for (i=0; i < maxcount; i++) {
1249 			eq_value = (0x00F8 & mdio_read(net_dev,
1250 					sis_priv->cur_phy, MII_RESV)) >> 3;
1251 			if (i == 0)
1252 				max_value=min_value=eq_value;
1253 			max_value = (eq_value > max_value) ?
1254 						eq_value : max_value;
1255 			min_value = (eq_value < min_value) ?
1256 						eq_value : min_value;
1257 		}
1258 		/* 630E rule to determine the equalizer value */
1259 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1260 		    revision == SIS630ET_900_REV) {
1261 			if (max_value < 5)
1262 				eq_value = max_value;
1263 			else if (max_value >= 5 && max_value < 15)
1264 				eq_value = (max_value == min_value) ?
1265 						max_value+2 : max_value+1;
1266 			else if (max_value >= 15)
1267 				eq_value=(max_value == min_value) ?
1268 						max_value+6 : max_value+5;
1269 		}
1270 		/* 630B0&B1 rule to determine the equalizer value */
1271 		if (revision == SIS630A_900_REV &&
1272 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1273 		     sis_priv->host_bridge_rev == SIS630B1)) {
1274 			if (max_value == 0)
1275 				eq_value = 3;
1276 			else
1277 				eq_value = (max_value + min_value + 1)/2;
1278 		}
1279 		/* write equalizer value and setting */
1280 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1281 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1282 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1283 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1284 	} else {
1285 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1286 		if (revision == SIS630A_900_REV &&
1287 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1288 		     sis_priv->host_bridge_rev == SIS630B1))
1289 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1290 						(reg14h | 0x2200) & 0xBFFF);
1291 		else
1292 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1293 						(reg14h | 0x2000) & 0xBFFF);
1294 	}
1295 }
1296 
1297 /**
1298  *	sis900_timer - sis900 timer routine
1299  *	@data: pointer to sis900 net device
1300  *
1301  *	On each timer ticks we check two things,
1302  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1303  */
1304 
1305 static void sis900_timer(unsigned long data)
1306 {
1307 	struct net_device *net_dev = (struct net_device *)data;
1308 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1309 	struct mii_phy *mii_phy = sis_priv->mii;
1310 	static const int next_tick = 5*HZ;
1311 	int speed = 0, duplex = 0;
1312 	u16 status;
1313 
1314 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1315 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1316 
1317 	/* Link OFF -> ON */
1318 	if (!netif_carrier_ok(net_dev)) {
1319 	LookForLink:
1320 		/* Search for new PHY */
1321 		status = sis900_default_phy(net_dev);
1322 		mii_phy = sis_priv->mii;
1323 
1324 		if (status & MII_STAT_LINK) {
1325 			WARN_ON(!(status & MII_STAT_AUTO_DONE));
1326 
1327 			sis900_read_mode(net_dev, &speed, &duplex);
1328 			if (duplex) {
1329 				sis900_set_mode(sis_priv, speed, duplex);
1330 				sis630_set_eq(net_dev, sis_priv->chipset_rev);
1331 				netif_carrier_on(net_dev);
1332 			}
1333 		}
1334 	} else {
1335 	/* Link ON -> OFF */
1336                 if (!(status & MII_STAT_LINK)){
1337                 	netif_carrier_off(net_dev);
1338 			if(netif_msg_link(sis_priv))
1339                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1340 
1341                 	/* Change mode issue */
1342                 	if ((mii_phy->phy_id0 == 0x001D) &&
1343 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1344                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1345 
1346 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1347 
1348                 	goto LookForLink;
1349                 }
1350 	}
1351 
1352 	sis_priv->timer.expires = jiffies + next_tick;
1353 	add_timer(&sis_priv->timer);
1354 }
1355 
1356 /**
1357  *	sis900_check_mode - check the media mode for sis900
1358  *	@net_dev: the net device to be checked
1359  *	@mii_phy: the mii phy
1360  *
1361  *	Older driver gets the media mode from mii status output
1362  *	register. Now we set our media capability and auto-negotiate
1363  *	to get the upper bound of speed and duplex between two ends.
1364  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1365  *	and autong_complete should be set to 1.
1366  */
1367 
1368 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1369 {
1370 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1371 	void __iomem *ioaddr = sis_priv->ioaddr;
1372 	int speed, duplex;
1373 
1374 	if (mii_phy->phy_types == LAN) {
1375 		sw32(cfg, ~EXD & sr32(cfg));
1376 		sis900_set_capability(net_dev , mii_phy);
1377 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1378 	} else {
1379 		sw32(cfg, EXD | sr32(cfg));
1380 		speed = HW_SPEED_HOME;
1381 		duplex = FDX_CAPABLE_HALF_SELECTED;
1382 		sis900_set_mode(sis_priv, speed, duplex);
1383 		sis_priv->autong_complete = 1;
1384 	}
1385 }
1386 
1387 /**
1388  *	sis900_set_mode - Set the media mode of mac register.
1389  *	@sp:     the device private data
1390  *	@speed : the transmit speed to be determined
1391  *	@duplex: the duplex mode to be determined
1392  *
1393  *	Set the media mode of mac register txcfg/rxcfg according to
1394  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1395  *	bus is used instead of PCI bus. When this bit is set 1, the
1396  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1397  *	double words.
