xref: /openbmc/linux/drivers/net/ethernet/sfc/tx.c (revision f7777dcc)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24 
25 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
26 			       struct efx_tx_buffer *buffer,
27 			       unsigned int *pkts_compl,
28 			       unsigned int *bytes_compl)
29 {
30 	if (buffer->unmap_len) {
31 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
32 		dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
33 					 buffer->unmap_len);
34 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
35 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
36 					 DMA_TO_DEVICE);
37 		else
38 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
39 				       DMA_TO_DEVICE);
40 		buffer->unmap_len = 0;
41 	}
42 
43 	if (buffer->flags & EFX_TX_BUF_SKB) {
44 		(*pkts_compl)++;
45 		(*bytes_compl) += buffer->skb->len;
46 		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
47 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
48 			   "TX queue %d transmission id %x complete\n",
49 			   tx_queue->queue, tx_queue->read_count);
50 	} else if (buffer->flags & EFX_TX_BUF_HEAP) {
51 		kfree(buffer->heap_buf);
52 	}
53 
54 	buffer->len = 0;
55 	buffer->flags = 0;
56 }
57 
58 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
59 			       struct sk_buff *skb);
60 
61 static inline unsigned
62 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
63 {
64 	/* Depending on the NIC revision, we can use descriptor
65 	 * lengths up to 8K or 8K-1.  However, since PCI Express
66 	 * devices must split read requests at 4K boundaries, there is
67 	 * little benefit from using descriptors that cross those
68 	 * boundaries and we keep things simple by not doing so.
69 	 */
70 	unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
71 
72 	/* Work around hardware bug for unaligned buffers. */
73 	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
74 		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
75 
76 	return len;
77 }
78 
79 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
80 {
81 	/* Header and payload descriptor for each output segment, plus
82 	 * one for every input fragment boundary within a segment
83 	 */
84 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
85 
86 	/* Possibly one more per segment for the alignment workaround */
87 	if (EFX_WORKAROUND_5391(efx))
88 		max_descs += EFX_TSO_MAX_SEGS;
89 
90 	/* Possibly more for PCIe page boundaries within input fragments */
91 	if (PAGE_SIZE > EFX_PAGE_SIZE)
92 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
93 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
94 
95 	return max_descs;
96 }
97 
98 /* Get partner of a TX queue, seen as part of the same net core queue */
99 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
100 {
101 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
102 		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
103 	else
104 		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
105 }
106 
107 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
108 {
109 	/* We need to consider both queues that the net core sees as one */
110 	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
111 	struct efx_nic *efx = txq1->efx;
112 	unsigned int fill_level;
113 
114 	fill_level = max(txq1->insert_count - txq1->old_read_count,
115 			 txq2->insert_count - txq2->old_read_count);
116 	if (likely(fill_level < efx->txq_stop_thresh))
117 		return;
118 
119 	/* We used the stale old_read_count above, which gives us a
120 	 * pessimistic estimate of the fill level (which may even
121 	 * validly be >= efx->txq_entries).  Now try again using
122 	 * read_count (more likely to be a cache miss).
123 	 *
124 	 * If we read read_count and then conditionally stop the
125 	 * queue, it is possible for the completion path to race with
126 	 * us and complete all outstanding descriptors in the middle,
127 	 * after which there will be no more completions to wake it.
128 	 * Therefore we stop the queue first, then read read_count
129 	 * (with a memory barrier to ensure the ordering), then
130 	 * restart the queue if the fill level turns out to be low
131 	 * enough.
132 	 */
133 	netif_tx_stop_queue(txq1->core_txq);
134 	smp_mb();
135 	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
136 	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
137 
138 	fill_level = max(txq1->insert_count - txq1->old_read_count,
139 			 txq2->insert_count - txq2->old_read_count);
140 	EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
141 	if (likely(fill_level < efx->txq_stop_thresh)) {
142 		smp_mb();
143 		if (likely(!efx->loopback_selftest))
144 			netif_tx_start_queue(txq1->core_txq);
145 	}
146 }
147 
148 /*
149  * Add a socket buffer to a TX queue
150  *
151  * This maps all fragments of a socket buffer for DMA and adds them to
152  * the TX queue.  The queue's insert pointer will be incremented by
153  * the number of fragments in the socket buffer.
