1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7  *
8  * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9  * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10  *
11  * References:
12  *  o IOC3 ASIC specification 4.51, 1996-04-18
13  *  o IEEE 802.3 specification, 2000 edition
14  *  o DP38840A Specification, National Semiconductor, March 1997
15  *
16  * To do:
17  *
18  *  o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19  *  o Handle allocation failures in ioc3_init_rings().
20  *  o Use prefetching for large packets.  What is a good lower limit for
21  *    prefetching?
22  *  o We're probably allocating a bit too much memory.
23  *  o Use hardware checksums.
24  *  o Convert to using a IOC3 meta driver.
25  *  o Which PHYs might possibly be attached to the IOC3 in real live,
26  *    which workarounds are required for them?  Do we ever have Lucent's?
27  *  o For the 2.5 branch kill the mii-tool ioctls.
28  */
29 
30 #define IOC3_NAME	"ioc3-eth"
31 #define IOC3_VERSION	"2.6.3-4"
32 
33 #include <linux/delay.h>
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/gfp.h>
47 
48 #ifdef CONFIG_SERIAL_8250
49 #include <linux/serial_core.h>
50 #include <linux/serial_8250.h>
51 #include <linux/serial_reg.h>
52 #endif
53 
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/ethtool.h>
57 #include <linux/skbuff.h>
58 #include <net/ip.h>
59 
60 #include <asm/byteorder.h>
61 #include <asm/io.h>
62 #include <asm/pgtable.h>
63 #include <linux/uaccess.h>
64 #include <asm/sn/types.h>
65 #include <asm/sn/ioc3.h>
66 #include <asm/pci/bridge.h>
67 
68 /*
69  * 64 RX buffers.  This is tunable in the range of 16 <= x < 512.  The
70  * value must be a power of two.
71  */
72 #define RX_BUFFS 64
73 
74 #define ETCSR_FD	((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
75 #define ETCSR_HD	((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
76 
77 /* Private per NIC data of the driver.  */
78 struct ioc3_private {
79 	struct ioc3 *regs;
80 	unsigned long *rxr;		/* pointer to receiver ring */
81 	struct ioc3_etxd *txr;
82 	struct sk_buff *rx_skbs[512];
83 	struct sk_buff *tx_skbs[128];
84 	int rx_ci;			/* RX consumer index */
85 	int rx_pi;			/* RX producer index */
86 	int tx_ci;			/* TX consumer index */
87 	int tx_pi;			/* TX producer index */
88 	int txqlen;
89 	u32 emcr, ehar_h, ehar_l;
90 	spinlock_t ioc3_lock;
91 	struct mii_if_info mii;
92 
93 	struct pci_dev *pdev;
94 
95 	/* Members used by autonegotiation  */
96 	struct timer_list ioc3_timer;
97 };
98 
99 static inline struct net_device *priv_netdev(struct ioc3_private *dev)
100 {
101 	return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
102 }
103 
104 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
105 static void ioc3_set_multicast_list(struct net_device *dev);
106 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
107 static void ioc3_timeout(struct net_device *dev);
108 static inline unsigned int ioc3_hash(const unsigned char *addr);
109 static inline void ioc3_stop(struct ioc3_private *ip);
110 static void ioc3_init(struct net_device *dev);
111 
112 static const char ioc3_str[] = "IOC3 Ethernet";
113 static const struct ethtool_ops ioc3_ethtool_ops;
114 
115 /* We use this to acquire receive skb's that we can DMA directly into. */
116 
117 #define IOC3_CACHELINE	128UL
118 
119 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
120 {
121 	return (~addr + 1) & (IOC3_CACHELINE - 1UL);
122 }
123 
124 static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
125 	unsigned int gfp_mask)
126 {
127 	struct sk_buff *skb;
128 
129 	skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
130 	if (likely(skb)) {
131 		int offset = aligned_rx_skb_addr((unsigned long) skb->data);
132 		if (offset)
133 			skb_reserve(skb, offset);
134 	}
135 
136 	return skb;
137 }
138 
139 static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
140 {
141 #ifdef CONFIG_SGI_IP27
142 	vdev <<= 57;   /* Shift to PCI64_ATTR_VIRTUAL */
143 
144 	return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
145 	       ((unsigned long)ptr & TO_PHYS_MASK);
146 #else
147 	return virt_to_bus(ptr);
148 #endif
149 }
150 
151 /* BEWARE: The IOC3 documentation documents the size of rx buffers as
152    1644 while it's actually 1664.  This one was nasty to track down ...  */
153 #define RX_OFFSET		10
154 #define RX_BUF_ALLOC_SIZE	(1664 + RX_OFFSET + IOC3_CACHELINE)
155 
156 /* DMA barrier to separate cached and uncached accesses.  */
157 #define BARRIER()							\
158 	__asm__("sync" ::: "memory")
159 
160 
161 #define IOC3_SIZE 0x100000
162 
163 /*
164  * IOC3 is a big endian device
165  *
166  * Unorthodox but makes the users of these macros more readable - the pointer
167  * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
168  * in the environment.
169  */
170 #define ioc3_r_mcr()		be32_to_cpu(ioc3->mcr)
171 #define ioc3_w_mcr(v)		do { ioc3->mcr = cpu_to_be32(v); } while (0)
172 #define ioc3_w_gpcr_s(v)	do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
173 #define ioc3_r_emcr()		be32_to_cpu(ioc3->emcr)
174 #define ioc3_w_emcr(v)		do { ioc3->emcr = cpu_to_be32(v); } while (0)
175 #define ioc3_r_eisr()		be32_to_cpu(ioc3->eisr)
176 #define ioc3_w_eisr(v)		do { ioc3->eisr = cpu_to_be32(v); } while (0)
177 #define ioc3_r_eier()		be32_to_cpu(ioc3->eier)
178 #define ioc3_w_eier(v)		do { ioc3->eier = cpu_to_be32(v); } while (0)
179 #define ioc3_r_ercsr()		be32_to_cpu(ioc3->ercsr)
180 #define ioc3_w_ercsr(v)		do { ioc3->ercsr = cpu_to_be32(v); } while (0)
181 #define ioc3_r_erbr_h()		be32_to_cpu(ioc3->erbr_h)
182 #define ioc3_w_erbr_h(v)	do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
183 #define ioc3_r_erbr_l()		be32_to_cpu(ioc3->erbr_l)
184 #define ioc3_w_erbr_l(v)	do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
185 #define ioc3_r_erbar()		be32_to_cpu(ioc3->erbar)
186 #define ioc3_w_erbar(v)		do { ioc3->erbar = cpu_to_be32(v); } while (0)
187 #define ioc3_r_ercir()		be32_to_cpu(ioc3->ercir)