1398  */
1399 
1400 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1401 {
1402 	void __iomem *ioaddr = sp->ioaddr;
1403 	u32 tx_flags = 0, rx_flags = 0;
1404 
1405 	if (sr32( cfg) & EDB_MASTER_EN) {
1406 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1407 					(TX_FILL_THRESH << TxFILLT_shift);
1408 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1409 	} else {
1410 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1411 					(TX_FILL_THRESH << TxFILLT_shift);
1412 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1413 	}
1414 
1415 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1416 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1417 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1418 	} else {
1419 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1420 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1421 	}
1422 
1423 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1424 		tx_flags |= (TxCSI | TxHBI);
1425 		rx_flags |= RxATX;
1426 	}
1427 
1428 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1429 	/* Can accept Jumbo packet */
1430 	rx_flags |= RxAJAB;
1431 #endif
1432 
1433 	sw32(txcfg, tx_flags);
1434 	sw32(rxcfg, rx_flags);
1435 }
1436 
1437 /**
1438  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1439  *	@net_dev: the net device to read mode for
1440  *	@phy_addr: mii phy address
1441  *
1442  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1443  *	autong_complete should be set to 0 when starting auto-negotiation.
1444  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1445  *	sis900_timer will wait for link on again if autong_complete = 0.
1446  */
1447 
1448 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1449 {
1450 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1451 	int i = 0;
1452 	u32 status;
1453 
1454 	for (i = 0; i < 2; i++)
1455 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1456 
1457 	if (!(status & MII_STAT_LINK)){
1458 		if(netif_msg_link(sis_priv))
1459 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1460 		sis_priv->autong_complete = 1;
1461 		netif_carrier_off(net_dev);
1462 		return;
1463 	}
1464 
1465 	/* (Re)start AutoNegotiate */
1466 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1467 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1468 	sis_priv->autong_complete = 0;
1469 }
1470 
1471 
1472 /**
1473  *	sis900_read_mode - read media mode for sis900 internal phy
1474  *	@net_dev: the net device to read mode for
1475  *	@speed  : the transmit speed to be determined
1476  *	@duplex : the duplex mode to be determined
1477  *
1478  *	The capability of remote end will be put in mii register autorec
1479  *	after auto-negotiation. Use AND operation to get the upper bound
1480  *	of speed and duplex between two ends.
1481  */
1482 
1483 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1484 {
1485 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1486 	struct mii_phy *phy = sis_priv->mii;
1487 	int phy_addr = sis_priv->cur_phy;
1488 	u32 status;
1489 	u16 autoadv, autorec;
1490 	int i;
1491 
1492 	for (i = 0; i < 2; i++)
1493 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1494 
1495 	if (!(status & MII_STAT_LINK))
1496 		return;
1497 
1498 	/* AutoNegotiate completed */
1499 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1500 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1501 	status = autoadv & autorec;
1502 
1503 	*speed = HW_SPEED_10_MBPS;
1504 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1505 
1506 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1507 		*speed = HW_SPEED_100_MBPS;
1508 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1509 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1510 
1511 	sis_priv->autong_complete = 1;
1512 
1513 	/* Workaround for Realtek RTL8201 PHY issue */
1514 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1515 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1516 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1517 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1518 			*speed = HW_SPEED_100_MBPS;
1519 	}
1520 
1521 	if(netif_msg_link(sis_priv))
1522 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1523 	       				net_dev->name,
1524 	       				*speed == HW_SPEED_100_MBPS ?
1525 	       					"100mbps" : "10mbps",
1526 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1527 	       					"full" : "half");
1528 }
1529 
1530 /**
1531  *	sis900_tx_timeout - sis900 transmit timeout routine
1532  *	@net_dev: the net device to transmit
1533  *
1534  *	print transmit timeout status
1535  *	disable interrupts and do some tasks
1536  */
1537 
1538 static void sis900_tx_timeout(struct net_device *net_dev)
1539 {
1540 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1541 	void __iomem *ioaddr = sis_priv->ioaddr;
1542 	unsigned long flags;
1543 	int i;
1544 
1545 	if (netif_msg_tx_err(sis_priv)) {
1546 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1547 			net_dev->name, sr32(cr), sr32(isr));
1548 	}
1549 
1550 	/* Disable interrupts by clearing the interrupt mask. */
1551 	sw32(imr, 0x0000);
1552 
1553 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1554 	spin_lock_irqsave(&sis_priv->lock, flags);
1555 
1556 	/* discard unsent packets */
1557 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1558 	for (i = 0; i < NUM_TX_DESC; i++) {
1559 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1560 
1561 		if (skb) {
1562 			pci_unmap_single(sis_priv->pci_dev,
1563 				sis_priv->tx_ring[i].bufptr, skb->len,
1564 				PCI_DMA_TODEVICE);
1565 			dev_kfree_skb_irq(skb);
1566 			sis_priv->tx_skbuff[i] = NULL;
1567 			sis_priv->tx_ring[i].cmdsts = 0;
1568 			sis_priv->tx_ring[i].bufptr = 0;
1569 			net_dev->stats.tx_dropped++;
1570 		}
1571 	}
1572 	sis_priv->tx_full = 0;
1573 	netif_wake_queue(net_dev);
1574 
1575 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1576 
1577 	netif_trans_update(net_dev); /* prevent tx timeout */
1578 
1579 	/* load Transmit Descriptor Register */
1580 	sw32(txdp, sis_priv->tx_ring_dma);
1581 
1582 	/* Enable all known interrupts by setting the interrupt mask. */
1583 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1584 }
1585 
1586 /**
1587  *	sis900_start_xmit - sis900 start transmit routine
1588  *	@skb: socket buffer pointer to put the data being transmitted
1589  *	@net_dev: the net device to transmit with
1590  *
1591  *	Set the transmit buffer descriptor,
1592  *	and write TxENA to enable transmit state machine.
