xref: /openbmc/linux/drivers/net/ethernet/sis/sis900.c (revision 05bcf503)
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73 
74 #include <asm/processor.h>      /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h>	/* User space memory access functions */
78 
79 #include "sis900.h"
80 
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 
84 static const char version[] __devinitconst =
85 	KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89 
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 
92 #define SIS900_DEF_MSG \
93 	(NETIF_MSG_DRV		| \
94 	 NETIF_MSG_LINK		| \
95 	 NETIF_MSG_RX_ERR	| \
96 	 NETIF_MSG_TX_ERR)
97 
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT  (4*HZ)
100 
101 enum {
102 	SIS_900 = 0,
103 	SIS_7016
104 };
105 static const char * card_names[] = {
106 	"SiS 900 PCI Fast Ethernet",
107 	"SiS 7016 PCI Fast Ethernet"
108 };
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 	{0,}
115 };
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
117 
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
119 
120 static const struct mii_chip_info {
121 	const char * name;
122 	u16 phy_id0;
123 	u16 phy_id1;
124 	u8  phy_types;
125 #define	HOME 	0x0001
126 #define LAN	0x0002
127 #define MIX	0x0003
128 #define UNKNOWN	0x0
129 } mii_chip_table[] = {
130 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
131 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
132 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
133 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
134 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
135 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
136 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
137 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
138 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
139 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
140 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
141 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
142 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
143 	{NULL,},
144 };
145 
146 struct mii_phy {
147 	struct mii_phy * next;
148 	int phy_addr;
149 	u16 phy_id0;
150 	u16 phy_id1;
151 	u16 status;
152 	u8  phy_types;
153 };
154 
155 typedef struct _BufferDesc {
156 	u32 link;
157 	u32 cmdsts;
158 	u32 bufptr;
159 } BufferDesc;
160 
161 struct sis900_private {
162 	struct pci_dev * pci_dev;
163 
164 	spinlock_t lock;
165 
166 	struct mii_phy * mii;
167 	struct mii_phy * first_mii; /* record the first mii structure */
168 	unsigned int cur_phy;
169 	struct mii_if_info mii_info;
170 
171 	void __iomem	*ioaddr;
172 
173 	struct timer_list timer; /* Link status detection timer. */
174 	u8 autong_complete; /* 1: auto-negotiate complete  */
175 
176 	u32 msg_enable;
177 
178 	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
179 	unsigned int cur_tx, dirty_tx;
180 
181 	/* The saved address of a sent/receive-in-place packet buffer */
182 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
183 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
184 	BufferDesc *tx_ring;
185 	BufferDesc *rx_ring;
186 
187 	dma_addr_t tx_ring_dma;
188 	dma_addr_t rx_ring_dma;
189 
190 	unsigned int tx_full; /* The Tx queue is full. */
191 	u8 host_bridge_rev;
192 	u8 chipset_rev;
193 };
194 
195 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
196 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
197 MODULE_LICENSE("GPL");
198 
199 module_param(multicast_filter_limit, int, 0444);
200 module_param(max_interrupt_work, int, 0444);
201 module_param(sis900_debug, int, 0444);
202 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
203 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
204 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
205 
206 #define sw32(reg, val)	iowrite32(val, ioaddr + (reg))
207 #define sw8(reg, val)	iowrite8(val, ioaddr + (reg))
208 #define sr32(reg)	ioread32(ioaddr + (reg))
209 #define sr16(reg)	ioread16(ioaddr + (reg))
210 
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 static void sis900_poll(struct net_device *dev);
213 #endif
214 static int sis900_open(struct net_device *net_dev);
215 static int sis900_mii_probe (struct net_device * net_dev);
216 static void sis900_init_rxfilter (struct net_device * net_dev);
217 static u16 read_eeprom(void __iomem *ioaddr, int location);
218 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
219 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
220 static void sis900_timer(unsigned long data);
221 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
222 static void sis900_tx_timeout(struct net_device *net_dev);
223 static void sis900_init_tx_ring(struct net_device *net_dev);
224 static void sis900_init_rx_ring(struct net_device *net_dev);
225 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
226 				     struct net_device *net_dev);
227 static int sis900_rx(struct net_device *net_dev);
228 static void sis900_finish_xmit (struct net_device *net_dev);
229 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
230 static int sis900_close(struct net_device *net_dev);
231 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
232 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
233 static void set_rx_mode(struct net_device *net_dev);
234 static void sis900_reset(struct net_device *net_dev);
235 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
236 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
237 static u16 sis900_default_phy(struct net_device * net_dev);
238 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
239 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
240 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
241 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
242 static const struct ethtool_ops sis900_ethtool_ops;
243 
244 /**
245  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
246  *	@pci_dev: the sis900 pci device
247  *	@net_dev: the net device to get address for
248  *
249  *	Older SiS900 and friends, use EEPROM to store MAC address.
250  *	MAC address is read from read_eeprom() into @net_dev->dev_addr and
251  *	@net_dev->perm_addr.
252  */
253 
254 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
255 {
256 	struct sis900_private *sis_priv = netdev_priv(net_dev);
257 	void __iomem *ioaddr = sis_priv->ioaddr;
258 	u16 signature;
259 	int i;
260 
261 	/* check to see if we have sane EEPROM */
262 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
263 	if (signature == 0xffff || signature == 0x0000) {
264 		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
265 			pci_name(pci_dev), signature);
266 		return 0;
267 	}
268 
269 	/* get MAC address from EEPROM */
270 	for (i = 0; i < 3; i++)
271 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
272 
273 	/* Store MAC Address in perm_addr */
274 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
275 
276 	return 1;
277 }
278 
279 /**
280  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
281  *	@pci_dev: the sis900 pci device
282  *	@net_dev: the net device to get address for
283  *
284  *	SiS630E model, use APC CMOS RAM to store MAC address.
285  *	APC CMOS RAM is accessed through ISA bridge.
286  *	MAC address is read into @net_dev->dev_addr and
287  *	@net_dev->perm_addr.
288  */
289 
290 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
291 					struct net_device *net_dev)
292 {
293 	struct pci_dev *isa_bridge = NULL;
294 	u8 reg;
295 	int i;
296 
297 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
298 	if (!isa_bridge)
299 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
300 	if (!isa_bridge) {
301 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
302 		       pci_name(pci_dev));
303 		return 0;
304 	}
305 	pci_read_config_byte(isa_bridge, 0x48, &reg);
306 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
307 
308 	for (i = 0; i < 6; i++) {
309 		outb(0x09 + i, 0x70);
310 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
311 	}
312 
313 	/* Store MAC Address in perm_addr */
314 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
315 
316 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
317 	pci_dev_put(isa_bridge);
318 
319 	return 1;
320 }
321 
322 
323 /**
324  *	sis635_get_mac_addr - Get MAC address for SIS635 model
325  *	@pci_dev: the sis900 pci device
326  *	@net_dev: the net device to get address for
327  *
328  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
329  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
330  *	@net_dev->dev_addr and @net_dev->perm_addr.
331  */
332 
333 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
334 					struct net_device *net_dev)
335 {
336 	struct sis900_private *sis_priv = netdev_priv(net_dev);
337 	void __iomem *ioaddr = sis_priv->ioaddr;
338 	u32 rfcrSave;
339 	u32 i;
340 
341 	rfcrSave = sr32(rfcr);
342 
343 	sw32(cr, rfcrSave | RELOAD);
344 	sw32(cr, 0);
345 
346 	/* disable packet filtering before setting filter */
347 	sw32(rfcr, rfcrSave & ~RFEN);
348 
349 	/* load MAC addr to filter data register */
350 	for (i = 0 ; i < 3 ; i++) {
351 		sw32(rfcr, (i << RFADDR_shift));
352 		*( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
353 	}
354 
355 	/* Store MAC Address in perm_addr */
356 	memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
357 
358 	/* enable packet filtering */
359 	sw32(rfcr, rfcrSave | RFEN);
360 
361 	return 1;
362 }
363 
364 /**
365  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
366  *	@pci_dev: the sis900 pci device
367  *	@net_dev: the net device to get address for
368  *
369  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
370  *	is shared by
371  *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
372  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
373  *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
374  *	EEDONE signal to refuse EEPROM access by LAN.
375  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
376  *	The signature field in SiS962 or SiS963 spec is meaningless.
377  *	MAC address is read into @net_dev->dev_addr and @net_dev->perm_addr.
378  */
379 
380 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
381 					struct net_device *net_dev)
382 {
383 	struct sis900_private *sis_priv = netdev_priv(net_dev);
384 	void __iomem *ioaddr = sis_priv->ioaddr;
385 	int wait, rc = 0;
386 
387 	sw32(mear, EEREQ);
388 	for (wait = 0; wait < 2000; wait++) {
389 		if (sr32(mear) & EEGNT) {
390 			u16 *mac = (u16 *)net_dev->dev_addr;
391 			int i;
392 
393 			/* get MAC address from EEPROM */
394 			for (i = 0; i < 3; i++)
395 			        mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
396 
397 			/* Store MAC Address in perm_addr */
398 			memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
399 
400 			rc = 1;
401 			break;
402 		}
403 		udelay(1);
404 	}
405 	sw32(mear, EEDONE);
406 	return rc;
407 }
408 
409 static const struct net_device_ops sis900_netdev_ops = {
410 	.ndo_open		 = sis900_open,
411 	.ndo_stop		= sis900_close,
412 	.ndo_start_xmit		= sis900_start_xmit,
413 	.ndo_set_config		= sis900_set_config,
414 	.ndo_set_rx_mode	= set_rx_mode,
415 	.ndo_change_mtu		= eth_change_mtu,
416 	.ndo_validate_addr	= eth_validate_addr,
417 	.ndo_set_mac_address 	= eth_mac_addr,
418 	.ndo_do_ioctl		= mii_ioctl,
419 	.ndo_tx_timeout		= sis900_tx_timeout,
420 #ifdef CONFIG_NET_POLL_CONTROLLER
421         .ndo_poll_controller	= sis900_poll,
422 #endif
423 };
424 
425 /**
426  *	sis900_probe - Probe for sis900 device
427  *	@pci_dev: the sis900 pci device
428  *	@pci_id: the pci device ID
429  *
430  *	Check and probe sis900 net device for @pci_dev.
