1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2015 Solarflare Communications Inc. 6 */ 7 8 #include <linux/pci.h> 9 #include <linux/tcp.h> 10 #include <linux/ip.h> 11 #include <linux/in.h> 12 #include <linux/ipv6.h> 13 #include <linux/slab.h> 14 #include <net/ipv6.h> 15 #include <linux/if_ether.h> 16 #include <linux/highmem.h> 17 #include <linux/moduleparam.h> 18 #include <linux/cache.h> 19 #include "net_driver.h" 20 #include "efx.h" 21 #include "io.h" 22 #include "nic.h" 23 #include "tx.h" 24 #include "workarounds.h" 25 #include "ef10_regs.h" 26 27 /* Efx legacy TCP segmentation acceleration. 28 * 29 * Utilises firmware support to go faster than GSO (but not as fast as TSOv2). 30 * 31 * Requires TX checksum offload support. 32 */ 33 34 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) 35 36 /** 37 * struct tso_state - TSO state for an SKB 38 * @out_len: Remaining length in current segment 39 * @seqnum: Current sequence number 40 * @ipv4_id: Current IPv4 ID, host endian 41 * @packet_space: Remaining space in current packet 42 * @dma_addr: DMA address of current position 43 * @in_len: Remaining length in current SKB fragment 44 * @unmap_len: Length of SKB fragment 45 * @unmap_addr: DMA address of SKB fragment 46 * @protocol: Network protocol (after any VLAN header) 47 * @ip_off: Offset of IP header 48 * @tcp_off: Offset of TCP header 49 * @header_len: Number of bytes of header 50 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload 51 * @header_dma_addr: Header DMA address 52 * @header_unmap_len: Header DMA mapped length 53 * 54 * The state used during segmentation. It is put into this data structure 55 * just to make it easy to pass into inline functions. 56 */ 57 struct tso_state { 58 /* Output position */ 59 unsigned int out_len; 60 unsigned int seqnum; 61 u16 ipv4_id; 62 unsigned int packet_space; 63 64 /* Input position */ 65 dma_addr_t dma_addr; 66 unsigned int in_len; 67 unsigned int unmap_len; 68 dma_addr_t unmap_addr; 69 70 __be16 protocol; 71 unsigned int ip_off; 72 unsigned int tcp_off; 73 unsigned int header_len; 74 unsigned int ip_base_len; 75 dma_addr_t header_dma_addr; 76 unsigned int header_unmap_len; 77 }; 78 79 static inline void prefetch_ptr(struct efx_tx_queue *tx_queue) 80 { 81 unsigned int insert_ptr = efx_tx_queue_get_insert_index(tx_queue); 82 char *ptr; 83 84 ptr = (char *) (tx_queue->buffer + insert_ptr); 85 prefetch(ptr); 86 prefetch(ptr + 0x80); 87 88 ptr = (char *)(((efx_qword_t *)tx_queue->txd.addr) + insert_ptr); 89 prefetch(ptr); 90 prefetch(ptr + 0x80); 91 } 92 93 /** 94 * efx_tx_queue_insert - push descriptors onto the TX queue 95 * @tx_queue: Efx TX queue 96 * @dma_addr: DMA address of fragment 97 * @len: Length of fragment 98 * @final_buffer: The final buffer inserted into the queue 99 * 100 * Push descriptors onto the TX queue. 101 */ 102 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue, 103 dma_addr_t dma_addr, unsigned int len, 104 struct efx_tx_buffer **final_buffer) 105 { 106 struct efx_tx_buffer *buffer; 107 unsigned int dma_len; 108 109 EFX_WARN_ON_ONCE_PARANOID(len <= 0); 110 111 while (1) { 112 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 113 ++tx_queue->insert_count; 114 115 EFX_WARN_ON_ONCE_PARANOID(tx_queue->insert_count - 116 tx_queue->read_count >= 117 tx_queue->efx->txq_entries); 118 119 buffer->dma_addr = dma_addr; 120 121 dma_len = tx_queue->efx->type->tx_limit_len(tx_queue, 122 dma_addr, len); 123 124 /* If there's space for everything this is our last buffer. */ 125 if (dma_len >= len) 126 break; 127 128 buffer->len = dma_len; 129 buffer->flags = EFX_TX_BUF_CONT; 130 dma_addr += dma_len; 131 len -= dma_len; 132 } 133 134 EFX_WARN_ON_ONCE_PARANOID(!len); 135 buffer->len = len; 136 *final_buffer = buffer; 137 } 138 139 /* 140 * Verify that our various assumptions about sk_buffs and the conditions 141 * under which TSO will be attempted hold true. Return the protocol number. 