154  *
155  * If any DMA mapping fails, any mapped fragments will be unmapped,
156  * the queue's insert pointer will be restored to its original value.
157  *
158  * This function is split out from efx_hard_start_xmit to allow the
159  * loopback test to direct packets via specific TX queues.
160  *
161  * Returns NETDEV_TX_OK.
162  * You must hold netif_tx_lock() to call this function.
163  */
164 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
165 {
166 	struct efx_nic *efx = tx_queue->efx;
167 	struct device *dma_dev = &efx->pci_dev->dev;
168 	struct efx_tx_buffer *buffer;
169 	skb_frag_t *fragment;
170 	unsigned int len, unmap_len = 0, insert_ptr;
171 	dma_addr_t dma_addr, unmap_addr = 0;
172 	unsigned int dma_len;
173 	unsigned short dma_flags;
174 	int i = 0;
175 
176 	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
177 
178 	if (skb_shinfo(skb)->gso_size)
179 		return efx_enqueue_skb_tso(tx_queue, skb);
180 
181 	/* Get size of the initial fragment */
182 	len = skb_headlen(skb);
183 
184 	/* Pad if necessary */
185 	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
186 		EFX_BUG_ON_PARANOID(skb->data_len);
187 		len = 32 + 1;
188 		if (skb_pad(skb, len - skb->len))
189 			return NETDEV_TX_OK;
190 	}
191 
192 	/* Map for DMA.  Use dma_map_single rather than dma_map_page
193 	 * since this is more efficient on machines with sparse
194 	 * memory.
195 	 */
196 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
197 	dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
198 
199 	/* Process all fragments */
200 	while (1) {
201 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
202 			goto dma_err;
203 
204 		/* Store fields for marking in the per-fragment final
205 		 * descriptor */
206 		unmap_len = len;
207 		unmap_addr = dma_addr;
208 
209 		/* Add to TX queue, splitting across DMA boundaries */
210 		do {
211 			insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212 			buffer = &tx_queue->buffer[insert_ptr];
213 			EFX_BUG_ON_PARANOID(buffer->flags);
214 			EFX_BUG_ON_PARANOID(buffer->len);
215 			EFX_BUG_ON_PARANOID(buffer->unmap_len);
216 
217 			dma_len = efx_max_tx_len(efx, dma_addr);
218 			if (likely(dma_len >= len))
219 				dma_len = len;
220 
221 			/* Fill out per descriptor fields */
222 			buffer->len = dma_len;
223 			buffer->dma_addr = dma_addr;
224 			buffer->flags = EFX_TX_BUF_CONT;
225 			len -= dma_len;
226 			dma_addr += dma_len;
227 			++tx_queue->insert_count;
228 		} while (len);
229 
230 		/* Transfer ownership of the unmapping to the final buffer */
231 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
232 		buffer->unmap_len = unmap_len;
233 		unmap_len = 0;
234 
235 		/* Get address and size of next fragment */
236 		if (i >= skb_shinfo(skb)->nr_frags)
237 			break;
238 		fragment = &skb_shinfo(skb)->frags[i];
239 		len = skb_frag_size(fragment);
240 		i++;
241 		/* Map for DMA */
242 		dma_flags = 0;
243 		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
244 					    DMA_TO_DEVICE);
245 	}
246 
247 	/* Transfer ownership of the skb to the final buffer */
248 	buffer->skb = skb;
249 	buffer->flags = EFX_TX_BUF_SKB | dma_flags;
250 
251 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
252 
253 	/* Pass off to hardware */
254 	efx_nic_push_buffers(tx_queue);
255 
256 	efx_tx_maybe_stop_queue(tx_queue);
257 
258 	return NETDEV_TX_OK;
259 
260  dma_err:
261 	netif_err(efx, tx_err, efx->net_dev,
262 		  " TX queue %d could not map skb with %d bytes %d "
263 		  "fragments for DMA\n", tx_queue->queue, skb->len,
264 		  skb_shinfo(skb)->nr_frags + 1);
265 
266 	/* Mark the packet as transmitted, and free the SKB ourselves */
267 	dev_kfree_skb_any(skb);
268 
269 	/* Work backwards until we hit the original insert pointer value */
270 	while (tx_queue->insert_count != tx_queue->write_count) {
271 		unsigned int pkts_compl = 0, bytes_compl = 0;
272 		--tx_queue->insert_count;
273 		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
274 		buffer = &tx_queue->buffer[insert_ptr];
275 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
276 	}
277 
278 	/* Free the fragment we were mid-way through pushing */
279 	if (unmap_len) {
280 		if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
281 			dma_unmap_single(dma_dev, unmap_addr, unmap_len,
282 					 DMA_TO_DEVICE);
283 		else
284 			dma_unmap_page(dma_dev, unmap_addr, unmap_len,
285 				       DMA_TO_DEVICE);
286 	}
287 
288 	return NETDEV_TX_OK;
289 }
290 
291 /* Remove packets from the TX queue
292  *
293  * This removes packets from the TX queue, up to and including the
294  * specified index.