188 #define ioc3_w_ercir(v)		do { ioc3->ercir = cpu_to_be32(v); } while (0)
189 #define ioc3_r_erpir()		be32_to_cpu(ioc3->erpir)
190 #define ioc3_w_erpir(v)		do { ioc3->erpir = cpu_to_be32(v); } while (0)
191 #define ioc3_r_ertr()		be32_to_cpu(ioc3->ertr)
192 #define ioc3_w_ertr(v)		do { ioc3->ertr = cpu_to_be32(v); } while (0)
193 #define ioc3_r_etcsr()		be32_to_cpu(ioc3->etcsr)
194 #define ioc3_w_etcsr(v)		do { ioc3->etcsr = cpu_to_be32(v); } while (0)
195 #define ioc3_r_ersr()		be32_to_cpu(ioc3->ersr)
196 #define ioc3_w_ersr(v)		do { ioc3->ersr = cpu_to_be32(v); } while (0)
197 #define ioc3_r_etcdc()		be32_to_cpu(ioc3->etcdc)
198 #define ioc3_w_etcdc(v)		do { ioc3->etcdc = cpu_to_be32(v); } while (0)
199 #define ioc3_r_ebir()		be32_to_cpu(ioc3->ebir)
200 #define ioc3_w_ebir(v)		do { ioc3->ebir = cpu_to_be32(v); } while (0)
201 #define ioc3_r_etbr_h()		be32_to_cpu(ioc3->etbr_h)
202 #define ioc3_w_etbr_h(v)	do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
203 #define ioc3_r_etbr_l()		be32_to_cpu(ioc3->etbr_l)
204 #define ioc3_w_etbr_l(v)	do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
205 #define ioc3_r_etcir()		be32_to_cpu(ioc3->etcir)
206 #define ioc3_w_etcir(v)		do { ioc3->etcir = cpu_to_be32(v); } while (0)
207 #define ioc3_r_etpir()		be32_to_cpu(ioc3->etpir)
208 #define ioc3_w_etpir(v)		do { ioc3->etpir = cpu_to_be32(v); } while (0)
209 #define ioc3_r_emar_h()		be32_to_cpu(ioc3->emar_h)
210 #define ioc3_w_emar_h(v)	do { ioc3->emar_h = cpu_to_be32(v); } while (0)
211 #define ioc3_r_emar_l()		be32_to_cpu(ioc3->emar_l)
212 #define ioc3_w_emar_l(v)	do { ioc3->emar_l = cpu_to_be32(v); } while (0)
213 #define ioc3_r_ehar_h()		be32_to_cpu(ioc3->ehar_h)
214 #define ioc3_w_ehar_h(v)	do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
215 #define ioc3_r_ehar_l()		be32_to_cpu(ioc3->ehar_l)
216 #define ioc3_w_ehar_l(v)	do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
217 #define ioc3_r_micr()		be32_to_cpu(ioc3->micr)
218 #define ioc3_w_micr(v)		do { ioc3->micr = cpu_to_be32(v); } while (0)
219 #define ioc3_r_midr_r()		be32_to_cpu(ioc3->midr_r)
220 #define ioc3_w_midr_r(v)	do { ioc3->midr_r = cpu_to_be32(v); } while (0)
221 #define ioc3_r_midr_w()		be32_to_cpu(ioc3->midr_w)
222 #define ioc3_w_midr_w(v)	do { ioc3->midr_w = cpu_to_be32(v); } while (0)
223 
224 static inline u32 mcr_pack(u32 pulse, u32 sample)
225 {
226 	return (pulse << 10) | (sample << 2);
227 }
228 
229 static int nic_wait(struct ioc3 *ioc3)
230 {
231 	u32 mcr;
232 
233         do {
234                 mcr = ioc3_r_mcr();
235         } while (!(mcr & 2));
236 
237         return mcr & 1;
238 }
239 
240 static int nic_reset(struct ioc3 *ioc3)
241 {
242         int presence;
243 
244 	ioc3_w_mcr(mcr_pack(500, 65));
245 	presence = nic_wait(ioc3);
246 
247 	ioc3_w_mcr(mcr_pack(0, 500));
248 	nic_wait(ioc3);
249 
250         return presence;
251 }
252 
253 static inline int nic_read_bit(struct ioc3 *ioc3)
254 {
255 	int result;
256 
257 	ioc3_w_mcr(mcr_pack(6, 13));
258 	result = nic_wait(ioc3);
259 	ioc3_w_mcr(mcr_pack(0, 100));
260 	nic_wait(ioc3);
261 
262 	return result;
263 }
264 
265 static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
266 {
267 	if (bit)
268 		ioc3_w_mcr(mcr_pack(6, 110));
269 	else
270 		ioc3_w_mcr(mcr_pack(80, 30));
271 
272 	nic_wait(ioc3);
273 }
274 
275 /*
276  * Read a byte from an iButton device
277  */
278 static u32 nic_read_byte(struct ioc3 *ioc3)
279 {
280 	u32 result = 0;
281 	int i;
282 
283 	for (i = 0; i < 8; i++)
284 		result = (result >> 1) | (nic_read_bit(ioc3) << 7);
285 
286 	return result;
287 }
288 
289 /*
290  * Write a byte to an iButton device
291  */
292 static void nic_write_byte(struct ioc3 *ioc3, int byte)
293 {
294 	int i, bit;
295 
296 	for (i = 8; i; i--) {
297 		bit = byte & 1;
298 		byte >>= 1;
299 
300 		nic_write_bit(ioc3, bit);
301 	}
302 }
303 
304 static u64 nic_find(struct ioc3 *ioc3, int *last)
305 {
306 	int a, b, index, disc;
307 	u64 address = 0;
308 
309 	nic_reset(ioc3);
310 	/* Search ROM.  */
311 	nic_write_byte(ioc3, 0xf0);
312 
313 	/* Algorithm from ``Book of iButton Standards''.  */
314 	for (index = 0, disc = 0; index < 64; index++) {
315 		a = nic_read_bit(ioc3);
316 		b = nic_read_bit(ioc3);
317 
318 		if (a && b) {
319 			printk("NIC search failed (not fatal).\n");
320 			*last = 0;
321 			return 0;
322 		}
323 
324 		if (!a && !b) {
325 			if (index == *last) {
326 				address |= 1UL << index;
327 			} else if (index > *last) {
328 				address &= ~(1UL << index);
329 				disc = index;
330 			} else if ((address & (1UL << index)) == 0)
331 				disc = index;
332 			nic_write_bit(ioc3, address & (1UL << index));
333 			continue;
334 		} else {
335 			if (a)
336 				address |= 1UL << index;
337 			else
338 				address &= ~(1UL << index);
339 			nic_write_bit(ioc3, a);
340 			continue;
341 		}
342 	}
343 
344 	*last = disc;
345 
346 	return address;
347 }
348 
349 static int nic_init(struct ioc3 *ioc3)
350 {
351 	const char *unknown = "unknown";
352 	const char *type = unknown;
353 	u8 crc;
354 	u8 serial[6];
355 	int save = 0, i;
356 
357 	while (1) {
358 		u64 reg;
359 		reg = nic_find(ioc3, &save);
360 
361 		switch (reg & 0xff) {
362 		case 0x91:
363 			type = "DS1981U";
364 			break;
365 		default:
366 			if (save == 0) {
367 				/* Let the caller try again.  */
368 				return -1;
369 			}
370 			continue;
371 		}
372 
373 		nic_reset(ioc3);
374 
375 		/* Match ROM.  */
376 		nic_write_byte(ioc3, 0x55);
377 		for (i = 0; i < 8; i++)
378 			nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
379 
380 		reg >>= 8; /* Shift out type.  */
381 		for (i = 0; i < 6; i++) {
382 			serial[i] = reg & 0xff;
383 			reg >>= 8;
384 		}
385 		crc = reg & 0xff;
386 		break;
387 	}
388 
389 	printk("Found %s NIC", type);
390 	if (type != unknown)
391 		printk (" registration number %pM, CRC %02x", serial, crc);
392 	printk(".\n");
393 
394 	return 0;
395 }
396 
397 /*
398  * Read the NIC (Number-In-a-Can) device used to store the MAC address on
399  * SN0 / SN00 nodeboards and PCI cards.