142 */ 143 static __be16 efx_tso_check_protocol(struct sk_buff *skb) 144 { 145 __be16 protocol = skb->protocol; 146 147 EFX_WARN_ON_ONCE_PARANOID(((struct ethhdr *)skb->data)->h_proto != 148 protocol); 149 if (protocol == htons(ETH_P_8021Q)) { 150 struct vlan_ethhdr *veh = skb_vlan_eth_hdr(skb); 151 152 protocol = veh->h_vlan_encapsulated_proto; 153 } 154 155 if (protocol == htons(ETH_P_IP)) { 156 EFX_WARN_ON_ONCE_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); 157 } else { 158 EFX_WARN_ON_ONCE_PARANOID(protocol != htons(ETH_P_IPV6)); 159 EFX_WARN_ON_ONCE_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP); 160 } 161 EFX_WARN_ON_ONCE_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) + 162 (tcp_hdr(skb)->doff << 2u)) > 163 skb_headlen(skb)); 164 165 return protocol; 166 } 167 168 /* Parse the SKB header and initialise state. */ 169 static int tso_start(struct tso_state *st, struct efx_nic *efx, 170 struct efx_tx_queue *tx_queue, 171 const struct sk_buff *skb) 172 { 173 struct device *dma_dev = &efx->pci_dev->dev; 174 unsigned int header_len, in_len; 175 dma_addr_t dma_addr; 176 177 st->ip_off = skb_network_header(skb) - skb->data; 178 st->tcp_off = skb_transport_header(skb) - skb->data; 179 header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u); 180 in_len = skb_headlen(skb) - header_len; 181 st->header_len = header_len; 182 st->in_len = in_len; 183 if (st->protocol == htons(ETH_P_IP)) { 184 st->ip_base_len = st->header_len - st->ip_off; 185 st->ipv4_id = ntohs(ip_hdr(skb)->id); 186 } else { 187 st->ip_base_len = st->header_len - st->tcp_off; 188 st->ipv4_id = 0; 189 } 190 st->seqnum = ntohl(tcp_hdr(skb)->seq); 191 192 EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->urg); 193 EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->syn); 194 EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->rst); 195 196 st->out_len = skb->len - header_len; 197 198 dma_addr = dma_map_single(dma_dev, skb->data, 199 skb_headlen(skb), DMA_TO_DEVICE); 200 st->header_dma_addr = dma_addr; 201 st->header_unmap_len = skb_headlen(skb); 202 st->dma_addr = dma_addr + header_len; 203 st->unmap_len = 0; 204 205 return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0; 206 } 207 208 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, 209 skb_frag_t *frag) 210 { 211 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0, 212 skb_frag_size(frag), DMA_TO_DEVICE); 213 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) { 214 st->unmap_len = skb_frag_size(frag); 215 st->in_len = skb_frag_size(frag); 216 st->dma_addr = st->unmap_addr; 217 return 0; 218 } 219 return -ENOMEM; 220 } 221 222 223 /** 224 * tso_fill_packet_with_fragment - form descriptors for the current fragment 225 * @tx_queue: Efx TX queue 226 * @skb: Socket buffer 227 * @st: TSO state 228 * 229 * Form descriptors for the current fragment, until we reach the end 230 * of fragment or end-of-packet. 231 */ 232 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, 233 const struct sk_buff *skb, 234 struct tso_state *st) 235 { 236 struct efx_tx_buffer *buffer; 237 int n; 238 239 if (st->in_len == 0) 240 return; 241 if (st->packet_space == 0) 242 return; 243 244 EFX_WARN_ON_ONCE_PARANOID(st->in_len <= 0); 245 EFX_WARN_ON_ONCE_PARANOID(st->packet_space <= 0); 246 247 n = min(st->in_len, st->packet_space); 248 249 st->packet_space -= n; 250 st->out_len -= n; 251 st->in_len -= n; 252 253 efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); 254 255 if (st->out_len == 0) { 256 /* Transfer ownership of the skb */ 257 buffer->skb = skb; 258 buffer->flags = EFX_TX_BUF_SKB; 259 } else if (st->packet_space != 0) { 260 buffer->flags = EFX_TX_BUF_CONT; 261 } 262 263 if (st->in_len == 0) { 264 /* Transfer ownership of the DMA mapping */ 265 buffer->unmap_len = st->unmap_len; 266 buffer->dma_offset = buffer->unmap_len - buffer->len; 267 st->unmap_len = 0; 268 } 269 270 st->dma_addr += n; 271 } 272 273 274 #define TCP_FLAGS_OFFSET 13 275 276 /** 277 * tso_start_new_packet - generate a new header and prepare for the new packet 278 * @tx_queue: Efx TX queue 279 * @skb: Socket buffer 280 * @st: TSO state 281 * 282 * Generate a new header and prepare for the new packet. Return 0 on 283 * success, or -%ENOMEM if failed to alloc header, or other negative error. 