431  *	Get mac address according to the chip revision,
432  *	and assign SiS900-specific entries in the device structure.
433  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
434  */
435 
436 static int __devinit sis900_probe(struct pci_dev *pci_dev,
437 				const struct pci_device_id *pci_id)
438 {
439 	struct sis900_private *sis_priv;
440 	struct net_device *net_dev;
441 	struct pci_dev *dev;
442 	dma_addr_t ring_dma;
443 	void *ring_space;
444 	void __iomem *ioaddr;
445 	int i, ret;
446 	const char *card_name = card_names[pci_id->driver_data];
447 	const char *dev_name = pci_name(pci_dev);
448 
449 /* when built into the kernel, we only print version if device is found */
450 #ifndef MODULE
451 	static int printed_version;
452 	if (!printed_version++)
453 		printk(version);
454 #endif
455 
456 	/* setup various bits in PCI command register */
457 	ret = pci_enable_device(pci_dev);
458 	if(ret) return ret;
459 
460 	i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
461 	if(i){
462 		printk(KERN_ERR "sis900.c: architecture does not support "
463 			"32bit PCI busmaster DMA\n");
464 		return i;
465 	}
466 
467 	pci_set_master(pci_dev);
468 
469 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
470 	if (!net_dev)
471 		return -ENOMEM;
472 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
473 
474 	/* We do a request_region() to register /proc/ioports info. */
475 	ret = pci_request_regions(pci_dev, "sis900");
476 	if (ret)
477 		goto err_out;
478 
479 	/* IO region. */
480 	ioaddr = pci_iomap(pci_dev, 0, 0);
481 	if (!ioaddr) {
482 		ret = -ENOMEM;
483 		goto err_out_cleardev;
484 	}
485 
486 	sis_priv = netdev_priv(net_dev);
487 	sis_priv->ioaddr = ioaddr;
488 	sis_priv->pci_dev = pci_dev;
489 	spin_lock_init(&sis_priv->lock);
490 
491 	pci_set_drvdata(pci_dev, net_dev);
492 
493 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
494 	if (!ring_space) {
495 		ret = -ENOMEM;
496 		goto err_out_unmap;
497 	}
498 	sis_priv->tx_ring = ring_space;
499 	sis_priv->tx_ring_dma = ring_dma;
500 
501 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
502 	if (!ring_space) {
503 		ret = -ENOMEM;
504 		goto err_unmap_tx;
505 	}
506 	sis_priv->rx_ring = ring_space;
507 	sis_priv->rx_ring_dma = ring_dma;
508 
509 	/* The SiS900-specific entries in the device structure. */
510 	net_dev->netdev_ops = &sis900_netdev_ops;
511 	net_dev->watchdog_timeo = TX_TIMEOUT;
512 	net_dev->ethtool_ops = &sis900_ethtool_ops;
513 
514 	if (sis900_debug > 0)
515 		sis_priv->msg_enable = sis900_debug;
516 	else
517 		sis_priv->msg_enable = SIS900_DEF_MSG;
518 
519 	sis_priv->mii_info.dev = net_dev;
520 	sis_priv->mii_info.mdio_read = mdio_read;
521 	sis_priv->mii_info.mdio_write = mdio_write;
522 	sis_priv->mii_info.phy_id_mask = 0x1f;
523 	sis_priv->mii_info.reg_num_mask = 0x1f;
524 
525 	/* Get Mac address according to the chip revision */
526 	sis_priv->chipset_rev = pci_dev->revision;
527 	if(netif_msg_probe(sis_priv))
528 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
529 				"trying to get MAC address...\n",
530 				dev_name, sis_priv->chipset_rev);
531 
532 	ret = 0;
533 	if (sis_priv->chipset_rev == SIS630E_900_REV)
534 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
535 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
536 		ret = sis635_get_mac_addr(pci_dev, net_dev);
537 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
538 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
539 	else
540 		ret = sis900_get_mac_addr(pci_dev, net_dev);
541 
542 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
543 		eth_hw_addr_random(net_dev);
544 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
545 				"using random generated one\n", dev_name);
546 	}
547 
548 	/* 630ET : set the mii access mode as software-mode */
549 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
550 		sw32(cr, ACCESSMODE | sr32(cr));
551 
552 	/* probe for mii transceiver */
553 	if (sis900_mii_probe(net_dev) == 0) {
554 		printk(KERN_WARNING "%s: Error probing MII device.\n",
555 		       dev_name);
556 		ret = -ENODEV;
557 		goto err_unmap_rx;
558 	}
559 
560 	/* save our host bridge revision */
561 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
562 	if (dev) {
563 		sis_priv->host_bridge_rev = dev->revision;
564 		pci_dev_put(dev);
565 	}
566 
567 	ret = register_netdev(net_dev);
568 	if (ret)
569 		goto err_unmap_rx;
570 
571 	/* print some information about our NIC */
572 	printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
573 	       net_dev->name, card_name, ioaddr, pci_dev->irq,
574 	       net_dev->dev_addr);
575 
576 	/* Detect Wake on Lan support */
577 	ret = (sr32(CFGPMC) & PMESP) >> 27;
578 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
579 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
580 
581 	return 0;
582 
583 err_unmap_rx:
584 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
585 		sis_priv->rx_ring_dma);
586 err_unmap_tx:
587 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
588 		sis_priv->tx_ring_dma);
589 err_out_unmap:
590 	pci_iounmap(pci_dev, ioaddr);
591 err_out_cleardev:
592 	pci_set_drvdata(pci_dev, NULL);
593 	pci_release_regions(pci_dev);
594  err_out:
595 	free_netdev(net_dev);
596 	return ret;
597 }
598 
599 /**
600  *	sis900_mii_probe - Probe MII PHY for sis900
601  *	@net_dev: the net device to probe for
602  *
603  *	Search for total of 32 possible mii phy addresses.
604  *	Identify and set current phy if found one,
605  *	return error if it failed to found.
606  */
607 
608 static int __devinit sis900_mii_probe(struct net_device * net_dev)
609 {
610 	struct sis900_private *sis_priv = netdev_priv(net_dev);
611 	const char *dev_name = pci_name(sis_priv->pci_dev);
612 	u16 poll_bit = MII_STAT_LINK, status = 0;
613 	unsigned long timeout = jiffies + 5 * HZ;
614 	int phy_addr;
615 
616 	sis_priv->mii = NULL;
617 
618 	/* search for total of 32 possible mii phy addresses */
619 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
620 		struct mii_phy * mii_phy = NULL;
621 		u16 mii_status;
622 		int i;
623 
624 		mii_phy = NULL;
625 		for(i = 0; i < 2; i++)
626 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
627 
628 		if (mii_status == 0xffff || mii_status == 0x0000) {
629 			if (netif_msg_probe(sis_priv))
630 				printk(KERN_DEBUG "%s: MII at address %d"
631 						" not accessible\n",
632 						dev_name, phy_addr);
633 			continue;
634 		}
635 
636 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
637 			mii_phy = sis_priv->first_mii;
638 			while (mii_phy) {
639 				struct mii_phy *phy;
640 				phy = mii_phy;
641 				mii_phy = mii_phy->next;
642 				kfree(phy);
643 			}
644 			return 0;
645 		}
646 
647 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
648 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
649 		mii_phy->phy_addr = phy_addr;
650 		mii_phy->status = mii_status;
651 		mii_phy->next = sis_priv->mii;
652 		sis_priv->mii = mii_phy;
653 		sis_priv->first_mii = mii_phy;
654 
655 		for (i = 0; mii_chip_table[i].phy_id1; i++)
656 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
657 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
658 				mii_phy->phy_types = mii_chip_table[i].phy_types;
659 				if (mii_chip_table[i].phy_types == MIX)
660 					mii_phy->phy_types =
661 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
662 				printk(KERN_INFO "%s: %s transceiver found "
663 							"at address %d.\n",
664 							dev_name,
665 							mii_chip_table[i].name,
666 							phy_addr);
667 				break;
668 			}
669 
670 		if( !mii_chip_table[i].phy_id1 ) {
671 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
672 			       dev_name, phy_addr);
673 			mii_phy->phy_types = UNKNOWN;
674 		}
675 	}
676 
677 	if (sis_priv->mii == NULL) {
678 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
679 		return 0;
680 	}
681 
682 	/* select default PHY for mac */
683 	sis_priv->mii = NULL;
684 	sis900_default_phy( net_dev );
685 
686 	/* Reset phy if default phy is internal sis900 */
687         if ((sis_priv->mii->phy_id0 == 0x001D) &&
688 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
689         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
690 
691         /* workaround for ICS1893 PHY */
692         if ((sis_priv->mii->phy_id0 == 0x0015) &&
693             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
694             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
695 
696 	if(status & MII_STAT_LINK){
697 		while (poll_bit) {
698 			yield();
699 
700 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
701 			if (time_after_eq(jiffies, timeout)) {
702 				printk(KERN_WARNING "%s: reset phy and link down now\n",
703 				       dev_name);
704 				return -ETIME;
705 			}
706 		}
707 	}
708 
709 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
710 		/* SiS 630E has some bugs on default value of PHY registers */
711 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
712 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
713 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
714 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
715 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
716 	}
717 
718 	if (sis_priv->mii->status & MII_STAT_LINK)
719 		netif_carrier_on(net_dev);
720 	else
721 		netif_carrier_off(net_dev);
722 
723 	return 1;
724 }
725 
726 /**
727  *	sis900_default_phy - Select default PHY for sis900 mac.