295  */
296 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
297 				unsigned int index,
298 				unsigned int *pkts_compl,
299 				unsigned int *bytes_compl)
300 {
301 	struct efx_nic *efx = tx_queue->efx;
302 	unsigned int stop_index, read_ptr;
303 
304 	stop_index = (index + 1) & tx_queue->ptr_mask;
305 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
306 
307 	while (read_ptr != stop_index) {
308 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
309 
310 		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
311 		    unlikely(buffer->len == 0)) {
312 			netif_err(efx, tx_err, efx->net_dev,
313 				  "TX queue %d spurious TX completion id %x\n",
314 				  tx_queue->queue, read_ptr);
315 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
316 			return;
317 		}
318 
319 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
320 
321 		++tx_queue->read_count;
322 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
323 	}
324 }
325 
326 /* Initiate a packet transmission.  We use one channel per CPU
327  * (sharing when we have more CPUs than channels).  On Falcon, the TX
328  * completion events will be directed back to the CPU that transmitted
329  * the packet, which should be cache-efficient.
330  *
331  * Context: non-blocking.
332  * Note that returning anything other than NETDEV_TX_OK will cause the
333  * OS to free the skb.
334  */
335 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
336 				struct net_device *net_dev)
337 {
338 	struct efx_nic *efx = netdev_priv(net_dev);
339 	struct efx_tx_queue *tx_queue;
340 	unsigned index, type;
341 
342 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
343 
344 	/* PTP "event" packet */
345 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
346 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
347 		return efx_ptp_tx(efx, skb);
348 	}
349 
350 	index = skb_get_queue_mapping(skb);
351 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
352 	if (index >= efx->n_tx_channels) {
353 		index -= efx->n_tx_channels;
354 		type |= EFX_TXQ_TYPE_HIGHPRI;
355 	}
356 	tx_queue = efx_get_tx_queue(efx, index, type);
357 
358 	return efx_enqueue_skb(tx_queue, skb);
359 }
360 
361 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
362 {
363 	struct efx_nic *efx = tx_queue->efx;
364 
365 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
366 	tx_queue->core_txq =
367 		netdev_get_tx_queue(efx->net_dev,
368 				    tx_queue->queue / EFX_TXQ_TYPES +
369 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
370 				     efx->n_tx_channels : 0));
371 }
372 
373 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
374 {
375 	struct efx_nic *efx = netdev_priv(net_dev);
376 	struct efx_channel *channel;
377 	struct efx_tx_queue *tx_queue;
378 	unsigned tc;
379 	int rc;
380 
381 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
382 		return -EINVAL;
383 
384 	if (num_tc == net_dev->num_tc)
385 		return 0;
386 
387 	for (tc = 0; tc < num_tc; tc++) {
388 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
389 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
390 	}
391 
392 	if (num_tc > net_dev->num_tc) {
393 		/* Initialise high-priority queues as necessary */
394 		efx_for_each_channel(channel, efx) {
395 			efx_for_each_possible_channel_tx_queue(tx_queue,
396 							       channel) {
397 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
398 					continue;
399 				if (!tx_queue->buffer) {
400 					rc = efx_probe_tx_queue(tx_queue);
401 					if (rc)
402 						return rc;
403 				}
404 				if (!tx_queue->initialised)
405 					efx_init_tx_queue(tx_queue);
406 				efx_init_tx_queue_core_txq(tx_queue);
407 			}
408 		}
409 	} else {
410 		/* Reduce number of classes before number of queues */
411 		net_dev->num_tc = num_tc;
412 	}
413 
414 	rc = netif_set_real_num_tx_queues(net_dev,
415 					  max_t(int, num_tc, 1) *
416 					  efx->n_tx_channels);
417 	if (rc)
418 		return rc;
419 
420 	/* Do not destroy high-priority queues when they become
421 	 * unused.  We would have to flush them first, and it is
422 	 * fairly difficult to flush a subset of TX queues.  Leave
423 	 * it to efx_fini_channels().