400  */
401 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
402 {
403 	struct ioc3 *ioc3 = ip->regs;
404 	u8 nic[14];
405 	int tries = 2; /* There may be some problem with the battery?  */
406 	int i;
407 
408 	ioc3_w_gpcr_s(1 << 21);
409 
410 	while (tries--) {
411 		if (!nic_init(ioc3))
412 			break;
413 		udelay(500);
414 	}
415 
416 	if (tries < 0) {
417 		printk("Failed to read MAC address\n");
418 		return;
419 	}
420 
421 	/* Read Memory.  */
422 	nic_write_byte(ioc3, 0xf0);
423 	nic_write_byte(ioc3, 0x00);
424 	nic_write_byte(ioc3, 0x00);
425 
426 	for (i = 13; i >= 0; i--)
427 		nic[i] = nic_read_byte(ioc3);
428 
429 	for (i = 2; i < 8; i++)
430 		priv_netdev(ip)->dev_addr[i - 2] = nic[i];
431 }
432 
433 /*
434  * Ok, this is hosed by design.  It's necessary to know what machine the
435  * NIC is in in order to know how to read the NIC address.  We also have
436  * to know if it's a PCI card or a NIC in on the node board ...
437  */
438 static void ioc3_get_eaddr(struct ioc3_private *ip)
439 {
440 	ioc3_get_eaddr_nic(ip);
441 
442 	printk("Ethernet address is %pM.\n", priv_netdev(ip)->dev_addr);
443 }
444 
445 static void __ioc3_set_mac_address(struct net_device *dev)
446 {
447 	struct ioc3_private *ip = netdev_priv(dev);
448 	struct ioc3 *ioc3 = ip->regs;
449 
450 	ioc3_w_emar_h((dev->dev_addr[5] <<  8) | dev->dev_addr[4]);
451 	ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
452 	              (dev->dev_addr[1] <<  8) | dev->dev_addr[0]);
453 }
454 
455 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
456 {
457 	struct ioc3_private *ip = netdev_priv(dev);
458 	struct sockaddr *sa = addr;
459 
460 	memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
461 
462 	spin_lock_irq(&ip->ioc3_lock);
463 	__ioc3_set_mac_address(dev);
464 	spin_unlock_irq(&ip->ioc3_lock);
465 
466 	return 0;
467 }
468 
469 /*
470  * Caller must hold the ioc3_lock ever for MII readers.  This is also
471  * used to protect the transmitter side but it's low contention.
472  */
473 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
474 {
475 	struct ioc3_private *ip = netdev_priv(dev);
476 	struct ioc3 *ioc3 = ip->regs;
477 
478 	while (ioc3_r_micr() & MICR_BUSY);
479 	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
480 	while (ioc3_r_micr() & MICR_BUSY);
481 
482 	return ioc3_r_midr_r() & MIDR_DATA_MASK;
483 }
484 
485 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
486 {
487 	struct ioc3_private *ip = netdev_priv(dev);
488 	struct ioc3 *ioc3 = ip->regs;
489 
490 	while (ioc3_r_micr() & MICR_BUSY);
491 	ioc3_w_midr_w(data);
492 	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
493 	while (ioc3_r_micr() & MICR_BUSY);
494 }
495 
496 static int ioc3_mii_init(struct ioc3_private *ip);
497 
498 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
499 {
500 	struct ioc3_private *ip = netdev_priv(dev);
501 	struct ioc3 *ioc3 = ip->regs;
502 
503 	dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
504 	return &dev->stats;
505 }
506 
507 static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
508 {
509 	struct ethhdr *eh = eth_hdr(skb);
510 	uint32_t csum, ehsum;
511 	unsigned int proto;
512 	struct iphdr *ih;
513 	uint16_t *ew;
514 	unsigned char *cp;
515 
516 	/*
517 	 * Did hardware handle the checksum at all?  The cases we can handle
518 	 * are:
519 	 *
520 	 * - TCP and UDP checksums of IPv4 only.
521 	 * - IPv6 would be doable but we keep that for later ...
522 	 * - Only unfragmented packets.  Did somebody already tell you
523 	 *   fragmentation is evil?
524 	 * - don't care about packet size.  Worst case when processing a
525 	 *   malformed packet we'll try to access the packet at ip header +
526 	 *   64 bytes which is still inside the skb.  Even in the unlikely
527 	 *   case where the checksum is right the higher layers will still
528 	 *   drop the packet as appropriate.
529 	 */
530 	if (eh->h_proto != htons(ETH_P_IP))
531 		return;
532 
533 	ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
534 	if (ip_is_fragment(ih))
535 		return;
536 
537 	proto = ih->protocol;
538 	if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
539 		return;
540 
541 	/* Same as tx - compute csum of pseudo header  */
542 	csum = hwsum +
543 	       (ih->tot_len - (ih->ihl << 2)) +
544 	       htons((uint16_t)ih->protocol) +
545 	       (ih->saddr >> 16) + (ih->saddr & 0xffff) +
546 	       (ih->daddr >> 16) + (ih->daddr & 0xffff);
547 
548 	/* Sum up ethernet dest addr, src addr and protocol  */
549 	ew = (uint16_t *) eh;
550 	ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
551 
552 	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
553 	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
554 
555 	csum += 0xffff ^ ehsum;
556 
557 	/* In the next step we also subtract the 1's complement
558 	   checksum of the trailing ethernet CRC.  */
559 	cp = (char *)eh + len;	/* points at trailing CRC */
560 	if (len & 1) {
561 		csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
562 		csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
563 	} else {
564 		csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
565 		csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
566 	}
567 
568 	csum = (csum & 0xffff) + (csum >> 16);
569 	csum = (csum & 0xffff) + (csum >> 16);
570 
571 	if (csum == 0xffff)
572 		skb->ip_summed = CHECKSUM_UNNECESSARY;
573 }
574 
575 static inline void ioc3_rx(struct net_device *dev)
576 {
577 	struct ioc3_private *ip = netdev_priv(dev);
578 	struct sk_buff *skb, *new_skb;
579 	struct ioc3 *ioc3 = ip->regs;
580 	int rx_entry, n_entry, len;
581 	struct ioc3_erxbuf *rxb;
582 	unsigned long *rxr;
583 	u32 w0, err;
584 
585 	rxr = ip->rxr;		/* Ring base */
586 	rx_entry = ip->rx_ci;				/* RX consume index */
587 	n_entry = ip->rx_pi;
588 
589 	skb = ip->rx_skbs[rx_entry];
590 	rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
591 	w0 = be32_to_cpu(rxb->w0);
592 
593 	while (w0 & ERXBUF_V) {
594 		err = be32_to_cpu(rxb->err);		/* It's valid ...  */
595 		if (err & ERXBUF_GOODPKT) {
596 			len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