728  *	@net_dev: the net device to probe for
729  *
730  *	Select first detected PHY with link as default.
731  *	If no one is link on, select PHY whose types is HOME as default.
732  *	If HOME doesn't exist, select LAN.
733  */
734 
735 static u16 sis900_default_phy(struct net_device * net_dev)
736 {
737 	struct sis900_private *sis_priv = netdev_priv(net_dev);
738  	struct mii_phy *phy = NULL, *phy_home = NULL,
739 		*default_phy = NULL, *phy_lan = NULL;
740 	u16 status;
741 
742         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
743 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
744 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
745 
746 		/* Link ON & Not select default PHY & not ghost PHY */
747 		 if ((status & MII_STAT_LINK) && !default_phy &&
748 					(phy->phy_types != UNKNOWN))
749 		 	default_phy = phy;
750 		 else {
751 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
752 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
753 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
754 			if (phy->phy_types == HOME)
755 				phy_home = phy;
756 			else if(phy->phy_types == LAN)
757 				phy_lan = phy;
758 		 }
759 	}
760 
761 	if (!default_phy && phy_home)
762 		default_phy = phy_home;
763 	else if (!default_phy && phy_lan)
764 		default_phy = phy_lan;
765 	else if (!default_phy)
766 		default_phy = sis_priv->first_mii;
767 
768 	if (sis_priv->mii != default_phy) {
769 		sis_priv->mii = default_phy;
770 		sis_priv->cur_phy = default_phy->phy_addr;
771 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
772 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
773 	}
774 
775 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
776 
777 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
778 	status &= (~MII_CNTL_ISOLATE);
779 
780 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
781 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
782 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
783 
784 	return status;
785 }
786 
787 
788 /**
789  * 	sis900_set_capability - set the media capability of network adapter.
790  *	@net_dev : the net device to probe for
791  *	@phy : default PHY
792  *
793  *	Set the media capability of network adapter according to
794  *	mii status register. It's necessary before auto-negotiate.
795  */
796 
797 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
798 {
799 	u16 cap;
800 	u16 status;
801 
802 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
803 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
804 
805 	cap = MII_NWAY_CSMA_CD |
806 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
807 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
808 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
809 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
810 
811 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
812 }
813 
814 
815 /* Delay between EEPROM clock transitions. */
816 #define eeprom_delay()	sr32(mear)
817 
818 /**
819  *	read_eeprom - Read Serial EEPROM
820  *	@ioaddr: base i/o address
821  *	@location: the EEPROM location to read
822  *
823  *	Read Serial EEPROM through EEPROM Access Register.
824  *	Note that location is in word (16 bits) unit
825  */
826 
827 static u16 __devinit read_eeprom(void __iomem *ioaddr, int location)
828 {
829 	u32 read_cmd = location | EEread;
830 	int i;
831 	u16 retval = 0;
832 
833 	sw32(mear, 0);
834 	eeprom_delay();
835 	sw32(mear, EECS);
836 	eeprom_delay();
837 
838 	/* Shift the read command (9) bits out. */
839 	for (i = 8; i >= 0; i--) {
840 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
841 
842 		sw32(mear, dataval);
843 		eeprom_delay();
844 		sw32(mear, dataval | EECLK);
845 		eeprom_delay();
846 	}
847 	sw32(mear, EECS);
848 	eeprom_delay();
849 
850 	/* read the 16-bits data in */
851 	for (i = 16; i > 0; i--) {
852 		sw32(mear, EECS);
853 		eeprom_delay();
854 		sw32(mear, EECS | EECLK);
855 		eeprom_delay();
856 		retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
857 		eeprom_delay();
858 	}
859 
860 	/* Terminate the EEPROM access. */
861 	sw32(mear, 0);
862 	eeprom_delay();
863 
864 	return retval;
865 }
866 
867 /* Read and write the MII management registers using software-generated
868    serial MDIO protocol. Note that the command bits and data bits are
869    send out separately */
870 #define mdio_delay()	sr32(mear)
871 
872 static void mdio_idle(struct sis900_private *sp)
873 {
874 	void __iomem *ioaddr = sp->ioaddr;
875 
876 	sw32(mear, MDIO | MDDIR);
877 	mdio_delay();
878 	sw32(mear, MDIO | MDDIR | MDC);
879 }
880 
881 /* Synchronize the MII management interface by shifting 32 one bits out. */
882 static void mdio_reset(struct sis900_private *sp)
883 {
884 	void __iomem *ioaddr = sp->ioaddr;
885 	int i;
886 
887 	for (i = 31; i >= 0; i--) {
888 		sw32(mear, MDDIR | MDIO);
889 		mdio_delay();
890 		sw32(mear, MDDIR | MDIO | MDC);
891 		mdio_delay();
892 	}
893 }
894 
895 /**
896  *	mdio_read - read MII PHY register
897  *	@net_dev: the net device to read
898  *	@phy_id: the phy address to read
899  *	@location: the phy regiester id to read
900  *
901  *	Read MII registers through MDIO and MDC
902  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
903  *	Please see SiS7014 or ICS spec
904  */
905 
906 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
907 {
908 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
909 	struct sis900_private *sp = netdev_priv(net_dev);
910 	void __iomem *ioaddr = sp->ioaddr;
911 	u16 retval = 0;
912 	int i;
913 
914 	mdio_reset(sp);
915 	mdio_idle(sp);
916 
917 	for (i = 15; i >= 0; i--) {
918 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
919 
920 		sw32(mear, dataval);
921 		mdio_delay();
922 		sw32(mear, dataval | MDC);
923 		mdio_delay();
924 	}
925 
926 	/* Read the 16 data bits. */
927 	for (i = 16; i > 0; i--) {
928 		sw32(mear, 0);
929 		mdio_delay();
930 		retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
931 		sw32(mear, MDC);
932 		mdio_delay();
933 	}
934 	sw32(mear, 0x00);
935 
936 	return retval;
937 }
938 
939 /**
940  *	mdio_write - write MII PHY register
941  *	@net_dev: the net device to write
942  *	@phy_id: the phy address to write
943  *	@location: the phy regiester id to write
944  *	@value: the register value to write with
945  *
946  *	Write MII registers with @value through MDIO and MDC
947  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
948  *	please see SiS7014 or ICS spec
949  */
950 
951 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
952 			int value)
953 {
954 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
955 	struct sis900_private *sp = netdev_priv(net_dev);
956 	void __iomem *ioaddr = sp->ioaddr;
957 	int i;
958 
959 	mdio_reset(sp);
960 	mdio_idle(sp);
961 
962 	/* Shift the command bits out. */
963 	for (i = 15; i >= 0; i--) {
964 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
965 
966 		sw8(mear, dataval);
967 		mdio_delay();
968 		sw8(mear, dataval | MDC);
969 		mdio_delay();
970 	}
971 	mdio_delay();
972 
973 	/* Shift the value bits out. */
974 	for (i = 15; i >= 0; i--) {
975 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
976 
977 		sw32(mear, dataval);
978 		mdio_delay();
979 		sw32(mear, dataval | MDC);
980 		mdio_delay();
981 	}
982 	mdio_delay();
983 
984 	/* Clear out extra bits. */
985 	for (i = 2; i > 0; i--) {
986 		sw8(mear, 0);
987 		mdio_delay();
988 		sw8(mear, MDC);
989 		mdio_delay();
990 	}
991 	sw32(mear, 0x00);
992 }
993 
994 
995 /**
996  *	sis900_reset_phy - reset sis900 mii phy.
997  *	@net_dev: the net device to write
998  *	@phy_addr: default phy address
999  *
1000  *	Some specific phy can't work properly without reset.
1001  *	This function will be called during initialization and
1002  *	link status change from ON to DOWN.
1003  */
1004 
1005 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
1006 {
1007 	int i;
1008 	u16 status;
1009 
1010 	for (i = 0; i < 2; i++)
1011 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1012 
1013 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1014 
1015 	return status;
1016 }
1017 
1018 #ifdef CONFIG_NET_POLL_CONTROLLER
1019 /*
1020  * Polling 'interrupt' - used by things like netconsole to send skbs
1021  * without having to re-enable interrupts. It's not called while
1022  * the interrupt routine is executing.
1023 */
1024 static void sis900_poll(struct net_device *dev)
1025 {
1026 	struct sis900_private *sp = netdev_priv(dev);
1027 	const int irq = sp->pci_dev->irq;
1028 
1029 	disable_irq(irq);
1030 	sis900_interrupt(irq, dev);
1031 	enable_irq(irq);
1032 }
1033 #endif
1034 
1035 /**
1036  *	sis900_open - open sis900 device
1037  *	@net_dev: the net device to open
1038  *
1039  *	Do some initialization and start net interface.
1040  *	enable interrupts and set sis900 timer.