1593  *	tell upper layer if the buffer is full
1594  */
1595 
1596 static netdev_tx_t
1597 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1598 {
1599 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1600 	void __iomem *ioaddr = sis_priv->ioaddr;
1601 	unsigned int  entry;
1602 	unsigned long flags;
1603 	unsigned int  index_cur_tx, index_dirty_tx;
1604 	unsigned int  count_dirty_tx;
1605 
1606 	spin_lock_irqsave(&sis_priv->lock, flags);
1607 
1608 	/* Calculate the next Tx descriptor entry. */
1609 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1610 	sis_priv->tx_skbuff[entry] = skb;
1611 
1612 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1613 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1614 		skb->data, skb->len, PCI_DMA_TODEVICE);
1615 	if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1616 		sis_priv->tx_ring[entry].bufptr))) {
1617 			dev_kfree_skb_any(skb);
1618 			sis_priv->tx_skbuff[entry] = NULL;
1619 			net_dev->stats.tx_dropped++;
1620 			spin_unlock_irqrestore(&sis_priv->lock, flags);
1621 			return NETDEV_TX_OK;
1622 	}
1623 	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1624 	sw32(cr, TxENA | sr32(cr));
1625 
1626 	sis_priv->cur_tx ++;
1627 	index_cur_tx = sis_priv->cur_tx;
1628 	index_dirty_tx = sis_priv->dirty_tx;
1629 
1630 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1631 		count_dirty_tx ++;
1632 
1633 	if (index_cur_tx == index_dirty_tx) {
1634 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1635 		sis_priv->tx_full = 1;
1636 		netif_stop_queue(net_dev);
1637 	} else if (count_dirty_tx < NUM_TX_DESC) {
1638 		/* Typical path, tell upper layer that more transmission is possible */
1639 		netif_start_queue(net_dev);
1640 	} else {
1641 		/* buffer full, tell upper layer no more transmission */
1642 		sis_priv->tx_full = 1;
1643 		netif_stop_queue(net_dev);
1644 	}
1645 
1646 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1647 
1648 	if (netif_msg_tx_queued(sis_priv))
1649 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1650 		       "to slot %d.\n",
1651 		       net_dev->name, skb->data, (int)skb->len, entry);
1652 
1653 	return NETDEV_TX_OK;
1654 }
1655 
1656 /**
1657  *	sis900_interrupt - sis900 interrupt handler
1658  *	@irq: the irq number
1659  *	@dev_instance: the client data object
1660  *
1661  *	The interrupt handler does all of the Rx thread work,
1662  *	and cleans up after the Tx thread
1663  */
1664 
1665 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1666 {
1667 	struct net_device *net_dev = dev_instance;
1668 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1669 	int boguscnt = max_interrupt_work;
1670 	void __iomem *ioaddr = sis_priv->ioaddr;
1671 	u32 status;
1672 	unsigned int handled = 0;
1673 
1674 	spin_lock (&sis_priv->lock);
1675 
1676 	do {
1677 		status = sr32(isr);
1678 
1679 		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1680 			/* nothing intresting happened */
1681 			break;
1682 		handled = 1;
1683 
1684 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1685 		if (status & (RxORN | RxERR | RxOK))
1686 			/* Rx interrupt */
1687 			sis900_rx(net_dev);
1688 
1689 		if (status & (TxURN | TxERR | TxIDLE))
1690 			/* Tx interrupt */
1691 			sis900_finish_xmit(net_dev);
1692 
1693 		/* something strange happened !!! */
1694 		if (status & HIBERR) {
1695 			if(netif_msg_intr(sis_priv))
1696 				printk(KERN_INFO "%s: Abnormal interrupt, "
1697 					"status %#8.8x.\n", net_dev->name, status);
1698 			break;
1699 		}
1700 		if (--boguscnt < 0) {
1701 			if(netif_msg_intr(sis_priv))
1702 				printk(KERN_INFO "%s: Too much work at interrupt, "
1703 					"interrupt status = %#8.8x.\n",
1704 					net_dev->name, status);
1705 			break;
1706 		}
1707 	} while (1);
1708 
1709 	if(netif_msg_intr(sis_priv))
1710 		printk(KERN_DEBUG "%s: exiting interrupt, "
1711 		       "interrupt status = %#8.8x\n",
1712 		       net_dev->name, sr32(isr));
1713 
1714 	spin_unlock (&sis_priv->lock);
1715 	return IRQ_RETVAL(handled);
1716 }
1717 
1718 /**
1719  *	sis900_rx - sis900 receive routine
1720  *	@net_dev: the net device which receives data
1721  *
1722  *	Process receive interrupt events,
1723  *	put buffer to higher layer and refill buffer pool
1724  *	Note: This function is called by interrupt handler,
1725  *	don't do "too much" work here
1726  */
1727 
1728 static int sis900_rx(struct net_device *net_dev)
1729 {
1730 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1731 	void __iomem *ioaddr = sis_priv->ioaddr;
1732 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1733 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1734 	int rx_work_limit;
1735 
1736 	if (netif_msg_rx_status(sis_priv))
1737 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1738 		       "status:0x%8.8x\n",
1739 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1740 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1741 
1742 	while (rx_status & OWN) {
1743 		unsigned int rx_size;
1744 		unsigned int data_size;
1745 
1746 		if (--rx_work_limit < 0)
1747 			break;
1748 
1749 		data_size = rx_status & DSIZE;
1750 		rx_size = data_size - CRC_SIZE;
1751 
1752 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1753 		/* ``TOOLONG'' flag means jumbo packet received. */
1754 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1755 			rx_status &= (~ ((unsigned int)TOOLONG));
