xref: /openbmc/linux/drivers/net/ethernet/sfc/tx.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/tcp.h>
10 #include <linux/ip.h>
11 #include <linux/in.h>
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
14 #include <net/ipv6.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/cache.h>
18 #include "net_driver.h"
19 #include "efx.h"
20 #include "io.h"
21 #include "nic.h"
22 #include "tx.h"
23 #include "workarounds.h"
24 #include "ef10_regs.h"
25 
26 #ifdef EFX_USE_PIO
27 
28 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
29 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
30 
31 #endif /* EFX_USE_PIO */
32 
33 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
34 					 struct efx_tx_buffer *buffer)
35 {
36 	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
37 	struct efx_buffer *page_buf =
38 		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
39 	unsigned int offset =
40 		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
41 
42 	if (unlikely(!page_buf->addr) &&
43 	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
44 				 GFP_ATOMIC))
45 		return NULL;
46 	buffer->dma_addr = page_buf->dma_addr + offset;
47 	buffer->unmap_len = 0;
48 	return (u8 *)page_buf->addr + offset;
49 }
50 
51 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
52 				   struct efx_tx_buffer *buffer, size_t len)
53 {
54 	if (len > EFX_TX_CB_SIZE)
55 		return NULL;
56 	return efx_tx_get_copy_buffer(tx_queue, buffer);
57 }
58 
59 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
60 			       struct efx_tx_buffer *buffer,
61 			       unsigned int *pkts_compl,
62 			       unsigned int *bytes_compl)
63 {
64 	if (buffer->unmap_len) {
65 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
66 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
67 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
68 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
69 					 DMA_TO_DEVICE);
70 		else
71 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
72 				       DMA_TO_DEVICE);
73 		buffer->unmap_len = 0;
74 	}
75 
76 	if (buffer->flags & EFX_TX_BUF_SKB) {
77 		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
78 
79 		EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
80 		(*pkts_compl)++;
81 		(*bytes_compl) += skb->len;
82 		if (tx_queue->timestamping &&
83 		    (tx_queue->completed_timestamp_major ||
84 		     tx_queue->completed_timestamp_minor)) {
85 			struct skb_shared_hwtstamps hwtstamp;
86 
87 			hwtstamp.hwtstamp =
88 				efx_ptp_nic_to_kernel_time(tx_queue);
89 			skb_tstamp_tx(skb, &hwtstamp);
90 
91 			tx_queue->completed_timestamp_major = 0;
92 			tx_queue->completed_timestamp_minor = 0;
93 		}
94 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
95 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
96 			   "TX queue %d transmission id %x complete\n",
97 			   tx_queue->queue, tx_queue->read_count);
98 	} else if (buffer->flags & EFX_TX_BUF_XDP) {
99 		xdp_return_frame_rx_napi(buffer->xdpf);
100 	}
101 
102 	buffer->len = 0;
103 	buffer->flags = 0;
104 }
105 
106 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
107 {
108 	/* Header and payload descriptor for each output segment, plus
109 	 * one for every input fragment boundary within a segment
110 	 */
111 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
112 
113 	/* Possibly one more per segment for option descriptors */
114 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
115 		max_descs += EFX_TSO_MAX_SEGS;
116 
117 	/* Possibly more for PCIe page boundaries within input fragments */
118 	if (PAGE_SIZE > EFX_PAGE_SIZE)
119 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
120 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
121 
122 	return max_descs;
123 }
124 
125 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
126 {
127 	/* We need to consider both queues that the net core sees as one */
128 	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
129 	struct efx_nic *efx = txq1->efx;
130 	unsigned int fill_level;
131 
132 	fill_level = max(txq1->insert_count - txq1->old_read_count,
133 			 txq2->insert_count - txq2->old_read_count);
134 	if (likely(fill_level < efx->txq_stop_thresh))
135 		return;
136 
137 	/* We used the stale old_read_count above, which gives us a
138 	 * pessimistic estimate of the fill level (which may even
139 	 * validly be >= efx->txq_entries).  Now try again using
140 	 * read_count (more likely to be a cache miss).