1041  */
1042 
1043 static int
1044 sis900_open(struct net_device *net_dev)
1045 {
1046 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1047 	void __iomem *ioaddr = sis_priv->ioaddr;
1048 	int ret;
1049 
1050 	/* Soft reset the chip. */
1051 	sis900_reset(net_dev);
1052 
1053 	/* Equalizer workaround Rule */
1054 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1055 
1056 	ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1057 			  net_dev->name, net_dev);
1058 	if (ret)
1059 		return ret;
1060 
1061 	sis900_init_rxfilter(net_dev);
1062 
1063 	sis900_init_tx_ring(net_dev);
1064 	sis900_init_rx_ring(net_dev);
1065 
1066 	set_rx_mode(net_dev);
1067 
1068 	netif_start_queue(net_dev);
1069 
1070 	/* Workaround for EDB */
1071 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1072 
1073 	/* Enable all known interrupts by setting the interrupt mask. */
1074 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1075 	sw32(cr, RxENA | sr32(cr));
1076 	sw32(ier, IE);
1077 
1078 	sis900_check_mode(net_dev, sis_priv->mii);
1079 
1080 	/* Set the timer to switch to check for link beat and perhaps switch
1081 	   to an alternate media type. */
1082 	init_timer(&sis_priv->timer);
1083 	sis_priv->timer.expires = jiffies + HZ;
1084 	sis_priv->timer.data = (unsigned long)net_dev;
1085 	sis_priv->timer.function = sis900_timer;
1086 	add_timer(&sis_priv->timer);
1087 
1088 	return 0;
1089 }
1090 
1091 /**
1092  *	sis900_init_rxfilter - Initialize the Rx filter
1093  *	@net_dev: the net device to initialize for
1094  *
1095  *	Set receive filter address to our MAC address
1096  *	and enable packet filtering.
1097  */
1098 
1099 static void
1100 sis900_init_rxfilter (struct net_device * net_dev)
1101 {
1102 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1103 	void __iomem *ioaddr = sis_priv->ioaddr;
1104 	u32 rfcrSave;
1105 	u32 i;
1106 
1107 	rfcrSave = sr32(rfcr);
1108 
1109 	/* disable packet filtering before setting filter */
1110 	sw32(rfcr, rfcrSave & ~RFEN);
1111 
1112 	/* load MAC addr to filter data register */
1113 	for (i = 0 ; i < 3 ; i++) {
1114 		u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1115 
1116 		sw32(rfcr, i << RFADDR_shift);
1117 		sw32(rfdr, w);
1118 
1119 		if (netif_msg_hw(sis_priv)) {
1120 			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1121 			       net_dev->name, i, sr32(rfdr));
1122 		}
1123 	}
1124 
1125 	/* enable packet filtering */
1126 	sw32(rfcr, rfcrSave | RFEN);
1127 }
1128 
1129 /**
1130  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1131  *	@net_dev: the net device to initialize for
1132  *
1133  *	Initialize the Tx descriptor ring,
1134  */
1135 
1136 static void
1137 sis900_init_tx_ring(struct net_device *net_dev)
1138 {
1139 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1140 	void __iomem *ioaddr = sis_priv->ioaddr;
1141 	int i;
1142 
1143 	sis_priv->tx_full = 0;
1144 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1145 
1146 	for (i = 0; i < NUM_TX_DESC; i++) {
1147 		sis_priv->tx_skbuff[i] = NULL;
1148 
1149 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1150 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1151 		sis_priv->tx_ring[i].cmdsts = 0;
1152 		sis_priv->tx_ring[i].bufptr = 0;
1153 	}
1154 
1155 	/* load Transmit Descriptor Register */
1156 	sw32(txdp, sis_priv->tx_ring_dma);
1157 	if (netif_msg_hw(sis_priv))
1158 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1159 		       net_dev->name, sr32(txdp));
1160 }
1161 
1162 /**
1163  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1164  *	@net_dev: the net device to initialize for
1165  *
1166  *	Initialize the Rx descriptor ring,
1167  *	and pre-allocate recevie buffers (socket buffer)
1168  */
1169 
1170 static void
1171 sis900_init_rx_ring(struct net_device *net_dev)
1172 {
1173 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1174 	void __iomem *ioaddr = sis_priv->ioaddr;
1175 	int i;
1176 
1177 	sis_priv->cur_rx = 0;
1178 	sis_priv->dirty_rx = 0;
1179 
1180 	/* init RX descriptor */
1181 	for (i = 0; i < NUM_RX_DESC; i++) {
1182 		sis_priv->rx_skbuff[i] = NULL;
1183 
1184 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1185 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1186 		sis_priv->rx_ring[i].cmdsts = 0;
1187 		sis_priv->rx_ring[i].bufptr = 0;
1188 	}
1189 
1190 	/* allocate sock buffers */
1191 	for (i = 0; i < NUM_RX_DESC; i++) {
1192 		struct sk_buff *skb;
1193 
1194 		if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1195 			/* not enough memory for skbuff, this makes a "hole"
1196 			   on the buffer ring, it is not clear how the
1197 			   hardware will react to this kind of degenerated
1198 			   buffer */
1199 			break;
1200 		}
1201 		sis_priv->rx_skbuff[i] = skb;
1202 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1203                 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1204                         skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1205 	}
1206 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1207 
1208 	/* load Receive Descriptor Register */
1209 	sw32(rxdp, sis_priv->rx_ring_dma);
1210 	if (netif_msg_hw(sis_priv))
1211 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1212 		       net_dev->name, sr32(rxdp));
1213 }
1214 
1215 /**
1216  *	sis630_set_eq - set phy equalizer value for 630 LAN
1217  *	@net_dev: the net device to set equalizer value
1218  *	@revision: 630 LAN revision number
1219  *
1220  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1221  *	PHY register 14h(Test)
1222  *	Bit 14: 0 -- Automatically detect (default)
1223  *		1 -- Manually set Equalizer filter
1224  *	Bit 13: 0 -- (Default)
1225  *		1 -- Speed up convergence of equalizer setting
1226  *	Bit 9 : 0 -- (Default)
1227  *		1 -- Disable Baseline Wander
1228  *	Bit 3~7   -- Equalizer filter setting
1229  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1230  *	Then calculate equalizer value
1231  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1232  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1233  *	Calculate Equalizer value:
1234  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1235  *	When the equalizer is stable, this value is not a fixed value. It will be within
1236  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1237  *	0 <= max <= 4  --> set equalizer to max
1238  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1239  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1240  */
1241 
1242 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1243 {
1244 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1245 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1246 	int i, maxcount=10;
1247 
1248 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1249 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1250 		return;
1251 
1252 	if (netif_carrier_ok(net_dev)) {
1253 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1254 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1255 					(0x2200 | reg14h) & 0xBFFF);
1256 		for (i=0; i < maxcount; i++) {
1257 			eq_value = (0x00F8 & mdio_read(net_dev,
1258 					sis_priv->cur_phy, MII_RESV)) >> 3;
1259 			if (i == 0)
1260 				max_value=min_value=eq_value;
1261 			max_value = (eq_value > max_value) ?
1262 						eq_value : max_value;
1263 			min_value = (eq_value < min_value) ?
1264 						eq_value : min_value;
1265 		}
1266 		/* 630E rule to determine the equalizer value */
1267 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1268 		    revision == SIS630ET_900_REV) {
1269 			if (max_value < 5)
1270 				eq_value = max_value;
1271 			else if (max_value >= 5 && max_value < 15)
1272 				eq_value = (max_value == min_value) ?
1273 						max_value+2 : max_value+1;
1274 			else if (max_value >= 15)
1275 				eq_value=(max_value == min_value) ?
1276 						max_value+6 : max_value+5;
1277 		}
1278 		/* 630B0&B1 rule to determine the equalizer value */
1279 		if (revision == SIS630A_900_REV &&
1280 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1281 		     sis_priv->host_bridge_rev == SIS630B1)) {
1282 			if (max_value == 0)
1283 				eq_value = 3;
1284 			else
1285 				eq_value = (max_value + min_value + 1)/2;
1286 		}
1287 		/* write equalizer value and setting */
1288 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1289 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1290 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1291 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1292 	} else {
1293 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1294 		if (revision == SIS630A_900_REV &&
1295 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1296 		     sis_priv->host_bridge_rev == SIS630B1))
1297 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1298 						(reg14h | 0x2200) & 0xBFFF);
1299 		else
1300 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1301 						(reg14h | 0x2000) & 0xBFFF);
1302 	}
1303 }
1304 
1305 /**
1306  *	sis900_timer - sis900 timer routine
1307  *	@data: pointer to sis900 net device
1308  *
1309  *	On each timer ticks we check two things,
1310  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1311  */
1312 
1313 static void sis900_timer(unsigned long data)
1314 {
1315 	struct net_device *net_dev = (struct net_device *)data;
1316 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1317 	struct mii_phy *mii_phy = sis_priv->mii;
1318 	static const int next_tick = 5*HZ;
1319 	u16 status;
1320 
1321 	if (!sis_priv->autong_complete){
1322 		int uninitialized_var(speed), duplex = 0;
1323 
1324 		sis900_read_mode(net_dev, &speed, &duplex);
1325 		if (duplex){
1326 			sis900_set_mode(sis_priv, speed, duplex);
1327 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1328 			netif_start_queue(net_dev);
1329 		}
1330 
1331 		sis_priv->timer.expires = jiffies + HZ;
1332 		add_timer(&sis_priv->timer);
1333 		return;
1334 	}
1335 
1336 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1337 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1338 
1339 	/* Link OFF -> ON */
1340 	if (!netif_carrier_ok(net_dev)) {
1341 	LookForLink:
1342 		/* Search for new PHY */
1343 		status = sis900_default_phy(net_dev);
1344 		mii_phy = sis_priv->mii;
1345 
1346 		if (status & MII_STAT_LINK){
1347 			sis900_check_mode(net_dev, mii_phy);
1348 			netif_carrier_on(net_dev);
1349 		}
1350 	} else {
1351 	/* Link ON -> OFF */
1352                 if (!(status & MII_STAT_LINK)){
1353                 	netif_carrier_off(net_dev);
1354 			if(netif_msg_link(sis_priv))
1355                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1356 
1357                 	/* Change mode issue */
1358                 	if ((mii_phy->phy_id0 == 0x001D) &&
1359 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1360                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1361 
1362 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1363 
1364                 	goto LookForLink;
1365                 }
1366 	}
1367 
1368 	sis_priv->timer.expires = jiffies + next_tick;
1369 	add_timer(&sis_priv->timer);
1370 }
1371 
1372 /**
1373  *	sis900_check_mode - check the media mode for sis900
1374  *	@net_dev: the net device to be checked
1375  *	@mii_phy: the mii phy
1376  *
1377  *	Older driver gets the media mode from mii status output
1378  *	register. Now we set our media capability and auto-negotiate
1379  *	to get the upper bound of speed and duplex between two ends.