1756 #endif
1757 
1758 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1759 			/* corrupted packet received */
1760 			if (netif_msg_rx_err(sis_priv))
1761 				printk(KERN_DEBUG "%s: Corrupted packet "
1762 				       "received, buffer status = 0x%8.8x/%d.\n",
1763 				       net_dev->name, rx_status, data_size);
1764 			net_dev->stats.rx_errors++;
1765 			if (rx_status & OVERRUN)
1766 				net_dev->stats.rx_over_errors++;
1767 			if (rx_status & (TOOLONG|RUNT))
1768 				net_dev->stats.rx_length_errors++;
1769 			if (rx_status & (RXISERR | FAERR))
1770 				net_dev->stats.rx_frame_errors++;
1771 			if (rx_status & CRCERR)
1772 				net_dev->stats.rx_crc_errors++;
1773 			/* reset buffer descriptor state */
1774 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1775 		} else {
1776 			struct sk_buff * skb;
1777 			struct sk_buff * rx_skb;
1778 
1779 			pci_unmap_single(sis_priv->pci_dev,
1780 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1781 				PCI_DMA_FROMDEVICE);
1782 
1783 			/* refill the Rx buffer, what if there is not enough
1784 			 * memory for new socket buffer ?? */
1785 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1786 				/*
1787 				 * Not enough memory to refill the buffer
1788 				 * so we need to recycle the old one so
1789 				 * as to avoid creating a memory hole
1790 				 * in the rx ring
1791 				 */
1792 				skb = sis_priv->rx_skbuff[entry];
1793 				net_dev->stats.rx_dropped++;
1794 				goto refill_rx_ring;
1795 			}
1796 
1797 			/* This situation should never happen, but due to
1798 			   some unknown bugs, it is possible that
1799 			   we are working on NULL sk_buff :-( */
1800 			if (sis_priv->rx_skbuff[entry] == NULL) {
1801 				if (netif_msg_rx_err(sis_priv))
1802 					printk(KERN_WARNING "%s: NULL pointer "
1803 					      "encountered in Rx ring\n"
1804 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1805 					      net_dev->name, sis_priv->cur_rx,
1806 					      sis_priv->dirty_rx);
1807 				dev_kfree_skb(skb);
1808 				break;
1809 			}
1810 
1811 			/* give the socket buffer to upper layers */
1812 			rx_skb = sis_priv->rx_skbuff[entry];
1813 			skb_put(rx_skb, rx_size);
1814 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1815 			netif_rx(rx_skb);
1816 
1817 			/* some network statistics */
1818 			if ((rx_status & BCAST) == MCAST)
1819 				net_dev->stats.multicast++;
1820 			net_dev->stats.rx_bytes += rx_size;
1821 			net_dev->stats.rx_packets++;
1822 			sis_priv->dirty_rx++;
1823 refill_rx_ring:
1824 			sis_priv->rx_skbuff[entry] = skb;
1825 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1826 			sis_priv->rx_ring[entry].bufptr =
1827 				pci_map_single(sis_priv->pci_dev, skb->data,
1828 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1829 			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1830 				sis_priv->rx_ring[entry].bufptr))) {
1831 				dev_kfree_skb_irq(skb);
1832 				sis_priv->rx_skbuff[entry] = NULL;
1833 				break;
1834 			}
1835 		}
1836 		sis_priv->cur_rx++;
1837 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1838 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1839 	} // while
1840 
1841 	/* refill the Rx buffer, what if the rate of refilling is slower
1842 	 * than consuming ?? */
1843 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1844 		struct sk_buff *skb;
1845 
1846 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1847 
1848 		if (sis_priv->rx_skbuff[entry] == NULL) {
1849 			skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1850 			if (skb == NULL) {
1851 				/* not enough memory for skbuff, this makes a
1852 				 * "hole" on the buffer ring, it is not clear
1853 				 * how the hardware will react to this kind
1854 				 * of degenerated buffer */
1855 				net_dev->stats.rx_dropped++;
1856 				break;
1857 			}
1858 			sis_priv->rx_skbuff[entry] = skb;
1859 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1860 			sis_priv->rx_ring[entry].bufptr =
1861 				pci_map_single(sis_priv->pci_dev, skb->data,
1862 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1863 			if (unlikely(pci_dma_mapping_error(sis_priv->pci_dev,
1864 					sis_priv->rx_ring[entry].bufptr))) {
1865 				dev_kfree_skb_irq(skb);
1866 				sis_priv->rx_skbuff[entry] = NULL;
1867 				break;
1868 			}
1869 		}
1870 	}
1871 	/* re-enable the potentially idle receive state matchine */
1872 	sw32(cr , RxENA | sr32(cr));
1873 
1874 	return 0;
1875 }
1876 
1877 /**
1878  *	sis900_finish_xmit - finish up transmission of packets
1879  *	@net_dev: the net device to be transmitted on
1880  *
1881  *	Check for error condition and free socket buffer etc
1882  *	schedule for more transmission as needed
1883  *	Note: This function is called by interrupt handler,
1884  *	don't do "too much" work here
1885  */
1886 
1887 static void sis900_finish_xmit (struct net_device *net_dev)
1888 {
1889 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1890 
1891 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1892 		struct sk_buff *skb;
1893 		unsigned int entry;
1894 		u32 tx_status;
1895 
1896 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1897 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1898 
1899 		if (tx_status & OWN) {
1900 			/* The packet is not transmitted yet (owned by hardware) !