424 	 */
425 
426 	net_dev->num_tc = num_tc;
427 	return 0;
428 }
429 
430 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
431 {
432 	unsigned fill_level;
433 	struct efx_nic *efx = tx_queue->efx;
434 	struct efx_tx_queue *txq2;
435 	unsigned int pkts_compl = 0, bytes_compl = 0;
436 
437 	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
438 
439 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
440 	netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
441 
442 	if (pkts_compl > 1)
443 		++tx_queue->merge_events;
444 
445 	/* See if we need to restart the netif queue.  This memory
446 	 * barrier ensures that we write read_count (inside
447 	 * efx_dequeue_buffers()) before reading the queue status.
448 	 */
449 	smp_mb();
450 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
451 	    likely(efx->port_enabled) &&
452 	    likely(netif_device_present(efx->net_dev))) {
453 		txq2 = efx_tx_queue_partner(tx_queue);
454 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
455 				 txq2->insert_count - txq2->read_count);
456 		if (fill_level <= efx->txq_wake_thresh)
457 			netif_tx_wake_queue(tx_queue->core_txq);
458 	}
459 
460 	/* Check whether the hardware queue is now empty */
461 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
462 		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
463 		if (tx_queue->read_count == tx_queue->old_write_count) {
464 			smp_mb();
465 			tx_queue->empty_read_count =
466 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
467 		}
468 	}
469 }
470 
471 /* Size of page-based TSO header buffers.  Larger blocks must be
472  * allocated from the heap.
473  */
474 #define TSOH_STD_SIZE	128
475 #define TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
476 
477 /* At most half the descriptors in the queue at any time will refer to
478  * a TSO header buffer, since they must always be followed by a
479  * payload descriptor referring to an skb.
480  */
481 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
482 {
483 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
484 }
485 
486 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
487 {
488 	struct efx_nic *efx = tx_queue->efx;
489 	unsigned int entries;
490 	int rc;
491 
492 	/* Create the smallest power-of-two aligned ring */
493 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
494 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
495 	tx_queue->ptr_mask = entries - 1;
496 
497 	netif_dbg(efx, probe, efx->net_dev,
498 		  "creating TX queue %d size %#x mask %#x\n",
499 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
500 
501 	/* Allocate software ring */
502 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
503 				   GFP_KERNEL);
504 	if (!tx_queue->buffer)
505 		return -ENOMEM;
506 
507 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
508 		tx_queue->tsoh_page =
509 			kcalloc(efx_tsoh_page_count(tx_queue),
510 				sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
511 		if (!tx_queue->tsoh_page) {
512 			rc = -ENOMEM;
513 			goto fail1;
514 		}
515 	}
516 
517 	/* Allocate hardware ring */
518 	rc = efx_nic_probe_tx(tx_queue);
519 	if (rc)
520 		goto fail2;
521 
522 	return 0;
523 
524 fail2:
525 	kfree(tx_queue->tsoh_page);
526 	tx_queue->tsoh_page = NULL;
527 fail1:
528 	kfree(tx_queue->buffer);
529 	tx_queue->buffer = NULL;
530 	return rc;
531 }
532 
533 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
534 {
535 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
536 		  "initialising TX queue %d\n", tx_queue->queue);
537 
538 	tx_queue->insert_count = 0;
539 	tx_queue->write_count = 0;
540 	tx_queue->old_write_count = 0;
541 	tx_queue->read_count = 0;
542 	tx_queue->old_read_count = 0;
543 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
544 
545 	/* Set up TX descriptor ring */
546 	efx_nic_init_tx(tx_queue);
547 
548 	tx_queue->initialised = true;
549 }
550 
551 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
552 {
553 	struct efx_tx_buffer *buffer;
554 
555 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
556 		  "shutting down TX queue %d\n", tx_queue->queue);
557 
558 	if (!tx_queue->buffer)
559 		return;
560 
561 	/* Free any buffers left in the ring */
562 	while (tx_queue->read_count != tx_queue->write_count) {
563 		unsigned int pkts_compl = 0, bytes_compl = 0;
564 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
565 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
566 
567 		++tx_queue->read_count;
568 	}
569 	netdev_tx_reset_queue(tx_queue->core_txq);
570 }
571 
572 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
573 {
574 	int i;
575 
576 	if (!tx_queue->buffer)
577 		return;
578 
579 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
580 		  "destroying TX queue %d\n", tx_queue->queue);
581 	efx_nic_remove_tx(tx_queue);
582 
583 	if (tx_queue->tsoh_page) {
584 		for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
585 			efx_nic_free_buffer(tx_queue->efx,
586 					    &tx_queue->tsoh_page[i]);
587 		kfree(tx_queue->tsoh_page);
588 		tx_queue->tsoh_page = NULL;
589 	}
590 
591 	kfree(tx_queue->buffer);
592 	tx_queue->buffer = NULL;
593 }
594 
595 
596 /* Efx TCP segmentation acceleration.