597 			skb_trim(skb, len);
598 			skb->protocol = eth_type_trans(skb, dev);
599 
600 			new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
601 			if (!new_skb) {
602 				/* Ouch, drop packet and just recycle packet
603 				   to keep the ring filled.  */
604 				dev->stats.rx_dropped++;
605 				new_skb = skb;
606 				goto next;
607 			}
608 
609 			if (likely(dev->features & NETIF_F_RXCSUM))
610 				ioc3_tcpudp_checksum(skb,
611 					w0 & ERXBUF_IPCKSUM_MASK, len);
612 
613 			netif_rx(skb);
614 
615 			ip->rx_skbs[rx_entry] = NULL;	/* Poison  */
616 
617 			/* Because we reserve afterwards. */
618 			skb_put(new_skb, (1664 + RX_OFFSET));
619 			rxb = (struct ioc3_erxbuf *) new_skb->data;
620 			skb_reserve(new_skb, RX_OFFSET);
621 
622 			dev->stats.rx_packets++;		/* Statistics */
623 			dev->stats.rx_bytes += len;
624 		} else {
625 			/* The frame is invalid and the skb never
626 			   reached the network layer so we can just
627 			   recycle it.  */
628 			new_skb = skb;
629 			dev->stats.rx_errors++;
630 		}
631 		if (err & ERXBUF_CRCERR)	/* Statistics */
632 			dev->stats.rx_crc_errors++;
633 		if (err & ERXBUF_FRAMERR)
634 			dev->stats.rx_frame_errors++;
635 next:
636 		ip->rx_skbs[n_entry] = new_skb;
637 		rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
638 		rxb->w0 = 0;				/* Clear valid flag */
639 		n_entry = (n_entry + 1) & 511;		/* Update erpir */
640 
641 		/* Now go on to the next ring entry.  */
642 		rx_entry = (rx_entry + 1) & 511;
643 		skb = ip->rx_skbs[rx_entry];
644 		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
645 		w0 = be32_to_cpu(rxb->w0);
646 	}
647 	ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
648 	ip->rx_pi = n_entry;
649 	ip->rx_ci = rx_entry;
650 }
651 
652 static inline void ioc3_tx(struct net_device *dev)
653 {
654 	struct ioc3_private *ip = netdev_priv(dev);
655 	unsigned long packets, bytes;
656 	struct ioc3 *ioc3 = ip->regs;
657 	int tx_entry, o_entry;
658 	struct sk_buff *skb;
659 	u32 etcir;
660 
661 	spin_lock(&ip->ioc3_lock);
662 	etcir = ioc3_r_etcir();
663 
664 	tx_entry = (etcir >> 7) & 127;
665 	o_entry = ip->tx_ci;
666 	packets = 0;
667 	bytes = 0;
668 
669 	while (o_entry != tx_entry) {
670 		packets++;
671 		skb = ip->tx_skbs[o_entry];
672 		bytes += skb->len;
673 		dev_kfree_skb_irq(skb);
674 		ip->tx_skbs[o_entry] = NULL;
675 
676 		o_entry = (o_entry + 1) & 127;		/* Next */
677 
678 		etcir = ioc3_r_etcir();			/* More pkts sent?  */
679 		tx_entry = (etcir >> 7) & 127;
680 	}
681 
682 	dev->stats.tx_packets += packets;
683 	dev->stats.tx_bytes += bytes;
684 	ip->txqlen -= packets;
685 
686 	if (ip->txqlen < 128)
687 		netif_wake_queue(dev);
688 
689 	ip->tx_ci = o_entry;
690 	spin_unlock(&ip->ioc3_lock);
691 }
692 
693 /*
694  * Deal with fatal IOC3 errors.  This condition might be caused by a hard or
695  * software problems, so we should try to recover
696  * more gracefully if this ever happens.  In theory we might be flooded
697  * with such error interrupts if something really goes wrong, so we might
698  * also consider to take the interface down.
699  */
700 static void ioc3_error(struct net_device *dev, u32 eisr)
701 {
702 	struct ioc3_private *ip = netdev_priv(dev);
703 	unsigned char *iface = dev->name;
704 
705 	spin_lock(&ip->ioc3_lock);
706 
707 	if (eisr & EISR_RXOFLO)
708 		printk(KERN_ERR "%s: RX overflow.\n", iface);
709 	if (eisr & EISR_RXBUFOFLO)
710 		printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
711 	if (eisr & EISR_RXMEMERR)
712 		printk(KERN_ERR "%s: RX PCI error.\n", iface);
713 	if (eisr & EISR_RXPARERR)
714 		printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
715 	if (eisr & EISR_TXBUFUFLO)
716 		printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
717 	if (eisr & EISR_TXMEMERR)
718 		printk(KERN_ERR "%s: TX PCI error.\n", iface);
719 
720 	ioc3_stop(ip);
721 	ioc3_init(dev);
722 	ioc3_mii_init(ip);
723 
724 	netif_wake_queue(dev);
725 
726 	spin_unlock(&ip->ioc3_lock);
727 }
728 
729 /* The interrupt handler does all of the Rx thread work and cleans up
730    after the Tx thread.  */
731 static irqreturn_t ioc3_interrupt(int irq, void *_dev)
732 {
733 	struct net_device *dev = (struct net_device *)_dev;
734 	struct ioc3_private *ip = netdev_priv(dev);
735 	struct ioc3 *ioc3 = ip->regs;
736 	const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
737 	                    EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
738 	                    EISR_TXEXPLICIT | EISR_TXMEMERR;
739 	u32 eisr;
740 
741 	eisr = ioc3_r_eisr() & enabled;
742 
743 	ioc3_w_eisr(eisr);
744 	(void) ioc3_r_eisr();				/* Flush */
745 
746 	if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
747 	            EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
748 		ioc3_error(dev, eisr);
749 	if (eisr & EISR_RXTIMERINT)
750 		ioc3_rx(dev);
751 	if (eisr & EISR_TXEXPLICIT)
752 		ioc3_tx(dev);
753 
754 	return IRQ_HANDLED;
755 }
756 
757 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
758 {
759 	struct ioc3 *ioc3 = ip->regs;
760 
761 	if (ip->mii.full_duplex) {
762 		ioc3_w_etcsr(ETCSR_FD);
763 		ip->emcr |= EMCR_DUPLEX;
764 	} else {
765 		ioc3_w_etcsr(ETCSR_HD);
766 		ip->emcr &= ~EMCR_DUPLEX;
767 	}
768 	ioc3_w_emcr(ip->emcr);
769 }
770 
771 static void ioc3_timer(unsigned long data)
772 {
773 	struct ioc3_private *ip = (struct ioc3_private *) data;
774 
775 	/* Print the link status if it has changed */
776 	mii_check_media(&ip->mii, 1, 0);
777 	ioc3_setup_duplex(ip);
778 
779 	ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
780 	add_timer(&ip->ioc3_timer);
781 }
782 
783 /*
784  * Try to find a PHY.  There is no apparent relation between the MII addresses
785  * in the SGI documentation and what we find in reality, so we simply probe
786  * for the PHY.  It seems IOC3 PHYs usually live on address 31.  One of my
787  * onboard IOC3s has the special oddity that probing doesn't seem to find it
788  * yet the interface seems to work fine, so if probing fails we for now will
789  * simply default to PHY 31 instead of bailing out.