1901 			 * Note: the interrupt is generated only when Tx Machine
1902 			 * is idle, so this is an almost impossible case */
1903 			break;
1904 		}
1905 
1906 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1907 			/* packet unsuccessfully transmitted */
1908 			if (netif_msg_tx_err(sis_priv))
1909 				printk(KERN_DEBUG "%s: Transmit "
1910 				       "error, Tx status %8.8x.\n",
1911 				       net_dev->name, tx_status);
1912 			net_dev->stats.tx_errors++;
1913 			if (tx_status & UNDERRUN)
1914 				net_dev->stats.tx_fifo_errors++;
1915 			if (tx_status & ABORT)
1916 				net_dev->stats.tx_aborted_errors++;
1917 			if (tx_status & NOCARRIER)
1918 				net_dev->stats.tx_carrier_errors++;
1919 			if (tx_status & OWCOLL)
1920 				net_dev->stats.tx_window_errors++;
1921 		} else {
1922 			/* packet successfully transmitted */
1923 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1924 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1925 			net_dev->stats.tx_packets++;
1926 		}
1927 		/* Free the original skb. */
1928 		skb = sis_priv->tx_skbuff[entry];
1929 		pci_unmap_single(sis_priv->pci_dev,
1930 			sis_priv->tx_ring[entry].bufptr, skb->len,
1931 			PCI_DMA_TODEVICE);
1932 		dev_kfree_skb_irq(skb);
1933 		sis_priv->tx_skbuff[entry] = NULL;
1934 		sis_priv->tx_ring[entry].bufptr = 0;
1935 		sis_priv->tx_ring[entry].cmdsts = 0;
1936 	}
1937 
1938 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1939 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1940 		/* The ring is no longer full, clear tx_full and schedule
1941 		 * more transmission by netif_wake_queue(net_dev) */
1942 		sis_priv->tx_full = 0;
1943 		netif_wake_queue (net_dev);
1944 	}
1945 }
1946 
1947 /**
1948  *	sis900_close - close sis900 device
1949  *	@net_dev: the net device to be closed
1950  *
1951  *	Disable interrupts, stop the Tx and Rx Status Machine
1952  *	free Tx and RX socket buffer
1953  */
1954 
1955 static int sis900_close(struct net_device *net_dev)
1956 {
1957 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1958 	struct pci_dev *pdev = sis_priv->pci_dev;
1959 	void __iomem *ioaddr = sis_priv->ioaddr;
1960 	struct sk_buff *skb;
1961 	int i;
1962 
1963 	netif_stop_queue(net_dev);
1964 
1965 	/* Disable interrupts by clearing the interrupt mask. */
1966 	sw32(imr, 0x0000);
1967 	sw32(ier, 0x0000);
1968 
1969 	/* Stop the chip's Tx and Rx Status Machine */
1970 	sw32(cr, RxDIS | TxDIS | sr32(cr));
1971 
1972 	del_timer(&sis_priv->timer);
1973 
1974 	free_irq(pdev->irq, net_dev);
1975 
1976 	/* Free Tx and RX skbuff */
1977 	for (i = 0; i < NUM_RX_DESC; i++) {
1978 		skb = sis_priv->rx_skbuff[i];
1979 		if (skb) {
1980 			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1981 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1982 			dev_kfree_skb(skb);
1983 			sis_priv->rx_skbuff[i] = NULL;
1984 		}
1985 	}
1986 	for (i = 0; i < NUM_TX_DESC; i++) {
1987 		skb = sis_priv->tx_skbuff[i];
1988 		if (skb) {
1989 			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1990 					 skb->len, PCI_DMA_TODEVICE);
1991 			dev_kfree_skb(skb);
1992 			sis_priv->tx_skbuff[i] = NULL;
1993 		}
1994 	}
1995 
1996 	/* Green! Put the chip in low-power mode. */
1997 
1998 	return 0;
1999 }
2000 
2001 /**
2002  *	sis900_get_drvinfo - Return information about driver
2003  *	@net_dev: the net device to probe
2004  *	@info: container for info returned
2005  *
2006  *	Process ethtool command such as "ehtool -i" to show information
2007  */
2008 
2009 static void sis900_get_drvinfo(struct net_device *net_dev,
2010 			       struct ethtool_drvinfo *info)
2011 {
2012 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2013 
2014 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2015 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2016 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2017 		sizeof(info->bus_info));
2018 }
2019 
2020 static u32 sis900_get_msglevel(struct net_device *net_dev)
2021 {
2022 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2023 	return sis_priv->msg_enable;
2024 }
2025 
2026 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2027 {
2028 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2029 	sis_priv->msg_enable = value;
2030 }
2031 
2032 static u32 sis900_get_link(struct net_device *net_dev)
2033 {
2034 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2035 	return mii_link_ok(&sis_priv->mii_info);
2036 }
2037 
2038 static int sis900_get_settings(struct net_device *net_dev,
2039 				struct ethtool_cmd *cmd)
2040 {
2041 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2042 	spin_lock_irq(&sis_priv->lock);
2043 	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2044 	spin_unlock_irq(&sis_priv->lock);
2045 	return 0;
2046 }
2047 
2048 static int sis900_set_settings(struct net_device *net_dev,
2049 				struct ethtool_cmd *cmd)
2050 {
2051 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2052 	int rt;
2053 	spin_lock_irq(&sis_priv->lock);
2054 	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2055 	spin_unlock_irq(&sis_priv->lock);
2056 	return rt;
2057 }
2058 
2059 static int sis900_nway_reset(struct net_device *net_dev)
2060 {
2061 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2062 	return mii_nway_restart(&sis_priv->mii_info);
2063 }
2064 
2065 /**
2066  *	sis900_set_wol - Set up Wake on Lan registers
2067  *	@net_dev: the net device to probe
2068  *	@wol: container for info passed to the driver
2069  *
2070  *	Process ethtool command "wol" to setup wake on lan features.