597  *
598  * Why?  Because by doing it here in the driver we can go significantly
599  * faster than the GSO.
600  *
601  * Requires TX checksum offload support.
602  */
603 
604 /* Number of bytes inserted at the start of a TSO header buffer,
605  * similar to NET_IP_ALIGN.
606  */
607 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
608 #define TSOH_OFFSET	0
609 #else
610 #define TSOH_OFFSET	NET_IP_ALIGN
611 #endif
612 
613 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
614 
615 /**
616  * struct tso_state - TSO state for an SKB
617  * @out_len: Remaining length in current segment
618  * @seqnum: Current sequence number
619  * @ipv4_id: Current IPv4 ID, host endian
620  * @packet_space: Remaining space in current packet
621  * @dma_addr: DMA address of current position
622  * @in_len: Remaining length in current SKB fragment
623  * @unmap_len: Length of SKB fragment
624  * @unmap_addr: DMA address of SKB fragment
625  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
626  * @protocol: Network protocol (after any VLAN header)
627  * @ip_off: Offset of IP header
628  * @tcp_off: Offset of TCP header
629  * @header_len: Number of bytes of header
630  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
631  *
632  * The state used during segmentation.  It is put into this data structure
633  * just to make it easy to pass into inline functions.
634  */
635 struct tso_state {
636 	/* Output position */
637 	unsigned out_len;
638 	unsigned seqnum;
639 	unsigned ipv4_id;
640 	unsigned packet_space;
641 
642 	/* Input position */
643 	dma_addr_t dma_addr;
644 	unsigned in_len;
645 	unsigned unmap_len;
646 	dma_addr_t unmap_addr;
647 	unsigned short dma_flags;
648 
649 	__be16 protocol;
650 	unsigned int ip_off;
651 	unsigned int tcp_off;
652 	unsigned header_len;
653 	unsigned int ip_base_len;
654 };
655 
656 
657 /*
658  * Verify that our various assumptions about sk_buffs and the conditions
659  * under which TSO will be attempted hold true.  Return the protocol number.
660  */
661 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
662 {
663 	__be16 protocol = skb->protocol;
664 
665 	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
666 			    protocol);
667 	if (protocol == htons(ETH_P_8021Q)) {
668 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
669 		protocol = veh->h_vlan_encapsulated_proto;
670 	}
671 
672 	if (protocol == htons(ETH_P_IP)) {
673 		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
674 	} else {
675 		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
676 		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
677 	}
678 	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
679 			     + (tcp_hdr(skb)->doff << 2u)) >
680 			    skb_headlen(skb));
681 
682 	return protocol;
683 }
684 
685 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
686 			       struct efx_tx_buffer *buffer, unsigned int len)
687 {
688 	u8 *result;
689 
690 	EFX_BUG_ON_PARANOID(buffer->len);
691 	EFX_BUG_ON_PARANOID(buffer->flags);
692 	EFX_BUG_ON_PARANOID(buffer->unmap_len);
693 
694 	if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
695 		unsigned index =
696 			(tx_queue->insert_count & tx_queue->ptr_mask) / 2;
697 		struct efx_buffer *page_buf =
698 			&tx_queue->tsoh_page[index / TSOH_PER_PAGE];
699 		unsigned offset =
700 			TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + TSOH_OFFSET;
701 
702 		if (unlikely(!page_buf->addr) &&
703 		    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
704 					 GFP_ATOMIC))
705 			return NULL;
706 
707 		result = (u8 *)page_buf->addr + offset;
708 		buffer->dma_addr = page_buf->dma_addr + offset;
709 		buffer->flags = EFX_TX_BUF_CONT;
710 	} else {
711 		tx_queue->tso_long_headers++;
712 
713 		buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
714 		if (unlikely(!buffer->heap_buf))
715 			return NULL;
716 		result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
717 		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
718 	}
719 
720 	buffer->len = len;
721 
722 	return result;
723 }
724 
725 /**
726  * efx_tx_queue_insert - push descriptors onto the TX queue
727  * @tx_queue:		Efx TX queue
728  * @dma_addr:		DMA address of fragment
729  * @len:		Length of fragment
730  * @final_buffer:	The final buffer inserted into the queue
731  *
732  * Push descriptors onto the TX queue.