790  */
791 static int ioc3_mii_init(struct ioc3_private *ip)
792 {
793 	struct net_device *dev = priv_netdev(ip);
794 	int i, found = 0, res = 0;
795 	int ioc3_phy_workaround = 1;
796 	u16 word;
797 
798 	for (i = 0; i < 32; i++) {
799 		word = ioc3_mdio_read(dev, i, MII_PHYSID1);
800 
801 		if (word != 0xffff && word != 0x0000) {
802 			found = 1;
803 			break;			/* Found a PHY		*/
804 		}
805 	}
806 
807 	if (!found) {
808 		if (ioc3_phy_workaround)
809 			i = 31;
810 		else {
811 			ip->mii.phy_id = -1;
812 			res = -ENODEV;
813 			goto out;
814 		}
815 	}
816 
817 	ip->mii.phy_id = i;
818 
819 out:
820 	return res;
821 }
822 
823 static void ioc3_mii_start(struct ioc3_private *ip)
824 {
825 	ip->ioc3_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
826 	ip->ioc3_timer.data = (unsigned long) ip;
827 	ip->ioc3_timer.function = ioc3_timer;
828 	add_timer(&ip->ioc3_timer);
829 }
830 
831 static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
832 {
833 	struct sk_buff *skb;
834 	int i;
835 
836 	for (i = ip->rx_ci; i & 15; i++) {
837 		ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
838 		ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
839 	}
840 	ip->rx_pi &= 511;
841 	ip->rx_ci &= 511;
842 
843 	for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
844 		struct ioc3_erxbuf *rxb;
845 		skb = ip->rx_skbs[i];
846 		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
847 		rxb->w0 = 0;
848 	}
849 }
850 
851 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
852 {
853 	struct sk_buff *skb;
854 	int i;
855 
856 	for (i=0; i < 128; i++) {
857 		skb = ip->tx_skbs[i];
858 		if (skb) {
859 			ip->tx_skbs[i] = NULL;
860 			dev_kfree_skb_any(skb);
861 		}
862 		ip->txr[i].cmd = 0;
863 	}
864 	ip->tx_pi = 0;
865 	ip->tx_ci = 0;
866 }
867 
868 static void ioc3_free_rings(struct ioc3_private *ip)
869 {
870 	struct sk_buff *skb;
871 	int rx_entry, n_entry;
872 
873 	if (ip->txr) {
874 		ioc3_clean_tx_ring(ip);
875 		free_pages((unsigned long)ip->txr, 2);
876 		ip->txr = NULL;
877 	}
878 
879 	if (ip->rxr) {
880 		n_entry = ip->rx_ci;
881 		rx_entry = ip->rx_pi;
882 
883 		while (n_entry != rx_entry) {
884 			skb = ip->rx_skbs[n_entry];
885 			if (skb)
886 				dev_kfree_skb_any(skb);
887 
888 			n_entry = (n_entry + 1) & 511;
889 		}
890 		free_page((unsigned long)ip->rxr);
891 		ip->rxr = NULL;
892 	}
893 }
894 
895 static void ioc3_alloc_rings(struct net_device *dev)
896 {
897 	struct ioc3_private *ip = netdev_priv(dev);
898 	struct ioc3_erxbuf *rxb;
899 	unsigned long *rxr;
900 	int i;
901 
902 	if (ip->rxr == NULL) {
903 		/* Allocate and initialize rx ring.  4kb = 512 entries  */
904 		ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
905 		rxr = ip->rxr;
906 		if (!rxr)
907 			printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
908 
909 		/* Now the rx buffers.  The RX ring may be larger but
910 		   we only allocate 16 buffers for now.  Need to tune
911 		   this for performance and memory later.  */
912 		for (i = 0; i < RX_BUFFS; i++) {
913 			struct sk_buff *skb;
914 
915 			skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
916 			if (!skb) {
917 				show_free_areas(0, NULL);
918 				continue;
919 			}
920 
921 			ip->rx_skbs[i] = skb;
922 
923 			/* Because we reserve afterwards. */
924 			skb_put(skb, (1664 + RX_OFFSET));
925 			rxb = (struct ioc3_erxbuf *) skb->data;
926 			rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
927 			skb_reserve(skb, RX_OFFSET);
928 		}
929 		ip->rx_ci = 0;
930 		ip->rx_pi = RX_BUFFS;
931 	}
932 
933 	if (ip->txr == NULL) {
934 		/* Allocate and initialize tx rings.  16kb = 128 bufs.  */
935 		ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
936 		if (!ip->txr)
937 			printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
938 		ip->tx_pi = 0;
939 		ip->tx_ci = 0;
940 	}
941 }
942 
943 static void ioc3_init_rings(struct net_device *dev)
944 {
945 	struct ioc3_private *ip = netdev_priv(dev);
946 	struct ioc3 *ioc3 = ip->regs;
947 	unsigned long ring;
948 
949 	ioc3_free_rings(ip);
950 	ioc3_alloc_rings(dev);
951 
952 	ioc3_clean_rx_ring(ip);
953 	ioc3_clean_tx_ring(ip);
954 
955 	/* Now the rx ring base, consume & produce registers.  */
956 	ring = ioc3_map(ip->rxr, 0);
957 	ioc3_w_erbr_h(ring >> 32);
958 	ioc3_w_erbr_l(ring & 0xffffffff);
959 	ioc3_w_ercir(ip->rx_ci << 3);
960 	ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
961 
962 	ring = ioc3_map(ip->txr, 0);
963 
964 	ip->txqlen = 0;					/* nothing queued  */
965 
966 	/* Now the tx ring base, consume & produce registers.  */
967 	ioc3_w_etbr_h(ring >> 32);
968 	ioc3_w_etbr_l(ring & 0xffffffff);
969 	ioc3_w_etpir(ip->tx_pi << 7);
970 	ioc3_w_etcir(ip->tx_ci << 7);
971 	(void) ioc3_r_etcir();				/* Flush */
972 }
973 
974 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
975 {
976 	struct ioc3 *ioc3 = ip->regs;
977 	volatile u32 *ssram0 = &ioc3->ssram[0x0000];
978 	volatile u32 *ssram1 = &ioc3->ssram[0x4000];
979 	unsigned int pattern = 0x5555;
980 
981 	/* Assume the larger size SSRAM and enable parity checking */
982 	ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
983 
984 	*ssram0 = pattern;
985 	*ssram1 = ~pattern & IOC3_SSRAM_DM;
986 
987 	if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
988 	    (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
989 		/* set ssram size to 64 KB */
990 		ip->emcr = EMCR_RAMPAR;
991 		ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
992 	} else
993 		ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
994 }
995 
996 static void ioc3_init(struct net_device *dev)
997 {
998 	struct ioc3_private *ip = netdev_priv(dev);
999 	struct ioc3 *ioc3 = ip->regs;
1000 
1001 	del_timer_sync(&ip->ioc3_timer);	/* Kill if running	*/
1002 
1003 	ioc3_w_emcr(EMCR_RST);			/* Reset		*/
1004 	(void) ioc3_r_emcr();			/* Flush WB		*/
1005 	udelay(4);				/* Give it time ...	*/
1006 	ioc3_w_emcr(0);
1007 	(void) ioc3_r_emcr();
1008 
1009 	/* Misc registers  */
1010 #ifdef CONFIG_SGI_IP27
1011 	ioc3_w_erbar(PCI64_ATTR_BAR >> 32);	/* Barrier on last store */
1012 #else
1013 	ioc3_w_erbar(0);			/* Let PCI API get it right */
1014 #endif
1015 	(void) ioc3_r_etcdc();			/* Clear on read */
1016 	ioc3_w_ercsr(15);			/* RX low watermark  */
1017 	ioc3_w_ertr(0);				/* Interrupt immediately */
1018 	__ioc3_set_mac_address(dev);
1019 	ioc3_w_ehar_h(ip->ehar_h);
1020 	ioc3_w_ehar_l(ip->ehar_l);
1021 	ioc3_w_ersr(42);			/* XXX should be random */
1022 
1023 	ioc3_init_rings(dev);
1024 
1025 	ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1026 	             EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1027 	ioc3_w_emcr(ip->emcr);
1028 	ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1029 	            EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1030 	            EISR_TXEXPLICIT | EISR_TXMEMERR);
1031 	(void) ioc3_r_eier();
1032 }
1033 
1034 static inline void ioc3_stop(struct ioc3_private *ip)
1035 {
1036 	struct ioc3 *ioc3 = ip->regs;
1037 
1038 	ioc3_w_emcr(0);				/* Shutup */
1039 	ioc3_w_eier(0);				/* Disable interrupts */
1040 	(void) ioc3_r_eier();			/* Flush */
1041 }
1042 
1043 static int ioc3_open(struct net_device *dev)
1044 {
1045 	struct ioc3_private *ip = netdev_priv(dev);
1046 
1047 	if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1048 		printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1049 
1050 		return -EAGAIN;
1051 	}
1052 
1053 	ip->ehar_h = 0;
1054 	ip->ehar_l = 0;
1055 	ioc3_init(dev);
1056 	ioc3_mii_start(ip);
1057 
1058 	netif_start_queue(dev);
1059 	return 0;
1060 }
1061 
1062 static int ioc3_close(struct net_device *dev)
1063 {
1064 	struct ioc3_private *ip = netdev_priv(dev);
1065 
1066 	del_timer_sync(&ip->ioc3_timer);
1067 
1068 	netif_stop_queue(dev);
1069 
1070 	ioc3_stop(ip);
1071 	free_irq(dev->irq, dev);
1072 
1073 	ioc3_free_rings(ip);
1074 	return 0;
1075 }
1076 
1077 /*
1078  * MENET cards have four IOC3 chips, which are attached to two sets of
1079  * PCI slot resources each: the primary connections are on slots
1080  * 0..3 and the secondaries are on 4..7
1081  *
1082  * All four ethernets are brought out to connectors; six serial ports
1083  * (a pair from each of the first three IOC3s) are brought out to
1084  * MiniDINs; all other subdevices are left swinging in the wind, leave
1085  * them disabled.