2071  *	SiS900 supports sending WoL events if a correct packet is received,
2072  *	but there is no simple way to filter them to only a subset (broadcast,
2073  *	multicast, unicast or arp).
2074  */
2075 
2076 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2077 {
2078 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2079 	void __iomem *ioaddr = sis_priv->ioaddr;
2080 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2081 
2082 	if (wol->wolopts == 0) {
2083 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2084 		cfgpmcsr &= ~PME_EN;
2085 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2086 		sw32(pmctrl, pmctrl_bits);
2087 		if (netif_msg_wol(sis_priv))
2088 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2089 		return 0;
2090 	}
2091 
2092 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2093 				| WAKE_BCAST | WAKE_ARP))
2094 		return -EINVAL;
2095 
2096 	if (wol->wolopts & WAKE_MAGIC)
2097 		pmctrl_bits |= MAGICPKT;
2098 	if (wol->wolopts & WAKE_PHY)
2099 		pmctrl_bits |= LINKON;
2100 
2101 	sw32(pmctrl, pmctrl_bits);
2102 
2103 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2104 	cfgpmcsr |= PME_EN;
2105 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2106 	if (netif_msg_wol(sis_priv))
2107 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2108 
2109 	return 0;
2110 }
2111 
2112 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2113 {
2114 	struct sis900_private *sp = netdev_priv(net_dev);
2115 	void __iomem *ioaddr = sp->ioaddr;
2116 	u32 pmctrl_bits;
2117 
2118 	pmctrl_bits = sr32(pmctrl);
2119 	if (pmctrl_bits & MAGICPKT)
2120 		wol->wolopts |= WAKE_MAGIC;
2121 	if (pmctrl_bits & LINKON)
2122 		wol->wolopts |= WAKE_PHY;
2123 
2124 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2125 }
2126 
2127 static const struct ethtool_ops sis900_ethtool_ops = {
2128 	.get_drvinfo 	= sis900_get_drvinfo,
2129 	.get_msglevel	= sis900_get_msglevel,
2130 	.set_msglevel	= sis900_set_msglevel,
2131 	.get_link	= sis900_get_link,
2132 	.get_settings	= sis900_get_settings,
2133 	.set_settings	= sis900_set_settings,
2134 	.nway_reset	= sis900_nway_reset,
2135 	.get_wol	= sis900_get_wol,
2136 	.set_wol	= sis900_set_wol
2137 };
2138 
2139 /**
2140  *	mii_ioctl - process MII i/o control command
2141  *	@net_dev: the net device to command for
2142  *	@rq: parameter for command
2143  *	@cmd: the i/o command
2144  *
2145  *	Process MII command like read/write MII register
2146  */
2147 
2148 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2149 {
2150 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2151 	struct mii_ioctl_data *data = if_mii(rq);
2152 
2153 	switch(cmd) {
2154 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2155 		data->phy_id = sis_priv->mii->phy_addr;
2156 		/* Fall Through */
2157 
2158 	case SIOCGMIIREG:		/* Read MII PHY register. */
2159 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2160 		return 0;
2161 
2162 	case SIOCSMIIREG:		/* Write MII PHY register. */
2163 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2164 		return 0;
2165 	default:
2166 		return -EOPNOTSUPP;
2167 	}
2168 }
2169 
2170 /**
2171  *	sis900_set_config - Set media type by net_device.set_config
2172  *	@dev: the net device for media type change
2173  *	@map: ifmap passed by ifconfig
2174  *
2175  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2176  *	we support only port changes. All other runtime configuration
2177  *	changes will be ignored
2178  */
2179 
2180 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2181 {
2182 	struct sis900_private *sis_priv = netdev_priv(dev);
2183 	struct mii_phy *mii_phy = sis_priv->mii;
2184 
2185 	u16 status;
2186 
2187 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2188 		/* we switch on the ifmap->port field. I couldn't find anything
2189 		 * like a definition or standard for the values of that field.