733  */
734 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
735 				dma_addr_t dma_addr, unsigned len,
736 				struct efx_tx_buffer **final_buffer)
737 {
738 	struct efx_tx_buffer *buffer;
739 	struct efx_nic *efx = tx_queue->efx;
740 	unsigned dma_len, insert_ptr;
741 
742 	EFX_BUG_ON_PARANOID(len <= 0);
743 
744 	while (1) {
745 		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
746 		buffer = &tx_queue->buffer[insert_ptr];
747 		++tx_queue->insert_count;
748 
749 		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
750 				    tx_queue->read_count >=
751 				    efx->txq_entries);
752 
753 		EFX_BUG_ON_PARANOID(buffer->len);
754 		EFX_BUG_ON_PARANOID(buffer->unmap_len);
755 		EFX_BUG_ON_PARANOID(buffer->flags);
756 
757 		buffer->dma_addr = dma_addr;
758 
759 		dma_len = efx_max_tx_len(efx, dma_addr);
760 
761 		/* If there is enough space to send then do so */
762 		if (dma_len >= len)
763 			break;
764 
765 		buffer->len = dma_len;
766 		buffer->flags = EFX_TX_BUF_CONT;
767 		dma_addr += dma_len;
768 		len -= dma_len;
769 	}
770 
771 	EFX_BUG_ON_PARANOID(!len);
772 	buffer->len = len;
773 	*final_buffer = buffer;
774 }
775 
776 
777 /*
778  * Put a TSO header into the TX queue.
779  *
780  * This is special-cased because we know that it is small enough to fit in
781  * a single fragment, and we know it doesn't cross a page boundary.  It
782  * also allows us to not worry about end-of-packet etc.
783  */
784 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
785 			      struct efx_tx_buffer *buffer, u8 *header)
786 {
787 	if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
788 		buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
789 						  header, buffer->len,
790 						  DMA_TO_DEVICE);
791 		if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
792 					       buffer->dma_addr))) {
793 			kfree(buffer->heap_buf);
794 			buffer->len = 0;
795 			buffer->flags = 0;
796 			return -ENOMEM;
797 		}
798 		buffer->unmap_len = buffer->len;
799 		buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
800 	}
801 
802 	++tx_queue->insert_count;
803 	return 0;
804 }
805 
806 
807 /* Remove buffers put into a tx_queue.  None of the buffers must have
808  * an skb attached.