1380  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1381  *	and autong_complete should be set to 1.
1382  */
1383 
1384 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1385 {
1386 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1387 	void __iomem *ioaddr = sis_priv->ioaddr;
1388 	int speed, duplex;
1389 
1390 	if (mii_phy->phy_types == LAN) {
1391 		sw32(cfg, ~EXD & sr32(cfg));
1392 		sis900_set_capability(net_dev , mii_phy);
1393 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1394 	} else {
1395 		sw32(cfg, EXD | sr32(cfg));
1396 		speed = HW_SPEED_HOME;
1397 		duplex = FDX_CAPABLE_HALF_SELECTED;
1398 		sis900_set_mode(sis_priv, speed, duplex);
1399 		sis_priv->autong_complete = 1;
1400 	}
1401 }
1402 
1403 /**
1404  *	sis900_set_mode - Set the media mode of mac register.
1405  *	@sp:     the device private data
1406  *	@speed : the transmit speed to be determined
1407  *	@duplex: the duplex mode to be determined
1408  *
1409  *	Set the media mode of mac register txcfg/rxcfg according to
1410  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1411  *	bus is used instead of PCI bus. When this bit is set 1, the
1412  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1413  *	double words.
1414  */
1415 
1416 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1417 {
1418 	void __iomem *ioaddr = sp->ioaddr;
1419 	u32 tx_flags = 0, rx_flags = 0;
1420 
1421 	if (sr32( cfg) & EDB_MASTER_EN) {
1422 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1423 					(TX_FILL_THRESH << TxFILLT_shift);
1424 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1425 	} else {
1426 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1427 					(TX_FILL_THRESH << TxFILLT_shift);
1428 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1429 	}
1430 
1431 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1432 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1433 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1434 	} else {
1435 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1436 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1437 	}
1438 
1439 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1440 		tx_flags |= (TxCSI | TxHBI);
1441 		rx_flags |= RxATX;
1442 	}
1443 
1444 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1445 	/* Can accept Jumbo packet */
1446 	rx_flags |= RxAJAB;
1447 #endif
1448 
1449 	sw32(txcfg, tx_flags);
1450 	sw32(rxcfg, rx_flags);
1451 }
1452 
1453 /**
1454  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1455  *	@net_dev: the net device to read mode for
1456  *	@phy_addr: mii phy address
1457  *
1458  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1459  *	autong_complete should be set to 0 when starting auto-negotiation.
1460  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1461  *	sis900_timer will wait for link on again if autong_complete = 0.
1462  */
1463 
1464 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1465 {
1466 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1467 	int i = 0;
1468 	u32 status;
1469 
1470 	for (i = 0; i < 2; i++)
1471 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1472 
1473 	if (!(status & MII_STAT_LINK)){
1474 		if(netif_msg_link(sis_priv))
1475 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1476 		sis_priv->autong_complete = 1;
1477 		netif_carrier_off(net_dev);
1478 		return;
1479 	}
1480 
1481 	/* (Re)start AutoNegotiate */
1482 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1483 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1484 	sis_priv->autong_complete = 0;
1485 }
1486 
1487 
1488 /**
1489  *	sis900_read_mode - read media mode for sis900 internal phy
1490  *	@net_dev: the net device to read mode for
1491  *	@speed  : the transmit speed to be determined
1492  *	@duplex : the duplex mode to be determined
1493  *
1494  *	The capability of remote end will be put in mii register autorec
1495  *	after auto-negotiation. Use AND operation to get the upper bound
1496  *	of speed and duplex between two ends.
1497  */
1498 
1499 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1500 {
1501 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1502 	struct mii_phy *phy = sis_priv->mii;
1503 	int phy_addr = sis_priv->cur_phy;
1504 	u32 status;
1505 	u16 autoadv, autorec;
1506 	int i;
1507 
1508 	for (i = 0; i < 2; i++)
1509 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1510 
1511 	if (!(status & MII_STAT_LINK))
1512 		return;
1513 
1514 	/* AutoNegotiate completed */
1515 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1516 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1517 	status = autoadv & autorec;
1518 
1519 	*speed = HW_SPEED_10_MBPS;
1520 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1521 
1522 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1523 		*speed = HW_SPEED_100_MBPS;
1524 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1525 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1526 
1527 	sis_priv->autong_complete = 1;
1528 
1529 	/* Workaround for Realtek RTL8201 PHY issue */
1530 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1531 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1532 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1533 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1534 			*speed = HW_SPEED_100_MBPS;
1535 	}
1536 
1537 	if(netif_msg_link(sis_priv))
1538 		printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1539 	       				net_dev->name,
1540 	       				*speed == HW_SPEED_100_MBPS ?
1541 	       					"100mbps" : "10mbps",
1542 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1543 	       					"full" : "half");
1544 }
1545 
1546 /**
1547  *	sis900_tx_timeout - sis900 transmit timeout routine
1548  *	@net_dev: the net device to transmit
1549  *
1550  *	print transmit timeout status
1551  *	disable interrupts and do some tasks
1552  */
1553 
1554 static void sis900_tx_timeout(struct net_device *net_dev)
1555 {
1556 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1557 	void __iomem *ioaddr = sis_priv->ioaddr;
1558 	unsigned long flags;
1559 	int i;
1560 
1561 	if (netif_msg_tx_err(sis_priv)) {
1562 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1563 			net_dev->name, sr32(cr), sr32(isr));
1564 	}
1565 
1566 	/* Disable interrupts by clearing the interrupt mask. */
1567 	sw32(imr, 0x0000);
1568 
1569 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1570 	spin_lock_irqsave(&sis_priv->lock, flags);
1571 
1572 	/* discard unsent packets */
1573 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1574 	for (i = 0; i < NUM_TX_DESC; i++) {
1575 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1576 
1577 		if (skb) {
1578 			pci_unmap_single(sis_priv->pci_dev,
1579 				sis_priv->tx_ring[i].bufptr, skb->len,
1580 				PCI_DMA_TODEVICE);
1581 			dev_kfree_skb_irq(skb);
1582 			sis_priv->tx_skbuff[i] = NULL;
1583 			sis_priv->tx_ring[i].cmdsts = 0;
1584 			sis_priv->tx_ring[i].bufptr = 0;
1585 			net_dev->stats.tx_dropped++;
1586 		}
1587 	}
1588 	sis_priv->tx_full = 0;
1589 	netif_wake_queue(net_dev);
1590 
1591 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1592 
1593 	net_dev->trans_start = jiffies; /* prevent tx timeout */
1594 
1595 	/* load Transmit Descriptor Register */
1596 	sw32(txdp, sis_priv->tx_ring_dma);
1597 
1598 	/* Enable all known interrupts by setting the interrupt mask. */
1599 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1600 }
1601 
1602 /**
1603  *	sis900_start_xmit - sis900 start transmit routine
1604  *	@skb: socket buffer pointer to put the data being transmitted
1605  *	@net_dev: the net device to transmit with
1606  *
1607  *	Set the transmit buffer descriptor,
1608  *	and write TxENA to enable transmit state machine.