2190 		 * I think the meaning of those values is device specific. But
2191 		 * since I would like to change the media type via the ifconfig
2192 		 * command I use the definition from linux/netdevice.h
2193 		 * (which seems to be different from the ifport(pcmcia) definition) */
2194 		switch(map->port){
2195 		case IF_PORT_UNKNOWN: /* use auto here */
2196 			dev->if_port = map->port;
2197 			/* we are going to change the media type, so the Link
2198 			 * will be temporary down and we need to reflect that
2199 			 * here. When the Link comes up again, it will be
2200 			 * sensed by the sis_timer procedure, which also does
2201 			 * all the rest for us */
2202 			netif_carrier_off(dev);
2203 
2204 			/* read current state */
2205 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2206 
2207 			/* enable auto negotiation and reset the negotioation
2208 			 * (I don't really know what the auto negatiotiation
2209 			 * reset really means, but it sounds for me right to
2210 			 * do one here) */
2211 			mdio_write(dev, mii_phy->phy_addr,
2212 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2213 
2214 			break;
2215 
2216 		case IF_PORT_10BASET: /* 10BaseT */
2217 			dev->if_port = map->port;
2218 
2219 			/* we are going to change the media type, so the Link
2220 			 * will be temporary down and we need to reflect that
2221 			 * here. When the Link comes up again, it will be
2222 			 * sensed by the sis_timer procedure, which also does
2223 			 * all the rest for us */
2224 			netif_carrier_off(dev);
2225 
2226 			/* set Speed to 10Mbps */
2227 			/* read current state */
2228 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2229 
2230 			/* disable auto negotiation and force 10MBit mode*/
2231 			mdio_write(dev, mii_phy->phy_addr,
2232 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2233 					MII_CNTL_AUTO));
2234 			break;
2235 
2236 		case IF_PORT_100BASET: /* 100BaseT */
2237 		case IF_PORT_100BASETX: /* 100BaseTx */
2238 			dev->if_port = map->port;
2239 
2240 			/* we are going to change the media type, so the Link
2241 			 * will be temporary down and we need to reflect that
2242 			 * here. When the Link comes up again, it will be
2243 			 * sensed by the sis_timer procedure, which also does
2244 			 * all the rest for us */
2245 			netif_carrier_off(dev);
2246 
2247 			/* set Speed to 100Mbps */
2248 			/* disable auto negotiation and enable 100MBit Mode */
2249 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2250 			mdio_write(dev, mii_phy->phy_addr,
2251 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2252 				   MII_CNTL_SPEED);
2253 
2254 			break;
2255 
2256 		case IF_PORT_10BASE2: /* 10Base2 */
2257 		case IF_PORT_AUI: /* AUI */
2258 		case IF_PORT_100BASEFX: /* 100BaseFx */
2259                 	/* These Modes are not supported (are they?)*/
2260 			return -EOPNOTSUPP;
2261 
2262 		default:
2263 			return -EINVAL;
2264 		}
2265 	}
2266 	return 0;
2267 }
2268 
2269 /**
2270  *	sis900_mcast_bitnr - compute hashtable index
2271  *	@addr: multicast address
2272  *	@revision: revision id of chip
2273  *
2274  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2275  *	hash table, which makes this function a little bit different from other drivers
2276  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2277  *   	multicast hash table.
2278  */
2279 
2280 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2281 {
2282 
2283 	u32 crc = ether_crc(6, addr);
2284 
2285 	/* leave 8 or 7 most siginifant bits */
2286 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2287 		return (int)(crc >> 24);
2288 	else
2289 		return (int)(crc >> 25);
2290 }
2291 
2292 /**
2293  *	set_rx_mode - Set SiS900 receive mode
2294  *	@net_dev: the net device to be set
2295  *
2296  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2297  *	And set the appropriate multicast filter.
2298  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2299  */
2300 
2301 static void set_rx_mode(struct net_device *net_dev)
2302 {
2303 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2304 	void __iomem *ioaddr = sis_priv->ioaddr;
2305 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2306 	int i, table_entries;
2307 	u32 rx_mode;
2308 
2309 	/* 635 Hash Table entries = 256(2^16) */
2310 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2311 			(sis_priv->chipset_rev == SIS900B_900_REV))
2312 		table_entries = 16;
2313 	else
2314 		table_entries = 8;
2315 
2316 	if (net_dev->flags & IFF_PROMISC) {
2317 		/* Accept any kinds of packets */
2318 		rx_mode = RFPromiscuous;
2319 		for (i = 0; i < table_entries; i++)
2320 			mc_filter[i] = 0xffff;
2321 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2322 		   (net_dev->flags & IFF_ALLMULTI)) {
2323 		/* too many multicast addresses or accept all multicast packet */
2324 		rx_mode = RFAAB | RFAAM;
2325 		for (i = 0; i < table_entries; i++)
2326 			mc_filter[i] = 0xffff;
2327 	} else {
2328 		/* Accept Broadcast packet, destination address matchs our
2329 		 * MAC address, use Receive Filter to reject unwanted MCAST
2330 		 * packets */
2331 		struct netdev_hw_addr *ha;
2332 		rx_mode = RFAAB;
2333 
2334 		netdev_for_each_mc_addr(ha, net_dev) {