809  */
810 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
811 {
812 	struct efx_tx_buffer *buffer;
813 
814 	/* Work backwards until we hit the original insert pointer value */
815 	while (tx_queue->insert_count != tx_queue->write_count) {
816 		--tx_queue->insert_count;
817 		buffer = &tx_queue->buffer[tx_queue->insert_count &
818 					   tx_queue->ptr_mask];
819 		efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
820 	}
821 }
822 
823 
824 /* Parse the SKB header and initialise state. */
825 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
826 {
827 	st->ip_off = skb_network_header(skb) - skb->data;
828 	st->tcp_off = skb_transport_header(skb) - skb->data;
829 	st->header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
830 	if (st->protocol == htons(ETH_P_IP)) {
831 		st->ip_base_len = st->header_len - st->ip_off;
832 		st->ipv4_id = ntohs(ip_hdr(skb)->id);
833 	} else {
834 		st->ip_base_len = st->header_len - st->tcp_off;
835 		st->ipv4_id = 0;
836 	}
837 	st->seqnum = ntohl(tcp_hdr(skb)->seq);
838 
839 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
840 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
841 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
842 
843 	st->out_len = skb->len - st->header_len;
844 	st->unmap_len = 0;
845 	st->dma_flags = 0;
846 }
847 
848 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
849 			    skb_frag_t *frag)
850 {
851 	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
852 					  skb_frag_size(frag), DMA_TO_DEVICE);
853 	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
854 		st->dma_flags = 0;
855 		st->unmap_len = skb_frag_size(frag);
856 		st->in_len = skb_frag_size(frag);
857 		st->dma_addr = st->unmap_addr;
858 		return 0;
859 	}
860 	return -ENOMEM;
861 }
862 
863 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
864 				 const struct sk_buff *skb)
865 {
866 	int hl = st->header_len;
867 	int len = skb_headlen(skb) - hl;
868 
869 	st->unmap_addr = dma_map_single(&efx->pci_dev->dev, skb->data + hl,
870 					len, DMA_TO_DEVICE);
871 	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
872 		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
873 		st->unmap_len = len;
874 		st->in_len = len;
875 		st->dma_addr = st->unmap_addr;
876 		return 0;
877 	}
878 	return -ENOMEM;
879 }
880 
881 
882 /**
883  * tso_fill_packet_with_fragment - form descriptors for the current fragment
884  * @tx_queue:		Efx TX queue
885  * @skb:		Socket buffer
886  * @st:			TSO state
887  *
888  * Form descriptors for the current fragment, until we reach the end
889  * of fragment or end-of-packet.
890  */
891 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
892 					  const struct sk_buff *skb,
893 					  struct tso_state *st)
894 {
895 	struct efx_tx_buffer *buffer;
896 	int n;
897 
898 	if (st->in_len == 0)
899 		return;
900 	if (st->packet_space == 0)
901 		return;
902 
903 	EFX_BUG_ON_PARANOID(st->in_len <= 0);
904 	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
905 
906 	n = min(st->in_len, st->packet_space);
907 
908 	st->packet_space -= n;
909 	st->out_len -= n;
910 	st->in_len -= n;
911 
912 	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
913 
914 	if (st->out_len == 0) {
915 		/* Transfer ownership of the skb */
916 		buffer->skb = skb;
917 		buffer->flags = EFX_TX_BUF_SKB;
918 	} else if (st->packet_space != 0) {
919 		buffer->flags = EFX_TX_BUF_CONT;
920 	}
921 
922 	if (st->in_len == 0) {
923 		/* Transfer ownership of the DMA mapping */
924 		buffer->unmap_len = st->unmap_len;
925 		buffer->flags |= st->dma_flags;
926 		st->unmap_len = 0;
927 	}
928 
929 	st->dma_addr += n;
930 }
931 
932 
933 /**
934  * tso_start_new_packet - generate a new header and prepare for the new packet
935  * @tx_queue:		Efx TX queue
936  * @skb:		Socket buffer
937  * @st:			TSO state
938  *
939  * Generate a new header and prepare for the new packet.  Return 0 on
940  * success, or -%ENOMEM if failed to alloc header.