1609  *	tell upper layer if the buffer is full
1610  */
1611 
1612 static netdev_tx_t
1613 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1614 {
1615 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1616 	void __iomem *ioaddr = sis_priv->ioaddr;
1617 	unsigned int  entry;
1618 	unsigned long flags;
1619 	unsigned int  index_cur_tx, index_dirty_tx;
1620 	unsigned int  count_dirty_tx;
1621 
1622 	/* Don't transmit data before the complete of auto-negotiation */
1623 	if(!sis_priv->autong_complete){
1624 		netif_stop_queue(net_dev);
1625 		return NETDEV_TX_BUSY;
1626 	}
1627 
1628 	spin_lock_irqsave(&sis_priv->lock, flags);
1629 
1630 	/* Calculate the next Tx descriptor entry. */
1631 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1632 	sis_priv->tx_skbuff[entry] = skb;
1633 
1634 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1635 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1636 		skb->data, skb->len, PCI_DMA_TODEVICE);
1637 	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1638 	sw32(cr, TxENA | sr32(cr));
1639 
1640 	sis_priv->cur_tx ++;
1641 	index_cur_tx = sis_priv->cur_tx;
1642 	index_dirty_tx = sis_priv->dirty_tx;
1643 
1644 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1645 		count_dirty_tx ++;
1646 
1647 	if (index_cur_tx == index_dirty_tx) {
1648 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1649 		sis_priv->tx_full = 1;
1650 		netif_stop_queue(net_dev);
1651 	} else if (count_dirty_tx < NUM_TX_DESC) {
1652 		/* Typical path, tell upper layer that more transmission is possible */
1653 		netif_start_queue(net_dev);
1654 	} else {
1655 		/* buffer full, tell upper layer no more transmission */
1656 		sis_priv->tx_full = 1;
1657 		netif_stop_queue(net_dev);
1658 	}
1659 
1660 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1661 
1662 	if (netif_msg_tx_queued(sis_priv))
1663 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1664 		       "to slot %d.\n",
1665 		       net_dev->name, skb->data, (int)skb->len, entry);
1666 
1667 	return NETDEV_TX_OK;
1668 }
1669 
1670 /**
1671  *	sis900_interrupt - sis900 interrupt handler
1672  *	@irq: the irq number
1673  *	@dev_instance: the client data object
1674  *
1675  *	The interrupt handler does all of the Rx thread work,
1676  *	and cleans up after the Tx thread
1677  */
1678 
1679 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1680 {
1681 	struct net_device *net_dev = dev_instance;
1682 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1683 	int boguscnt = max_interrupt_work;
1684 	void __iomem *ioaddr = sis_priv->ioaddr;
1685 	u32 status;
1686 	unsigned int handled = 0;
1687 
1688 	spin_lock (&sis_priv->lock);
1689 
1690 	do {
1691 		status = sr32(isr);
1692 
1693 		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1694 			/* nothing intresting happened */
1695 			break;
1696 		handled = 1;
1697 
1698 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1699 		if (status & (RxORN | RxERR | RxOK))
1700 			/* Rx interrupt */
1701 			sis900_rx(net_dev);
1702 
1703 		if (status & (TxURN | TxERR | TxIDLE))
1704 			/* Tx interrupt */
1705 			sis900_finish_xmit(net_dev);
1706 
1707 		/* something strange happened !!! */
1708 		if (status & HIBERR) {
1709 			if(netif_msg_intr(sis_priv))
1710 				printk(KERN_INFO "%s: Abnormal interrupt, "
1711 					"status %#8.8x.\n", net_dev->name, status);
1712 			break;
1713 		}
1714 		if (--boguscnt < 0) {
1715 			if(netif_msg_intr(sis_priv))
1716 				printk(KERN_INFO "%s: Too much work at interrupt, "
1717 					"interrupt status = %#8.8x.\n",
1718 					net_dev->name, status);
1719 			break;
1720 		}
1721 	} while (1);
1722 
1723 	if(netif_msg_intr(sis_priv))
1724 		printk(KERN_DEBUG "%s: exiting interrupt, "
1725 		       "interrupt status = 0x%#8.8x.\n",
1726 		       net_dev->name, sr32(isr));
1727 
1728 	spin_unlock (&sis_priv->lock);
1729 	return IRQ_RETVAL(handled);
1730 }
1731 
1732 /**
1733  *	sis900_rx - sis900 receive routine
1734  *	@net_dev: the net device which receives data
1735  *
1736  *	Process receive interrupt events,
1737  *	put buffer to higher layer and refill buffer pool
1738  *	Note: This function is called by interrupt handler,
1739  *	don't do "too much" work here
1740  */
1741 
1742 static int sis900_rx(struct net_device *net_dev)
1743 {
1744 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1745 	void __iomem *ioaddr = sis_priv->ioaddr;
1746 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1747 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1748 	int rx_work_limit;
1749 
1750 	if (netif_msg_rx_status(sis_priv))
1751 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1752 		       "status:0x%8.8x\n",
1753 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1754 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1755 
1756 	while (rx_status & OWN) {
1757 		unsigned int rx_size;
1758 		unsigned int data_size;
1759 
1760 		if (--rx_work_limit < 0)
1761 			break;
1762 
1763 		data_size = rx_status & DSIZE;
1764 		rx_size = data_size - CRC_SIZE;
1765 
1766 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1767 		/* ``TOOLONG'' flag means jumbo packet received. */
1768 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1769 			rx_status &= (~ ((unsigned int)TOOLONG));
1770 #endif
1771 
1772 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1773 			/* corrupted packet received */
1774 			if (netif_msg_rx_err(sis_priv))
1775 				printk(KERN_DEBUG "%s: Corrupted packet "
1776 				       "received, buffer status = 0x%8.8x/%d.\n",
1777 				       net_dev->name, rx_status, data_size);
1778 			net_dev->stats.rx_errors++;
1779 			if (rx_status & OVERRUN)
1780 				net_dev->stats.rx_over_errors++;
1781 			if (rx_status & (TOOLONG|RUNT))
1782 				net_dev->stats.rx_length_errors++;
1783 			if (rx_status & (RXISERR | FAERR))
1784 				net_dev->stats.rx_frame_errors++;
1785 			if (rx_status & CRCERR)
1786 				net_dev->stats.rx_crc_errors++;
1787 			/* reset buffer descriptor state */
1788 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1789 		} else {
1790 			struct sk_buff * skb;
1791 			struct sk_buff * rx_skb;
1792 
1793 			pci_unmap_single(sis_priv->pci_dev,
1794 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1795 				PCI_DMA_FROMDEVICE);
1796 
1797 			/* refill the Rx buffer, what if there is not enough
1798 			 * memory for new socket buffer ?? */
1799 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1800 				/*
1801 				 * Not enough memory to refill the buffer
1802 				 * so we need to recycle the old one so
1803 				 * as to avoid creating a memory hole
1804 				 * in the rx ring
1805 				 */
1806 				skb = sis_priv->rx_skbuff[entry];
1807 				net_dev->stats.rx_dropped++;
1808 				goto refill_rx_ring;
1809 			}
1810 
1811 			/* This situation should never happen, but due to
1812 			   some unknown bugs, it is possible that
1813 			   we are working on NULL sk_buff :-( */
1814 			if (sis_priv->rx_skbuff[entry] == NULL) {
1815 				if (netif_msg_rx_err(sis_priv))
1816 					printk(KERN_WARNING "%s: NULL pointer "
1817 					      "encountered in Rx ring\n"
1818 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1819 					      net_dev->name, sis_priv->cur_rx,
1820 					      sis_priv->dirty_rx);
1821 				dev_kfree_skb(skb);
1822 				break;
1823 			}
1824 
1825 			/* give the socket buffer to upper layers */
1826 			rx_skb = sis_priv->rx_skbuff[entry];
1827 			skb_put(rx_skb, rx_size);
1828 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1829 			netif_rx(rx_skb);
1830 
1831 			/* some network statistics */
1832 			if ((rx_status & BCAST) == MCAST)
1833 				net_dev->stats.multicast++;
1834 			net_dev->stats.rx_bytes += rx_size;
1835 			net_dev->stats.rx_packets++;
1836 			sis_priv->dirty_rx++;
1837 refill_rx_ring:
1838 			sis_priv->rx_skbuff[entry] = skb;
1839 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1840                 	sis_priv->rx_ring[entry].bufptr =
1841 				pci_map_single(sis_priv->pci_dev, skb->data,
1842 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1843 		}
1844 		sis_priv->cur_rx++;
1845 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1846 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1847 	} // while
1848 
1849 	/* refill the Rx buffer, what if the rate of refilling is slower
1850 	 * than consuming ?? */
1851 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1852 		struct sk_buff *skb;
1853 
1854 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1855 
1856 		if (sis_priv->rx_skbuff[entry] == NULL) {
1857 			if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1858 				/* not enough memory for skbuff, this makes a
1859 				 * "hole" on the buffer ring, it is not clear
1860 				 * how the hardware will react to this kind
1861 				 * of degenerated buffer */
1862 				if (netif_msg_rx_err(sis_priv))
1863 					printk(KERN_INFO "%s: Memory squeeze, "
1864 						"deferring packet.\n",
1865 						net_dev->name);
1866 				net_dev->stats.rx_dropped++;
1867 				break;
1868 			}
1869 			sis_priv->rx_skbuff[entry] = skb;
1870 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1871                 	sis_priv->rx_ring[entry].bufptr =
1872 				pci_map_single(sis_priv->pci_dev, skb->data,
1873 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1874 		}
1875 	}
1876 	/* re-enable the potentially idle receive state matchine */
1877 	sw32(cr , RxENA | sr32(cr));
1878 
1879 	return 0;
1880 }
1881 
1882 /**
1883  *	sis900_finish_xmit - finish up transmission of packets
1884  *	@net_dev: the net device to be transmitted on
1885  *
1886  *	Check for error condition and free socket buffer etc
1887  *	schedule for more transmission as needed
1888  *	Note: This function is called by interrupt handler,
1889  *	don't do "too much" work here
1890  */
1891 
1892 static void sis900_finish_xmit (struct net_device *net_dev)
1893 {
1894 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1895 
1896 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1897 		struct sk_buff *skb;
1898 		unsigned int entry;
1899 		u32 tx_status;
1900 
1901 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1902 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1903 
1904 		if (tx_status & OWN) {
1905 			/* The packet is not transmitted yet (owned by hardware) !