1086  */
1087 
1088 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1089 {
1090 	struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1091 	int ret = 0;
1092 
1093 	if (dev) {
1094 		if (dev->vendor == PCI_VENDOR_ID_SGI &&
1095 			dev->device == PCI_DEVICE_ID_SGI_IOC3)
1096 			ret = 1;
1097 		pci_dev_put(dev);
1098 	}
1099 
1100 	return ret;
1101 }
1102 
1103 static int ioc3_is_menet(struct pci_dev *pdev)
1104 {
1105 	return pdev->bus->parent == NULL &&
1106 	       ioc3_adjacent_is_ioc3(pdev, 0) &&
1107 	       ioc3_adjacent_is_ioc3(pdev, 1) &&
1108 	       ioc3_adjacent_is_ioc3(pdev, 2);
1109 }
1110 
1111 #ifdef CONFIG_SERIAL_8250
1112 /*
1113  * Note about serial ports and consoles:
1114  * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1115  * connected to the master node (look in ip27_setup_console() and
1116  * ip27prom_console_write()).
1117  *
1118  * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1119  * addresses on a partitioned machine. Since we currently use the ioc3
1120  * serial ports, we use dynamic serial port discovery that the serial.c
1121  * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1122  * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1123  * than UARTB's, although UARTA on o200s has traditionally been known as
1124  * port 0. So, we just use one serial port from each ioc3 (since the
1125  * serial driver adds addresses to get to higher ports).
1126  *
1127  * The first one to do a register_console becomes the preferred console
1128  * (if there is no kernel command line console= directive). /dev/console
1129  * (ie 5, 1) is then "aliased" into the device number returned by the
1130  * "device" routine referred to in this console structure
1131  * (ip27prom_console_dev).
1132  *
1133  * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1134  * around ioc3 oddities in this respect.
1135  *
1136  * The IOC3 serials use a 22MHz clock rate with an additional divider which
1137  * can be programmed in the SCR register if the DLAB bit is set.
1138  *
1139  * Register to interrupt zero because we share the interrupt with
1140  * the serial driver which we don't properly support yet.
1141  *
1142  * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1143  * registered.
1144  */
1145 static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1146 {
1147 #define COSMISC_CONSTANT 6
1148 
1149 	struct uart_8250_port port = {
1150 	        .port = {
1151 			.irq		= 0,
1152 			.flags		= UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1153 			.iotype		= UPIO_MEM,
1154 			.regshift	= 0,
1155 			.uartclk	= (22000000 << 1) / COSMISC_CONSTANT,
1156 
1157 			.membase	= (unsigned char __iomem *) uart,
1158 			.mapbase	= (unsigned long) uart,
1159                 }
1160 	};
1161 	unsigned char lcr;
1162 
1163 	lcr = uart->iu_lcr;
1164 	uart->iu_lcr = lcr | UART_LCR_DLAB;
1165 	uart->iu_scr = COSMISC_CONSTANT,
1166 	uart->iu_lcr = lcr;
1167 	uart->iu_lcr;
1168 	serial8250_register_8250_port(&port);
1169 }
1170 
1171 static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1172 {
1173 	/*
1174 	 * We need to recognice and treat the fourth MENET serial as it
1175 	 * does not have an SuperIO chip attached to it, therefore attempting
1176 	 * to access it will result in bus errors.  We call something an
1177 	 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1178 	 * in it.  This is paranoid but we want to avoid blowing up on a
1179 	 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1180 	 * not paranoid enough ...
1181 	 */
1182 	if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1183 		return;
1184 
1185 	/*
1186 	 * Switch IOC3 to PIO mode.  It probably already was but let's be
1187 	 * paranoid
1188 	 */
1189 	ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1190 	ioc3->gpcr_s;
1191 	ioc3->gppr_6 = 0;
1192 	ioc3->gppr_6;
1193 	ioc3->gppr_7 = 0;
1194 	ioc3->gppr_7;
1195 	ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1196 	ioc3->sscr_a;
1197 	ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1198 	ioc3->sscr_b;
1199 	/* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1200 	ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1201 			    SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1202 			    SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1203 			    SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1204 	ioc3->sio_iec |= SIO_IR_SA_INT;
1205 	ioc3->sscr_a = 0;
1206 	ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1207 			    SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1208 			    SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1209 			    SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1210 	ioc3->sio_iec |= SIO_IR_SB_INT;
1211 	ioc3->sscr_b = 0;
1212 
1213 	ioc3_8250_register(&ioc3->sregs.uarta);
1214 	ioc3_8250_register(&ioc3->sregs.uartb);
1215 }
1216 #endif
1217 
1218 static const struct net_device_ops ioc3_netdev_ops = {
1219 	.ndo_open		= ioc3_open,
1220 	.ndo_stop		= ioc3_close,
1221 	.ndo_start_xmit		= ioc3_start_xmit,
1222 	.ndo_tx_timeout		= ioc3_timeout,
1223 	.ndo_get_stats		= ioc3_get_stats,
1224 	.ndo_set_rx_mode	= ioc3_set_multicast_list,
1225 	.ndo_do_ioctl		= ioc3_ioctl,
1226 	.ndo_validate_addr	= eth_validate_addr,
1227 	.ndo_set_mac_address	= ioc3_set_mac_address,
1228 };
1229 
1230 static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1231 {