284 */ 285 static int tso_start_new_packet(struct efx_tx_queue *tx_queue, 286 const struct sk_buff *skb, 287 struct tso_state *st) 288 { 289 struct efx_tx_buffer *buffer = 290 efx_tx_queue_get_insert_buffer(tx_queue); 291 bool is_last = st->out_len <= skb_shinfo(skb)->gso_size; 292 u8 tcp_flags_mask, tcp_flags; 293 294 if (!is_last) { 295 st->packet_space = skb_shinfo(skb)->gso_size; 296 tcp_flags_mask = 0x09; /* mask out FIN and PSH */ 297 } else { 298 st->packet_space = st->out_len; 299 tcp_flags_mask = 0x00; 300 } 301 302 if (WARN_ON(!st->header_unmap_len)) 303 return -EINVAL; 304 /* Send the original headers with a TSO option descriptor 305 * in front 306 */ 307 tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] & ~tcp_flags_mask; 308 309 buffer->flags = EFX_TX_BUF_OPTION; 310 buffer->len = 0; 311 buffer->unmap_len = 0; 312 EFX_POPULATE_QWORD_5(buffer->option, 313 ESF_DZ_TX_DESC_IS_OPT, 1, 314 ESF_DZ_TX_OPTION_TYPE, 315 ESE_DZ_TX_OPTION_DESC_TSO, 316 ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags, 317 ESF_DZ_TX_TSO_IP_ID, st->ipv4_id, 318 ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum); 319 ++tx_queue->insert_count; 320 321 /* We mapped the headers in tso_start(). Unmap them 322 * when the last segment is completed. 323 */ 324 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 325 buffer->dma_addr = st->header_dma_addr; 326 buffer->len = st->header_len; 327 if (is_last) { 328 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE; 329 buffer->unmap_len = st->header_unmap_len; 330 buffer->dma_offset = 0; 331 /* Ensure we only unmap them once in case of a 332 * later DMA mapping error and rollback 333 */ 334 st->header_unmap_len = 0; 335 } else { 336 buffer->flags = EFX_TX_BUF_CONT; 337 buffer->unmap_len = 0; 338 } 339 ++tx_queue->insert_count; 340 341 st->seqnum += skb_shinfo(skb)->gso_size; 342 343 /* Linux leaves suitable gaps in the IP ID space for us to fill. */ 344 ++st->ipv4_id; 345 346 return 0; 347 } 348 349 /** 350 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer 351 * @tx_queue: Efx TX queue 352 * @skb: Socket buffer 353 * @data_mapped: Did we map the data? Always set to true 354 * by this on success. 355 * 356 * Context: You must hold netif_tx_lock() to call this function. 357 * 358 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if 359 * @skb was not enqueued. @skb is consumed unless return value is 360 * %EINVAL. 361 */ 362 int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, 363 struct sk_buff *skb, 364 bool *data_mapped) 365 { 366 struct efx_nic *efx = tx_queue->efx; 367 int frag_i, rc; 368 struct tso_state state; 369 370 if (tx_queue->tso_version != 1) 371 return -EINVAL; 372 373 prefetch(skb->data); 374 375 /* Find the packet protocol and sanity-check it */ 376 state.protocol = efx_tso_check_protocol(skb); 377 378 EFX_WARN_ON_ONCE_PARANOID(tx_queue->write_count != tx_queue->insert_count); 379 380 rc = tso_start(&state, efx, tx_queue, skb); 381 if (rc) 382 goto fail; 383 384 if (likely(state.in_len == 0)) { 385 /* Grab the first payload fragment. */ 386 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->nr_frags < 1); 387 frag_i = 0; 388 rc = tso_get_fragment(&state, efx, 389 skb_shinfo(skb)->frags + frag_i); 390 if (rc) 391 goto fail; 392 } else { 393 /* Payload starts in the header area. */ 394 frag_i = -1; 395 } 396 397 rc = tso_start_new_packet(tx_queue, skb, &state); 398 if (rc) 399 goto fail; 400 401 prefetch_ptr(tx_queue); 402 403 while (1) { 404 tso_fill_packet_with_fragment(tx_queue, skb, &state); 405 406 /* Move onto the next fragment? */ 407 if (state.in_len == 0) { 408 if (++frag_i >= skb_shinfo(skb)->nr_frags) 409 /* End of payload reached. */ 410 break; 411 rc = tso_get_fragment(&state, efx, 412 skb_shinfo(skb)->frags + frag_i); 413 if (rc) 414 goto fail; 415 } 416 417 /* Start at new packet? */ 418 if (state.packet_space == 0) { 419 rc = tso_start_new_packet(tx_queue, skb, &state); 420 if (rc) 421 goto fail; 422 } 423 } 424 425 *data_mapped = true; 426 427 return 0; 428 429 fail: 430 if (rc == -ENOMEM) 431 netif_err(efx, tx_err, efx->net_dev, 432 "Out of memory for TSO headers, or DMA mapping error\n"); 433 else 434 netif_err(efx, tx_err, efx->net_dev, "TSO failed, rc = %d\n", rc); 435 436 /* Free the DMA mapping we were in the process of writing out */ 437 if (state.unmap_len) { 438 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr, 439 state.unmap_len, DMA_TO_DEVICE); 440 } 441 442 /* Free the header DMA mapping */ 443 if (state.header_unmap_len) 444 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr, 445 state.header_unmap_len, DMA_TO_DEVICE); 446 447 return rc; 448 } 449