141 	 *
142 	 * If we read read_count and then conditionally stop the
143 	 * queue, it is possible for the completion path to race with
144 	 * us and complete all outstanding descriptors in the middle,
145 	 * after which there will be no more completions to wake it.
146 	 * Therefore we stop the queue first, then read read_count
147 	 * (with a memory barrier to ensure the ordering), then
148 	 * restart the queue if the fill level turns out to be low
149 	 * enough.
150 	 */
151 	netif_tx_stop_queue(txq1->core_txq);
152 	smp_mb();
153 	txq1->old_read_count = READ_ONCE(txq1->read_count);
154 	txq2->old_read_count = READ_ONCE(txq2->read_count);
155 
156 	fill_level = max(txq1->insert_count - txq1->old_read_count,
157 			 txq2->insert_count - txq2->old_read_count);
158 	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
159 	if (likely(fill_level < efx->txq_stop_thresh)) {
160 		smp_mb();
161 		if (likely(!efx->loopback_selftest))
162 			netif_tx_start_queue(txq1->core_txq);
163 	}
164 }
165 
166 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
167 				struct sk_buff *skb)
168 {
169 	unsigned int copy_len = skb->len;
170 	struct efx_tx_buffer *buffer;
171 	u8 *copy_buffer;
172 	int rc;
173 
174 	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
175 
176 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
177 
178 	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
179 	if (unlikely(!copy_buffer))
180 		return -ENOMEM;
181 
182 	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
183 	EFX_WARN_ON_PARANOID(rc);
184 	buffer->len = copy_len;
185 
186 	buffer->skb = skb;
187 	buffer->flags = EFX_TX_BUF_SKB;
188 
189 	++tx_queue->insert_count;
190 	return rc;
191 }
192 
193 #ifdef EFX_USE_PIO
194 
195 struct efx_short_copy_buffer {
196 	int used;
197 	u8 buf[L1_CACHE_BYTES];
198 };
199 
200 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
201  * Advances piobuf pointer. Leaves additional data in the copy buffer.
202  */
203 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
204 				    u8 *data, int len,
205 				    struct efx_short_copy_buffer *copy_buf)
206 {
207 	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
208 
209 	__iowrite64_copy(*piobuf, data, block_len >> 3);
210 	*piobuf += block_len;
211 	len -= block_len;
212 
213 	if (len) {
214 		data += block_len;
215 		BUG_ON(copy_buf->used);
216 		BUG_ON(len > sizeof(copy_buf->buf));
217 		memcpy(copy_buf->buf, data, len);
218 		copy_buf->used = len;
219 	}
220 }
221 
222 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
223  * Advances piobuf pointer. Leaves additional data in the copy buffer.
224  */
225 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
226 				       u8 *data, int len,
227 				       struct efx_short_copy_buffer *copy_buf)
228 {
229 	if (copy_buf->used) {
230 		/* if the copy buffer is partially full, fill it up and write */
231 		int copy_to_buf =
232 			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
233 
234 		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
235 		copy_buf->used += copy_to_buf;
236 
237 		/* if we didn't fill it up then we're done for now */
238 		if (copy_buf->used < sizeof(copy_buf->buf))
239 			return;
240 
241 		__iowrite64_copy(*piobuf, copy_buf->buf,
242 				 sizeof(copy_buf->buf) >> 3);
243 		*piobuf += sizeof(copy_buf->buf);
244 		data += copy_to_buf;
245 		len -= copy_to_buf;
246 		copy_buf->used = 0;
247 	}
248 
249 	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
250 }
251 
252 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
253 				  struct efx_short_copy_buffer *copy_buf)
254 {
255 	/* if there's anything in it, write the whole buffer, including junk */
256 	if (copy_buf->used)
257 		__iowrite64_copy(piobuf, copy_buf->buf,
258 				 sizeof(copy_buf->buf) >> 3);
259 }
260 
261 /* Traverse skb structure and copy fragments in to PIO buffer.
262  * Advances piobuf pointer.