2335 			unsigned int bit_nr;
2336 
2337 			bit_nr = sis900_mcast_bitnr(ha->addr,
2338 						    sis_priv->chipset_rev);
2339 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2340 		}
2341 	}
2342 
2343 	/* update Multicast Hash Table in Receive Filter */
2344 	for (i = 0; i < table_entries; i++) {
2345                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2346 		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2347 		sw32(rfdr, mc_filter[i]);
2348 	}
2349 
2350 	sw32(rfcr, RFEN | rx_mode);
2351 
2352 	/* sis900 is capable of looping back packets at MAC level for
2353 	 * debugging purpose */
2354 	if (net_dev->flags & IFF_LOOPBACK) {
2355 		u32 cr_saved;
2356 		/* We must disable Tx/Rx before setting loopback mode */
2357 		cr_saved = sr32(cr);
2358 		sw32(cr, cr_saved | TxDIS | RxDIS);
2359 		/* enable loopback */
2360 		sw32(txcfg, sr32(txcfg) | TxMLB);
2361 		sw32(rxcfg, sr32(rxcfg) | RxATX);
2362 		/* restore cr */
2363 		sw32(cr, cr_saved);
2364 	}
2365 }
2366 
2367 /**
2368  *	sis900_reset - Reset sis900 MAC
2369  *	@net_dev: the net device to reset
2370  *
2371  *	reset sis900 MAC and wait until finished
2372  *	reset through command register
2373  *	change backoff algorithm for 900B0 & 635 M/B
2374  */
2375 
2376 static void sis900_reset(struct net_device *net_dev)
2377 {
2378 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2379 	void __iomem *ioaddr = sis_priv->ioaddr;
2380 	u32 status = TxRCMP | RxRCMP;
2381 	int i;
2382 
2383 	sw32(ier, 0);
2384 	sw32(imr, 0);
2385 	sw32(rfcr, 0);
2386 
2387 	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2388 
2389 	/* Check that the chip has finished the reset. */
2390 	for (i = 0; status && (i < 1000); i++)
2391 		status ^= sr32(isr) & status;
2392 
2393 	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2394 	    sis_priv->chipset_rev == SIS900B_900_REV)
2395 		sw32(cfg, PESEL | RND_CNT);
2396 	else
2397 		sw32(cfg, PESEL);
2398 }
2399 
2400 /**
2401  *	sis900_remove - Remove sis900 device
2402  *	@pci_dev: the pci device to be removed
2403  *
2404  *	remove and release SiS900 net device
2405  */
2406 
2407 static void sis900_remove(struct pci_dev *pci_dev)
2408 {
2409 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2410 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2411 
2412 	unregister_netdev(net_dev);
2413 
2414 	while (sis_priv->first_mii) {
2415 		struct mii_phy *phy = sis_priv->first_mii;
2416 
2417 		sis_priv->first_mii = phy->next;
2418 		kfree(phy);
2419 	}
2420 
2421 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2422 		sis_priv->rx_ring_dma);
2423 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2424 		sis_priv->tx_ring_dma);
2425 	pci_iounmap(pci_dev, sis_priv->ioaddr);
2426 	free_netdev(net_dev);
2427 	pci_release_regions(pci_dev);
2428 }
2429 
2430 #ifdef CONFIG_PM
2431 
2432 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2433 {
2434 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2435 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2436 	void __iomem *ioaddr = sis_priv->ioaddr;
2437 
2438 	if(!netif_running(net_dev))
2439 		return 0;
2440 
2441 	netif_stop_queue(net_dev);
2442 	netif_device_detach(net_dev);
2443 
2444 	/* Stop the chip's Tx and Rx Status Machine */
2445 	sw32(cr, RxDIS | TxDIS | sr32(cr));
2446 
2447 	pci_set_power_state(pci_dev, PCI_D3hot);
2448 	pci_save_state(pci_dev);
2449 
2450 	return 0;
2451 }
2452 
2453 static int sis900_resume(struct pci_dev *pci_dev)
2454 {
2455 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2456 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2457 	void __iomem *ioaddr = sis_priv->ioaddr;
2458 
2459 	if(!netif_running(net_dev))
2460 		return 0;
2461 	pci_restore_state(pci_dev);
2462 	pci_set_power_state(pci_dev, PCI_D0);
2463 
2464 	sis900_init_rxfilter(net_dev);
2465 
2466 	sis900_init_tx_ring(net_dev);
2467 	sis900_init_rx_ring(net_dev);
2468 
2469 	set_rx_mode(net_dev);
2470 
2471 	netif_device_attach(net_dev);
2472 	netif_start_queue(net_dev);
2473 
2474 	/* Workaround for EDB */
2475 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2476 
2477 	/* Enable all known interrupts by setting the interrupt mask. */
2478 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2479 	sw32(cr, RxENA | sr32(cr));
2480 	sw32(ier, IE);
2481 
2482 	sis900_check_mode(net_dev, sis_priv->mii);
2483 
2484 	return 0;
2485 }
2486 #endif /* CONFIG_PM */
2487 
2488 static struct pci_driver sis900_pci_driver = {
2489 	.name		= SIS900_MODULE_NAME,
2490 	.id_table	= sis900_pci_tbl,
2491 	.probe		= sis900_probe,
2492 	.remove		= sis900_remove,
2493 #ifdef CONFIG_PM
2494 	.suspend	= sis900_suspend,
2495 	.resume		= sis900_resume,
2496 #endif /* CONFIG_PM */
2497 };
2498 
2499 static int __init sis900_init_module(void)
2500 {
2501 /* when a module, this is printed whether or not devices are found in probe */
2502 #ifdef MODULE
2503 	printk(version);
2504 #endif
2505 
2506 	return pci_register_driver(&sis900_pci_driver);
2507 }
2508 
2509 static void __exit sis900_cleanup_module(void)
2510 {
2511 	pci_unregister_driver(&sis900_pci_driver);
2512 }
2513 
2514 module_init(sis900_init_module);
2515 module_exit(sis900_cleanup_module);
2516 
2517