1906 			 * Note: the interrupt is generated only when Tx Machine
1907 			 * is idle, so this is an almost impossible case */
1908 			break;
1909 		}
1910 
1911 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1912 			/* packet unsuccessfully transmitted */
1913 			if (netif_msg_tx_err(sis_priv))
1914 				printk(KERN_DEBUG "%s: Transmit "
1915 				       "error, Tx status %8.8x.\n",
1916 				       net_dev->name, tx_status);
1917 			net_dev->stats.tx_errors++;
1918 			if (tx_status & UNDERRUN)
1919 				net_dev->stats.tx_fifo_errors++;
1920 			if (tx_status & ABORT)
1921 				net_dev->stats.tx_aborted_errors++;
1922 			if (tx_status & NOCARRIER)
1923 				net_dev->stats.tx_carrier_errors++;
1924 			if (tx_status & OWCOLL)
1925 				net_dev->stats.tx_window_errors++;
1926 		} else {
1927 			/* packet successfully transmitted */
1928 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1929 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1930 			net_dev->stats.tx_packets++;
1931 		}
1932 		/* Free the original skb. */
1933 		skb = sis_priv->tx_skbuff[entry];
1934 		pci_unmap_single(sis_priv->pci_dev,
1935 			sis_priv->tx_ring[entry].bufptr, skb->len,
1936 			PCI_DMA_TODEVICE);
1937 		dev_kfree_skb_irq(skb);
1938 		sis_priv->tx_skbuff[entry] = NULL;
1939 		sis_priv->tx_ring[entry].bufptr = 0;
1940 		sis_priv->tx_ring[entry].cmdsts = 0;
1941 	}
1942 
1943 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1944 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1945 		/* The ring is no longer full, clear tx_full and schedule
1946 		 * more transmission by netif_wake_queue(net_dev) */
1947 		sis_priv->tx_full = 0;
1948 		netif_wake_queue (net_dev);
1949 	}
1950 }
1951 
1952 /**
1953  *	sis900_close - close sis900 device
1954  *	@net_dev: the net device to be closed
1955  *
1956  *	Disable interrupts, stop the Tx and Rx Status Machine
1957  *	free Tx and RX socket buffer
1958  */
1959 
1960 static int sis900_close(struct net_device *net_dev)
1961 {
1962 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1963 	struct pci_dev *pdev = sis_priv->pci_dev;
1964 	void __iomem *ioaddr = sis_priv->ioaddr;
1965 	struct sk_buff *skb;
1966 	int i;
1967 
1968 	netif_stop_queue(net_dev);
1969 
1970 	/* Disable interrupts by clearing the interrupt mask. */
1971 	sw32(imr, 0x0000);
1972 	sw32(ier, 0x0000);
1973 
1974 	/* Stop the chip's Tx and Rx Status Machine */
1975 	sw32(cr, RxDIS | TxDIS | sr32(cr));
1976 
1977 	del_timer(&sis_priv->timer);
1978 
1979 	free_irq(pdev->irq, net_dev);
1980 
1981 	/* Free Tx and RX skbuff */
1982 	for (i = 0; i < NUM_RX_DESC; i++) {
1983 		skb = sis_priv->rx_skbuff[i];
1984 		if (skb) {
1985 			pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1986 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1987 			dev_kfree_skb(skb);
1988 			sis_priv->rx_skbuff[i] = NULL;
1989 		}
1990 	}
1991 	for (i = 0; i < NUM_TX_DESC; i++) {
1992 		skb = sis_priv->tx_skbuff[i];
1993 		if (skb) {
1994 			pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1995 					 skb->len, PCI_DMA_TODEVICE);
1996 			dev_kfree_skb(skb);
1997 			sis_priv->tx_skbuff[i] = NULL;
1998 		}
1999 	}
2000 
2001 	/* Green! Put the chip in low-power mode. */
2002 
2003 	return 0;
2004 }
2005 
2006 /**
2007  *	sis900_get_drvinfo - Return information about driver
2008  *	@net_dev: the net device to probe
2009  *	@info: container for info returned
2010  *
2011  *	Process ethtool command such as "ehtool -i" to show information
2012  */
2013 
2014 static void sis900_get_drvinfo(struct net_device *net_dev,
2015 			       struct ethtool_drvinfo *info)
2016 {
2017 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2018 
2019 	strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2020 	strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2021 	strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2022 		sizeof(info->bus_info));
2023 }
2024 
2025 static u32 sis900_get_msglevel(struct net_device *net_dev)
2026 {
2027 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2028 	return sis_priv->msg_enable;
2029 }
2030 
2031 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2032 {
2033 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2034 	sis_priv->msg_enable = value;
2035 }
2036 
2037 static u32 sis900_get_link(struct net_device *net_dev)
2038 {
2039 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2040 	return mii_link_ok(&sis_priv->mii_info);
2041 }
2042 
2043 static int sis900_get_settings(struct net_device *net_dev,
2044 				struct ethtool_cmd *cmd)
2045 {
2046 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2047 	spin_lock_irq(&sis_priv->lock);
2048 	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2049 	spin_unlock_irq(&sis_priv->lock);
2050 	return 0;
2051 }
2052 
2053 static int sis900_set_settings(struct net_device *net_dev,
2054 				struct ethtool_cmd *cmd)
2055 {
2056 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2057 	int rt;
2058 	spin_lock_irq(&sis_priv->lock);
2059 	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2060 	spin_unlock_irq(&sis_priv->lock);
2061 	return rt;
2062 }
2063 
2064 static int sis900_nway_reset(struct net_device *net_dev)
2065 {
2066 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2067 	return mii_nway_restart(&sis_priv->mii_info);
2068 }
2069 
2070 /**
2071  *	sis900_set_wol - Set up Wake on Lan registers
2072  *	@net_dev: the net device to probe
2073  *	@wol: container for info passed to the driver
2074  *
2075  *	Process ethtool command "wol" to setup wake on lan features.
2076  *	SiS900 supports sending WoL events if a correct packet is received,
2077  *	but there is no simple way to filter them to only a subset (broadcast,
2078  *	multicast, unicast or arp).
2079  */
2080 
2081 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2082 {
2083 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2084 	void __iomem *ioaddr = sis_priv->ioaddr;
2085 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2086 
2087 	if (wol->wolopts == 0) {
2088 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2089 		cfgpmcsr &= ~PME_EN;
2090 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2091 		sw32(pmctrl, pmctrl_bits);
2092 		if (netif_msg_wol(sis_priv))
2093 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2094 		return 0;
2095 	}
2096 
2097 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2098 				| WAKE_BCAST | WAKE_ARP))
2099 		return -EINVAL;
2100 
2101 	if (wol->wolopts & WAKE_MAGIC)
2102 		pmctrl_bits |= MAGICPKT;
2103 	if (wol->wolopts & WAKE_PHY)
2104 		pmctrl_bits |= LINKON;
2105 
2106 	sw32(pmctrl, pmctrl_bits);
2107 
2108 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2109 	cfgpmcsr |= PME_EN;
2110 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2111 	if (netif_msg_wol(sis_priv))
2112 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2113 
2114 	return 0;
2115 }
2116 
2117 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2118 {
2119 	struct sis900_private *sp = netdev_priv(net_dev);
2120 	void __iomem *ioaddr = sp->ioaddr;
2121 	u32 pmctrl_bits;
2122 
2123 	pmctrl_bits = sr32(pmctrl);
2124 	if (pmctrl_bits & MAGICPKT)
2125 		wol->wolopts |= WAKE_MAGIC;
2126 	if (pmctrl_bits & LINKON)
2127 		wol->wolopts |= WAKE_PHY;
2128 
2129 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2130 }
2131 
2132 static const struct ethtool_ops sis900_ethtool_ops = {
2133 	.get_drvinfo 	= sis900_get_drvinfo,
2134 	.get_msglevel	= sis900_get_msglevel,
2135 	.set_msglevel	= sis900_set_msglevel,
2136 	.get_link	= sis900_get_link,
2137 	.get_settings	= sis900_get_settings,
2138 	.set_settings	= sis900_set_settings,
2139 	.nway_reset	= sis900_nway_reset,
2140 	.get_wol	= sis900_get_wol,
2141 	.set_wol	= sis900_set_wol
2142 };
2143 
2144 /**
2145  *	mii_ioctl - process MII i/o control command
2146  *	@net_dev: the net device to command for
2147  *	@rq: parameter for command
2148  *	@cmd: the i/o command
2149  *
2150  *	Process MII command like read/write MII register
2151  */
2152 
2153 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2154 {
2155 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2156 	struct mii_ioctl_data *data = if_mii(rq);
2157 
2158 	switch(cmd) {
2159 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2160 		data->phy_id = sis_priv->mii->phy_addr;
2161 		/* Fall Through */
2162 
2163 	case SIOCGMIIREG:		/* Read MII PHY register. */
2164 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2165 		return 0;
2166 
2167 	case SIOCSMIIREG:		/* Write MII PHY register. */
2168 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2169 		return 0;
2170 	default:
2171 		return -EOPNOTSUPP;
2172 	}
2173 }
2174 
2175 /**
2176  *	sis900_set_config - Set media type by net_device.set_config
2177  *	@dev: the net device for media type change
2178  *	@map: ifmap passed by ifconfig
2179  *
2180  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2181  *	we support only port changes. All other runtime configuration
2182  *	changes will be ignored
2183  */
2184 
2185 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2186 {
2187 	struct sis900_private *sis_priv = netdev_priv(dev);
2188 	struct mii_phy *mii_phy = sis_priv->mii;
2189 
2190 	u16 status;
2191 
2192 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2193 		/* we switch on the ifmap->port field. I couldn't find anything
2194 		 * like a definition or standard for the values of that field.