263  */
264 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
265 				     u8 __iomem **piobuf,
266 				     struct efx_short_copy_buffer *copy_buf)
267 {
268 	int i;
269 
270 	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
271 				copy_buf);
272 
273 	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
274 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
275 		u8 *vaddr;
276 
277 		vaddr = kmap_atomic(skb_frag_page(f));
278 
279 		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
280 					   skb_frag_size(f), copy_buf);
281 		kunmap_atomic(vaddr);
282 	}
283 
284 	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
285 }
286 
287 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
288 			       struct sk_buff *skb)
289 {
290 	struct efx_tx_buffer *buffer =
291 		efx_tx_queue_get_insert_buffer(tx_queue);
292 	u8 __iomem *piobuf = tx_queue->piobuf;
293 
294 	/* Copy to PIO buffer. Ensure the writes are padded to the end
295 	 * of a cache line, as this is required for write-combining to be
296 	 * effective on at least x86.
297 	 */
298 
299 	if (skb_shinfo(skb)->nr_frags) {
300 		/* The size of the copy buffer will ensure all writes
301 		 * are the size of a cache line.
302 		 */
303 		struct efx_short_copy_buffer copy_buf;
304 
305 		copy_buf.used = 0;
306 
307 		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
308 					 &piobuf, &copy_buf);
309 		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
310 	} else {
311 		/* Pad the write to the size of a cache line.
312 		 * We can do this because we know the skb_shared_info struct is
313 		 * after the source, and the destination buffer is big enough.
314 		 */
315 		BUILD_BUG_ON(L1_CACHE_BYTES >
316 			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
317 		__iowrite64_copy(tx_queue->piobuf, skb->data,
318 				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
319 	}
320 
321 	buffer->skb = skb;
322 	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
323 
324 	EFX_POPULATE_QWORD_5(buffer->option,
325 			     ESF_DZ_TX_DESC_IS_OPT, 1,
326 			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
327 			     ESF_DZ_TX_PIO_CONT, 0,
328 			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
329 			     ESF_DZ_TX_PIO_BUF_ADDR,
330 			     tx_queue->piobuf_offset);
331 	++tx_queue->insert_count;
332 	return 0;
333 }
334 #endif /* EFX_USE_PIO */
335 
336 static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
337 					      dma_addr_t dma_addr,
338 					      size_t len)
339 {
340 	const struct efx_nic_type *nic_type = tx_queue->efx->type;
341 	struct efx_tx_buffer *buffer;
342 	unsigned int dma_len;
343 
344 	/* Map the fragment taking account of NIC-dependent DMA limits. */
345 	do {
346 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
347 		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
348 
349 		buffer->len = dma_len;
350 		buffer->dma_addr = dma_addr;
351 		buffer->flags = EFX_TX_BUF_CONT;
352 		len -= dma_len;
353 		dma_addr += dma_len;
354 		++tx_queue->insert_count;
355 	} while (len);
356 
357 	return buffer;
358 }
359 
360 /* Map all data from an SKB for DMA and create descriptors on the queue.
361  */
362 static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
363 			   unsigned int segment_count)
364 {
365 	struct efx_nic *efx = tx_queue->efx;
366 	struct device *dma_dev = &efx->pci_dev->dev;
367 	unsigned int frag_index, nr_frags;
368 	dma_addr_t dma_addr, unmap_addr;
369 	unsigned short dma_flags;
370 	size_t len, unmap_len;
371 
372 	nr_frags = skb_shinfo(skb)->nr_frags;
373 	frag_index = 0;
374 
375 	/* Map header data. */
376 	len = skb_headlen(skb);
377 	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
378 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
379 	unmap_len = len;
380 	unmap_addr = dma_addr;
381 
382 	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
383 		return -EIO;
384 
385 	if (segment_count) {
386 		/* For TSO we need to put the header in to a separate
387 		 * descriptor. Map this separately if necessary.
388 		 */
389 		size_t header_len = skb_transport_header(skb) - skb->data +
390 				(tcp_hdr(skb)->doff << 2u);
391 
392 		if (header_len != len) {
393 			tx_queue->tso_long_headers++;
394 			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
395 			len -= header_len;
396 			dma_addr += header_len;
397 		}
398 	}
399 
400 	/* Add descriptors for each fragment. */
401 	do {
402 		struct efx_tx_buffer *buffer;
403 		skb_frag_t *fragment;
404 
405 		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
406 
407 		/* The final descriptor for a fragment is responsible for
408 		 * unmapping the whole fragment.