1232 	unsigned int sw_physid1, sw_physid2;
1233 	struct net_device *dev = NULL;
1234 	struct ioc3_private *ip;
1235 	struct ioc3 *ioc3;
1236 	unsigned long ioc3_base, ioc3_size;
1237 	u32 vendor, model, rev;
1238 	int err, pci_using_dac;
1239 
1240 	/* Configure DMA attributes. */
1241 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1242 	if (!err) {
1243 		pci_using_dac = 1;
1244 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1245 		if (err < 0) {
1246 			printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1247 			       "for consistent allocations\n", pci_name(pdev));
1248 			goto out;
1249 		}
1250 	} else {
1251 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1252 		if (err) {
1253 			printk(KERN_ERR "%s: No usable DMA configuration, "
1254 			       "aborting.\n", pci_name(pdev));
1255 			goto out;
1256 		}
1257 		pci_using_dac = 0;
1258 	}
1259 
1260 	if (pci_enable_device(pdev))
1261 		return -ENODEV;
1262 
1263 	dev = alloc_etherdev(sizeof(struct ioc3_private));
1264 	if (!dev) {
1265 		err = -ENOMEM;
1266 		goto out_disable;
1267 	}
1268 
1269 	if (pci_using_dac)
1270 		dev->features |= NETIF_F_HIGHDMA;
1271 
1272 	err = pci_request_regions(pdev, "ioc3");
1273 	if (err)
1274 		goto out_free;
1275 
1276 	SET_NETDEV_DEV(dev, &pdev->dev);
1277 
1278 	ip = netdev_priv(dev);
1279 
1280 	dev->irq = pdev->irq;
1281 
1282 	ioc3_base = pci_resource_start(pdev, 0);
1283 	ioc3_size = pci_resource_len(pdev, 0);
1284 	ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1285 	if (!ioc3) {
1286 		printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1287 		       pci_name(pdev));
1288 		err = -ENOMEM;
1289 		goto out_res;
1290 	}
1291 	ip->regs = ioc3;
1292 
1293 #ifdef CONFIG_SERIAL_8250
1294 	ioc3_serial_probe(pdev, ioc3);
1295 #endif
1296 
1297 	spin_lock_init(&ip->ioc3_lock);
1298 	init_timer(&ip->ioc3_timer);
1299 
1300 	ioc3_stop(ip);
1301 	ioc3_init(dev);
1302 
1303 	ip->pdev = pdev;
1304 
1305 	ip->mii.phy_id_mask = 0x1f;
1306 	ip->mii.reg_num_mask = 0x1f;
1307 	ip->mii.dev = dev;
1308 	ip->mii.mdio_read = ioc3_mdio_read;
1309 	ip->mii.mdio_write = ioc3_mdio_write;
1310 
1311 	ioc3_mii_init(ip);
1312 
1313 	if (ip->mii.phy_id == -1) {
1314 		printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1315 		       pci_name(pdev));
1316 		err = -ENODEV;
1317 		goto out_stop;
1318 	}
1319 
1320 	ioc3_mii_start(ip);
1321 	ioc3_ssram_disc(ip);
1322 	ioc3_get_eaddr(ip);
1323 
1324 	/* The IOC3-specific entries in the device structure. */
1325 	dev->watchdog_timeo	= 5 * HZ;
1326 	dev->netdev_ops		= &ioc3_netdev_ops;
1327 	dev->ethtool_ops	= &ioc3_ethtool_ops;
1328 	dev->hw_features	= NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1329 	dev->features		= NETIF_F_IP_CSUM;
1330 
1331 	sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1332 	sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1333 
1334 	err = register_netdev(dev);
1335 	if (err)
1336 		goto out_stop;
1337 
1338 	mii_check_media(&ip->mii, 1, 1);
1339 	ioc3_setup_duplex(ip);
1340 
1341 	vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1342 	model  = (sw_physid2 >> 4) & 0x3f;
1343 	rev    = sw_physid2 & 0xf;
1344 	printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1345 	       "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1346 	printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1347 	       ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1348 
1349 	return 0;
1350 
1351 out_stop:
1352 	ioc3_stop(ip);
1353 	del_timer_sync(&ip->ioc3_timer);
1354 	ioc3_free_rings(ip);
1355 out_res:
1356 	pci_release_regions(pdev);
1357 out_free:
1358 	free_netdev(dev);
1359 out_disable:
1360 	/*
1361 	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1362 	 * such a weird device ...
1363 	 */
1364 out:
1365 	return err;
1366 }
1367 
1368 static void ioc3_remove_one(struct pci_dev *pdev)
1369 {
1370 	struct net_device *dev = pci_get_drvdata(pdev);
1371 	struct ioc3_private *ip = netdev_priv(dev);
1372 	struct ioc3 *ioc3 = ip->regs;
1373 
1374 	unregister_netdev(dev);
1375 	del_timer_sync(&ip->ioc3_timer);
1376 
1377 	iounmap(ioc3);
1378 	pci_release_regions(pdev);
1379 	free_netdev(dev);
1380 	/*
1381 	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1382 	 * such a weird device ...
1383 	 */
1384 }
1385 
1386 static const struct pci_device_id ioc3_pci_tbl[] = {
1387 	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1388 	{ 0 }
1389 };
1390 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1391 
1392 static struct pci_driver ioc3_driver = {
1393 	.name		= "ioc3-eth",
1394 	.id_table	= ioc3_pci_tbl,
1395 	.probe		= ioc3_probe,
1396 	.remove		= ioc3_remove_one,
1397 };
1398 
1399 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1400 {
1401 	unsigned long data;
1402 	struct ioc3_private *ip = netdev_priv(dev);
1403 	struct ioc3 *ioc3 = ip->regs;
1404 	unsigned int len;
1405 	struct ioc3_etxd *desc;
1406 	uint32_t w0 = 0;
1407 	int produce;
1408 
1409 	/*
1410 	 * IOC3 has a fairly simple minded checksumming hardware which simply
1411 	 * adds up the 1's complement checksum for the entire packet and
1412 	 * inserts it at an offset which can be specified in the descriptor
1413 	 * into the transmit packet.  This means we have to compensate for the
1414 	 * MAC header which should not be summed and the TCP/UDP pseudo headers
1415 	 * manually.