941  */
942 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
943 				const struct sk_buff *skb,
944 				struct tso_state *st)
945 {
946 	struct efx_tx_buffer *buffer =
947 		&tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
948 	struct tcphdr *tsoh_th;
949 	unsigned ip_length;
950 	u8 *header;
951 	int rc;
952 
953 	/* Allocate and insert a DMA-mapped header buffer. */
954 	header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
955 	if (!header)
956 		return -ENOMEM;
957 
958 	tsoh_th = (struct tcphdr *)(header + st->tcp_off);
959 
960 	/* Copy and update the headers. */
961 	memcpy(header, skb->data, st->header_len);
962 
963 	tsoh_th->seq = htonl(st->seqnum);
964 	st->seqnum += skb_shinfo(skb)->gso_size;
965 	if (st->out_len > skb_shinfo(skb)->gso_size) {
966 		/* This packet will not finish the TSO burst. */
967 		st->packet_space = skb_shinfo(skb)->gso_size;
968 		tsoh_th->fin = 0;
969 		tsoh_th->psh = 0;
970 	} else {
971 		/* This packet will be the last in the TSO burst. */
972 		st->packet_space = st->out_len;
973 		tsoh_th->fin = tcp_hdr(skb)->fin;
974 		tsoh_th->psh = tcp_hdr(skb)->psh;
975 	}
976 	ip_length = st->ip_base_len + st->packet_space;
977 
978 	if (st->protocol == htons(ETH_P_IP)) {
979 		struct iphdr *tsoh_iph = (struct iphdr *)(header + st->ip_off);
980 
981 		tsoh_iph->tot_len = htons(ip_length);
982 
983 		/* Linux leaves suitable gaps in the IP ID space for us to fill. */
984 		tsoh_iph->id = htons(st->ipv4_id);
985 		st->ipv4_id++;
986 	} else {
987 		struct ipv6hdr *tsoh_iph =
988 			(struct ipv6hdr *)(header + st->ip_off);
989 
990 		tsoh_iph->payload_len = htons(ip_length);
991 	}
992 
993 	rc = efx_tso_put_header(tx_queue, buffer, header);
994 	if (unlikely(rc))
995 		return rc;
996 
997 	++tx_queue->tso_packets;
998 
999 	return 0;
1000 }
1001 
1002 
1003 /**
1004  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1005  * @tx_queue:		Efx TX queue
1006  * @skb:		Socket buffer
1007  *
1008  * Context: You must hold netif_tx_lock() to call this function.
1009  *
1010  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1011  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1012  * %NETDEV_TX_OK.
1013  */
1014 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1015 			       struct sk_buff *skb)
1016 {
1017 	struct efx_nic *efx = tx_queue->efx;
1018 	int frag_i, rc;
1019 	struct tso_state state;
1020 
1021 	/* Find the packet protocol and sanity-check it */
1022 	state.protocol = efx_tso_check_protocol(skb);
1023 
1024 	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1025 
1026 	tso_start(&state, skb);
1027 
1028 	/* Assume that skb header area contains exactly the headers, and
1029 	 * all payload is in the frag list.
1030 	 */
1031 	if (skb_headlen(skb) == state.header_len) {
1032 		/* Grab the first payload fragment. */
1033 		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1034 		frag_i = 0;
1035 		rc = tso_get_fragment(&state, efx,
1036 				      skb_shinfo(skb)->frags + frag_i);
1037 		if (rc)
1038 			goto mem_err;
1039 	} else {
1040 		rc = tso_get_head_fragment(&state, efx, skb);
1041 		if (rc)
1042 			goto mem_err;
1043 		frag_i = -1;
1044 	}
1045 
1046 	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1047 		goto mem_err;
1048 
1049 	while (1) {
1050 		tso_fill_packet_with_fragment(tx_queue, skb, &state);
1051 
1052 		/* Move onto the next fragment? */
1053 		if (state.in_len == 0) {
1054 			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1055 				/* End of payload reached. */
1056 				break;
1057 			rc = tso_get_fragment(&state, efx,
1058 					      skb_shinfo(skb)->frags + frag_i);
1059 			if (rc)
1060 				goto mem_err;
1061 		}
1062 
1063 		/* Start at new packet? */
1064 		if (state.packet_space == 0 &&
1065 		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1066 			goto mem_err;
1067 	}
1068 
1069 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1070 
1071 	/* Pass off to hardware */
1072 	efx_nic_push_buffers(tx_queue);
1073 
1074 	efx_tx_maybe_stop_queue(tx_queue);
1075 
1076 	tx_queue->tso_bursts++;
1077 	return NETDEV_TX_OK;
1078 
1079  mem_err:
1080 	netif_err(efx, tx_err, efx->net_dev,
1081 		  "Out of memory for TSO headers, or DMA mapping error\n");
1082 	dev_kfree_skb_any(skb);
1083 
1084 	/* Free the DMA mapping we were in the process of writing out */
1085 	if (state.unmap_len) {
1086 		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1087 			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1088 					 state.unmap_len, DMA_TO_DEVICE);
1089 		else
1090 			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1091 				       state.unmap_len, DMA_TO_DEVICE);
1092 	}
1093 
1094 	efx_enqueue_unwind(tx_queue);
1095 	return NETDEV_TX_OK;
1096 }
1097