2195 		 * I think the meaning of those values is device specific. But
2196 		 * since I would like to change the media type via the ifconfig
2197 		 * command I use the definition from linux/netdevice.h
2198 		 * (which seems to be different from the ifport(pcmcia) definition) */
2199 		switch(map->port){
2200 		case IF_PORT_UNKNOWN: /* use auto here */
2201 			dev->if_port = map->port;
2202 			/* we are going to change the media type, so the Link
2203 			 * will be temporary down and we need to reflect that
2204 			 * here. When the Link comes up again, it will be
2205 			 * sensed by the sis_timer procedure, which also does
2206 			 * all the rest for us */
2207 			netif_carrier_off(dev);
2208 
2209 			/* read current state */
2210 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2211 
2212 			/* enable auto negotiation and reset the negotioation
2213 			 * (I don't really know what the auto negatiotiation
2214 			 * reset really means, but it sounds for me right to
2215 			 * do one here) */
2216 			mdio_write(dev, mii_phy->phy_addr,
2217 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2218 
2219 			break;
2220 
2221 		case IF_PORT_10BASET: /* 10BaseT */
2222 			dev->if_port = map->port;
2223 
2224 			/* we are going to change the media type, so the Link
2225 			 * will be temporary down and we need to reflect that
2226 			 * here. When the Link comes up again, it will be
2227 			 * sensed by the sis_timer procedure, which also does
2228 			 * all the rest for us */
2229 			netif_carrier_off(dev);
2230 
2231 			/* set Speed to 10Mbps */
2232 			/* read current state */
2233 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2234 
2235 			/* disable auto negotiation and force 10MBit mode*/
2236 			mdio_write(dev, mii_phy->phy_addr,
2237 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2238 					MII_CNTL_AUTO));
2239 			break;
2240 
2241 		case IF_PORT_100BASET: /* 100BaseT */
2242 		case IF_PORT_100BASETX: /* 100BaseTx */
2243 			dev->if_port = map->port;
2244 
2245 			/* we are going to change the media type, so the Link
2246 			 * will be temporary down and we need to reflect that
2247 			 * here. When the Link comes up again, it will be
2248 			 * sensed by the sis_timer procedure, which also does
2249 			 * all the rest for us */
2250 			netif_carrier_off(dev);
2251 
2252 			/* set Speed to 100Mbps */
2253 			/* disable auto negotiation and enable 100MBit Mode */
2254 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2255 			mdio_write(dev, mii_phy->phy_addr,
2256 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2257 				   MII_CNTL_SPEED);
2258 
2259 			break;
2260 
2261 		case IF_PORT_10BASE2: /* 10Base2 */
2262 		case IF_PORT_AUI: /* AUI */
2263 		case IF_PORT_100BASEFX: /* 100BaseFx */
2264                 	/* These Modes are not supported (are they?)*/
2265 			return -EOPNOTSUPP;
2266 			break;
2267 
2268 		default:
2269 			return -EINVAL;
2270 		}
2271 	}
2272 	return 0;
2273 }
2274 
2275 /**
2276  *	sis900_mcast_bitnr - compute hashtable index
2277  *	@addr: multicast address
2278  *	@revision: revision id of chip
2279  *
2280  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2281  *	hash table, which makes this function a little bit different from other drivers
2282  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2283  *   	multicast hash table.
2284  */
2285 
2286 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2287 {
2288 
2289 	u32 crc = ether_crc(6, addr);
2290 
2291 	/* leave 8 or 7 most siginifant bits */
2292 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2293 		return (int)(crc >> 24);
2294 	else
2295 		return (int)(crc >> 25);
2296 }
2297 
2298 /**
2299  *	set_rx_mode - Set SiS900 receive mode
2300  *	@net_dev: the net device to be set
2301  *
2302  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2303  *	And set the appropriate multicast filter.
2304  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2305  */
2306 
2307 static void set_rx_mode(struct net_device *net_dev)
2308 {
2309 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2310 	void __iomem *ioaddr = sis_priv->ioaddr;
2311 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2312 	int i, table_entries;
2313 	u32 rx_mode;
2314 
2315 	/* 635 Hash Table entries = 256(2^16) */
2316 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2317 			(sis_priv->chipset_rev == SIS900B_900_REV))
2318 		table_entries = 16;
2319 	else
2320 		table_entries = 8;
2321 
2322 	if (net_dev->flags & IFF_PROMISC) {
2323 		/* Accept any kinds of packets */
2324 		rx_mode = RFPromiscuous;
2325 		for (i = 0; i < table_entries; i++)
2326 			mc_filter[i] = 0xffff;
2327 	} else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2328 		   (net_dev->flags & IFF_ALLMULTI)) {
2329 		/* too many multicast addresses or accept all multicast packet */
2330 		rx_mode = RFAAB | RFAAM;
2331 		for (i = 0; i < table_entries; i++)
2332 			mc_filter[i] = 0xffff;
2333 	} else {
2334 		/* Accept Broadcast packet, destination address matchs our
2335 		 * MAC address, use Receive Filter to reject unwanted MCAST
2336 		 * packets */
2337 		struct netdev_hw_addr *ha;
2338 		rx_mode = RFAAB;
2339 
2340 		netdev_for_each_mc_addr(ha, net_dev) {
2341 			unsigned int bit_nr;
2342 
2343 			bit_nr = sis900_mcast_bitnr(ha->addr,
2344 						    sis_priv->chipset_rev);
2345 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2346 		}
2347 	}
2348 
2349 	/* update Multicast Hash Table in Receive Filter */
2350 	for (i = 0; i < table_entries; i++) {
2351                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2352 		sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2353 		sw32(rfdr, mc_filter[i]);
2354 	}
2355 
2356 	sw32(rfcr, RFEN | rx_mode);
2357 
2358 	/* sis900 is capable of looping back packets at MAC level for
2359 	 * debugging purpose */
2360 	if (net_dev->flags & IFF_LOOPBACK) {
2361 		u32 cr_saved;
2362 		/* We must disable Tx/Rx before setting loopback mode */
2363 		cr_saved = sr32(cr);
2364 		sw32(cr, cr_saved | TxDIS | RxDIS);
2365 		/* enable loopback */
2366 		sw32(txcfg, sr32(txcfg) | TxMLB);
2367 		sw32(rxcfg, sr32(rxcfg) | RxATX);
2368 		/* restore cr */
2369 		sw32(cr, cr_saved);
2370 	}
2371 }
2372 
2373 /**
2374  *	sis900_reset - Reset sis900 MAC
2375  *	@net_dev: the net device to reset
2376  *
2377  *	reset sis900 MAC and wait until finished
2378  *	reset through command register
2379  *	change backoff algorithm for 900B0 & 635 M/B
2380  */
2381 
2382 static void sis900_reset(struct net_device *net_dev)
2383 {
2384 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2385 	void __iomem *ioaddr = sis_priv->ioaddr;
2386 	u32 status = TxRCMP | RxRCMP;
2387 	int i;
2388 
2389 	sw32(ier, 0);
2390 	sw32(imr, 0);
2391 	sw32(rfcr, 0);
2392 
2393 	sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2394 
2395 	/* Check that the chip has finished the reset. */
2396 	for (i = 0; status && (i < 1000); i++)
2397 		status ^= sr32(isr) & status;
2398 
2399 	if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2400 	    sis_priv->chipset_rev == SIS900B_900_REV)
2401 		sw32(cfg, PESEL | RND_CNT);
2402 	else
2403 		sw32(cfg, PESEL);
2404 }
2405 
2406 /**
2407  *	sis900_remove - Remove sis900 device
2408  *	@pci_dev: the pci device to be removed
2409  *
2410  *	remove and release SiS900 net device
2411  */
2412 
2413 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2414 {
2415 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2416 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2417 
2418 	unregister_netdev(net_dev);
2419 
2420 	while (sis_priv->first_mii) {
2421 		struct mii_phy *phy = sis_priv->first_mii;
2422 
2423 		sis_priv->first_mii = phy->next;
2424 		kfree(phy);
2425 	}
2426 
2427 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2428 		sis_priv->rx_ring_dma);
2429 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2430 		sis_priv->tx_ring_dma);
2431 	pci_iounmap(pci_dev, sis_priv->ioaddr);
2432 	free_netdev(net_dev);
2433 	pci_release_regions(pci_dev);
2434 	pci_set_drvdata(pci_dev, NULL);
2435 }
2436 
2437 #ifdef CONFIG_PM
2438 
2439 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2440 {
2441 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2442 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2443 	void __iomem *ioaddr = sis_priv->ioaddr;
2444 
2445 	if(!netif_running(net_dev))
2446 		return 0;
2447 
2448 	netif_stop_queue(net_dev);
2449 	netif_device_detach(net_dev);
2450 
2451 	/* Stop the chip's Tx and Rx Status Machine */
2452 	sw32(cr, RxDIS | TxDIS | sr32(cr));
2453 
2454 	pci_set_power_state(pci_dev, PCI_D3hot);
2455 	pci_save_state(pci_dev);
2456 
2457 	return 0;
2458 }
2459 
2460 static int sis900_resume(struct pci_dev *pci_dev)
2461 {
2462 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2463 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2464 	void __iomem *ioaddr = sis_priv->ioaddr;
2465 
2466 	if(!netif_running(net_dev))
2467 		return 0;
2468 	pci_restore_state(pci_dev);
2469 	pci_set_power_state(pci_dev, PCI_D0);
2470 
2471 	sis900_init_rxfilter(net_dev);
2472 
2473 	sis900_init_tx_ring(net_dev);
2474 	sis900_init_rx_ring(net_dev);
2475 
2476 	set_rx_mode(net_dev);
2477 
2478 	netif_device_attach(net_dev);
2479 	netif_start_queue(net_dev);
2480 
2481 	/* Workaround for EDB */
2482 	sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2483 
2484 	/* Enable all known interrupts by setting the interrupt mask. */
2485 	sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2486 	sw32(cr, RxENA | sr32(cr));
2487 	sw32(ier, IE);
2488 
2489 	sis900_check_mode(net_dev, sis_priv->mii);
2490 
2491 	return 0;
2492 }
2493 #endif /* CONFIG_PM */
2494 
2495 static struct pci_driver sis900_pci_driver = {
2496 	.name		= SIS900_MODULE_NAME,
2497 	.id_table	= sis900_pci_tbl,
2498 	.probe		= sis900_probe,
2499 	.remove		= __devexit_p(sis900_remove),
2500 #ifdef CONFIG_PM
2501 	.suspend	= sis900_suspend,
2502 	.resume		= sis900_resume,
2503 #endif /* CONFIG_PM */
2504 };
2505 
2506 static int __init sis900_init_module(void)
2507 {
2508 /* when a module, this is printed whether or not devices are found in probe */
2509 #ifdef MODULE
2510 	printk(version);
2511 #endif
2512 
2513 	return pci_register_driver(&sis900_pci_driver);
2514 }
2515 
2516 static void __exit sis900_cleanup_module(void)
2517 {
2518 	pci_unregister_driver(&sis900_pci_driver);
2519 }
2520 
2521 module_init(sis900_init_module);
2522 module_exit(sis900_cleanup_module);
2523 
2524