1416 	 */
1417 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1418 		const struct iphdr *ih = ip_hdr(skb);
1419 		const int proto = ntohs(ih->protocol);
1420 		unsigned int csoff;
1421 		uint32_t csum, ehsum;
1422 		uint16_t *eh;
1423 
1424 		/* The MAC header.  skb->mac seem the logic approach
1425 		   to find the MAC header - except it's a NULL pointer ...  */
1426 		eh = (uint16_t *) skb->data;
1427 
1428 		/* Sum up dest addr, src addr and protocol  */
1429 		ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1430 
1431 		/* Fold ehsum.  can't use csum_fold which negates also ...  */
1432 		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1433 		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1434 
1435 		/* Skip IP header; it's sum is always zero and was
1436 		   already filled in by ip_output.c */
1437 		csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1438 		                          ih->tot_len - (ih->ihl << 2),
1439 		                          proto, 0xffff ^ ehsum);
1440 
1441 		csum = (csum & 0xffff) + (csum >> 16);	/* Fold again */
1442 		csum = (csum & 0xffff) + (csum >> 16);
1443 
1444 		csoff = ETH_HLEN + (ih->ihl << 2);
1445 		if (proto == IPPROTO_UDP) {
1446 			csoff += offsetof(struct udphdr, check);
1447 			udp_hdr(skb)->check = csum;
1448 		}
1449 		if (proto == IPPROTO_TCP) {
1450 			csoff += offsetof(struct tcphdr, check);
1451 			tcp_hdr(skb)->check = csum;
1452 		}
1453 
1454 		w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1455 	}
1456 
1457 	spin_lock_irq(&ip->ioc3_lock);
1458 
1459 	data = (unsigned long) skb->data;
1460 	len = skb->len;
1461 
1462 	produce = ip->tx_pi;
1463 	desc = &ip->txr[produce];
1464 
1465 	if (len <= 104) {
1466 		/* Short packet, let's copy it directly into the ring.  */
1467 		skb_copy_from_linear_data(skb, desc->data, skb->len);
1468 		if (len < ETH_ZLEN) {
1469 			/* Very short packet, pad with zeros at the end. */
1470 			memset(desc->data + len, 0, ETH_ZLEN - len);
1471 			len = ETH_ZLEN;
1472 		}
1473 		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1474 		desc->bufcnt = cpu_to_be32(len);
1475 	} else if ((data ^ (data + len - 1)) & 0x4000) {
1476 		unsigned long b2 = (data | 0x3fffUL) + 1UL;
1477 		unsigned long s1 = b2 - data;
1478 		unsigned long s2 = data + len - b2;
1479 
1480 		desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1481 		                           ETXD_B1V | ETXD_B2V | w0);
1482 		desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1483 		                           (s2 << ETXD_B2CNT_SHIFT));
1484 		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1485 		desc->p2     = cpu_to_be64(ioc3_map((void *) b2, 1));
1486 	} else {
1487 		/* Normal sized packet that doesn't cross a page boundary. */
1488 		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1489 		desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1490 		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1491 	}
1492 
1493 	BARRIER();
1494 
1495 	ip->tx_skbs[produce] = skb;			/* Remember skb */
1496 	produce = (produce + 1) & 127;
1497 	ip->tx_pi = produce;
1498 	ioc3_w_etpir(produce << 7);			/* Fire ... */
1499 
1500 	ip->txqlen++;
1501 
1502 	if (ip->txqlen >= 127)
1503 		netif_stop_queue(dev);
1504 
1505 	spin_unlock_irq(&ip->ioc3_lock);
1506 
1507 	return NETDEV_TX_OK;
1508 }
1509 
1510 static void ioc3_timeout(struct net_device *dev)
1511 {
1512 	struct ioc3_private *ip = netdev_priv(dev);
1513 
1514 	printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1515 
1516 	spin_lock_irq(&ip->ioc3_lock);
1517 
1518 	ioc3_stop(ip);
1519 	ioc3_init(dev);
1520 	ioc3_mii_init(ip);
1521 	ioc3_mii_start(ip);
1522 
1523 	spin_unlock_irq(&ip->ioc3_lock);
1524 
1525 	netif_wake_queue(dev);
1526 }
1527 
1528 /*
1529  * Given a multicast ethernet address, this routine calculates the
1530  * address's bit index in the logical address filter mask
1531  */
1532 
1533 static inline unsigned int ioc3_hash(const unsigned char *addr)
1534 {
1535 	unsigned int temp = 0;
1536 	u32 crc;
1537 	int bits;
1538 
1539 	crc = ether_crc_le(ETH_ALEN, addr);
1540 
1541 	crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1542 	for (bits = 6; --bits >= 0; ) {
1543 		temp <<= 1;
1544 		temp |= (crc & 0x1);
1545 		crc >>= 1;
1546 	}
1547 
1548 	return temp;
1549 }
1550 
1551 static void ioc3_get_drvinfo (struct net_device *dev,
1552 	struct ethtool_drvinfo *info)
1553 {
1554 	struct ioc3_private *ip = netdev_priv(dev);
1555 
1556 	strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1557 	strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1558 	strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1559 }
1560 
1561 static int ioc3_get_link_ksettings(struct net_device *dev,
1562 				   struct ethtool_link_ksettings *cmd)
1563 {
1564 	struct ioc3_private *ip = netdev_priv(dev);
1565 
1566 	spin_lock_irq(&ip->ioc3_lock);
1567 	mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1568 	spin_unlock_irq(&ip->ioc3_lock);
1569 
1570 	return 0;
1571 }
1572 
1573 static int ioc3_set_link_ksettings(struct net_device *dev,
1574 				   const struct ethtool_link_ksettings *cmd)
1575 {
1576 	struct ioc3_private *ip = netdev_priv(dev);
1577 	int rc;
1578 
1579 	spin_lock_irq(&ip->ioc3_lock);
1580 	rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1581 	spin_unlock_irq(&ip->ioc3_lock);
1582 
1583 	return rc;
1584 }
1585 
1586 static int ioc3_nway_reset(struct net_device *dev)
1587 {
1588 	struct ioc3_private *ip = netdev_priv(dev);
1589 	int rc;
1590 
1591 	spin_lock_irq(&ip->ioc3_lock);
1592 	rc = mii_nway_restart(&ip->mii);
1593 	spin_unlock_irq(&ip->ioc3_lock);
1594 
1595 	return rc;
1596 }
1597 
1598 static u32 ioc3_get_link(struct net_device *dev)
1599 {
1600 	struct ioc3_private *ip = netdev_priv(dev);
1601 	int rc;
1602 
1603 	spin_lock_irq(&ip->ioc3_lock);
1604 	rc = mii_link_ok(&ip->mii);
1605 	spin_unlock_irq(&ip->ioc3_lock);
1606 
1607 	return rc;
1608 }
1609 
1610 static const struct ethtool_ops ioc3_ethtool_ops = {
1611 	.get_drvinfo		= ioc3_get_drvinfo,
1612 	.nway_reset		= ioc3_nway_reset,
1613 	.get_link		= ioc3_get_link,
1614 	.get_link_ksettings	= ioc3_get_link_ksettings,
1615 	.set_link_ksettings	= ioc3_set_link_ksettings,
1616 };
1617 
1618 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1619 {
1620 	struct ioc3_private *ip = netdev_priv(dev);
1621 	int rc;
1622 
1623 	spin_lock_irq(&ip->ioc3_lock);
1624 	rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1625 	spin_unlock_irq(&ip->ioc3_lock);
1626 
1627 	return rc;
1628 }
1629 
1630 static void ioc3_set_multicast_list(struct net_device *dev)
1631 {
1632 	struct netdev_hw_addr *ha;
1633 	struct ioc3_private *ip = netdev_priv(dev);
1634 	struct ioc3 *ioc3 = ip->regs;
1635 	u64 ehar = 0;
1636 
1637 	netif_stop_queue(dev);				/* Lock out others. */
1638 
1639 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous.  */
1640 		ip->emcr |= EMCR_PROMISC;
1641 		ioc3_w_emcr(ip->emcr);
1642 		(void) ioc3_r_emcr();
1643 	} else {
1644 		ip->emcr &= ~EMCR_PROMISC;
1645 		ioc3_w_emcr(ip->emcr);			/* Clear promiscuous. */
1646 		(void) ioc3_r_emcr();
1647 
1648 		if ((dev->flags & IFF_ALLMULTI) ||
1649 		    (netdev_mc_count(dev) > 64)) {
1650 			/* Too many for hashing to make sense or we want all
1651 			   multicast packets anyway,  so skip computing all the
1652 			   hashes and just accept all packets.  */
1653 			ip->ehar_h = 0xffffffff;
1654 			ip->ehar_l = 0xffffffff;
1655 		} else {
1656 			netdev_for_each_mc_addr(ha, dev) {
1657 				ehar |= (1UL << ioc3_hash(ha->addr));
1658 			}
1659 			ip->ehar_h = ehar >> 32;
1660 			ip->ehar_l = ehar & 0xffffffff;
1661 		}
1662 		ioc3_w_ehar_h(ip->ehar_h);
1663 		ioc3_w_ehar_l(ip->ehar_l);
1664 	}
1665 
1666 	netif_wake_queue(dev);			/* Let us get going again. */
1667 }
1668 
1669 module_pci_driver(ioc3_driver);
1670 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1671 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1672 MODULE_LICENSE("GPL");
1673