409 		 */
410 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
411 		buffer->unmap_len = unmap_len;
412 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
413 
414 		if (frag_index >= nr_frags) {
415 			/* Store SKB details with the final buffer for
416 			 * the completion.
417 			 */
418 			buffer->skb = skb;
419 			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
420 			return 0;
421 		}
422 
423 		/* Move on to the next fragment. */
424 		fragment = &skb_shinfo(skb)->frags[frag_index++];
425 		len = skb_frag_size(fragment);
426 		dma_addr = skb_frag_dma_map(dma_dev, fragment,
427 				0, len, DMA_TO_DEVICE);
428 		dma_flags = 0;
429 		unmap_len = len;
430 		unmap_addr = dma_addr;
431 
432 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
433 			return -EIO;
434 	} while (1);
435 }
436 
437 /* Remove buffers put into a tx_queue for the current packet.
438  * None of the buffers must have an skb attached.
439  */
440 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
441 			       unsigned int insert_count)
442 {
443 	struct efx_tx_buffer *buffer;
444 	unsigned int bytes_compl = 0;
445 	unsigned int pkts_compl = 0;
446 
447 	/* Work backwards until we hit the original insert pointer value */
448 	while (tx_queue->insert_count != insert_count) {
449 		--tx_queue->insert_count;
450 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
451 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
452 	}
453 }
454 
455 /*
456  * Fallback to software TSO.
457  *
458  * This is used if we are unable to send a GSO packet through hardware TSO.
459  * This should only ever happen due to per-queue restrictions - unsupported
460  * packets should first be filtered by the feature flags.
461  *
462  * Returns 0 on success, error code otherwise.
463  */
464 static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
465 			       struct sk_buff *skb)
466 {
467 	struct sk_buff *segments, *next;
468 
469 	segments = skb_gso_segment(skb, 0);
470 	if (IS_ERR(segments))
471 		return PTR_ERR(segments);
472 
473 	dev_consume_skb_any(skb);
474 	skb = segments;
475 
476 	while (skb) {
477 		next = skb->next;
478 		skb->next = NULL;
479 
480 		efx_enqueue_skb(tx_queue, skb);
481 		skb = next;
482 	}
483 
484 	return 0;
485 }
486 
487 /*
488  * Add a socket buffer to a TX queue
489  *
490  * This maps all fragments of a socket buffer for DMA and adds them to
491  * the TX queue.  The queue's insert pointer will be incremented by
492  * the number of fragments in the socket buffer.
493  *
494  * If any DMA mapping fails, any mapped fragments will be unmapped,
495  * the queue's insert pointer will be restored to its original value.
496  *
497  * This function is split out from efx_hard_start_xmit to allow the
498  * loopback test to direct packets via specific TX queues.
499  *
500  * Returns NETDEV_TX_OK.
501  * You must hold netif_tx_lock() to call this function.
502  */
503 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
504 {
505 	unsigned int old_insert_count = tx_queue->insert_count;
506 	bool xmit_more = netdev_xmit_more();
507 	bool data_mapped = false;
508 	unsigned int segments;
509 	unsigned int skb_len;
510 	int rc;
511 
512 	skb_len = skb->len;
513 	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
514 	if (segments == 1)
515 		segments = 0; /* Don't use TSO for a single segment. */
516 
517 	/* Handle TSO first - it's *possible* (although unlikely) that we might
518 	 * be passed a packet to segment that's smaller than the copybreak/PIO
519 	 * size limit.
520 	 */
521 	if (segments) {
522 		EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
523 		rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
524 		if (rc == -EINVAL) {
525 			rc = efx_tx_tso_fallback(tx_queue, skb);
526 			tx_queue->tso_fallbacks++;
527 			if (rc == 0)
528 				return 0;
529 		}
530 		if (rc)
531 			goto err;
532 #ifdef EFX_USE_PIO
533 	} else if (skb_len <= efx_piobuf_size && !xmit_more &&
534 		   efx_nic_may_tx_pio(tx_queue)) {
535 		/* Use PIO for short packets with an empty queue. */
536 		if (efx_enqueue_skb_pio(tx_queue, skb))
537 			goto err;
538 		tx_queue->pio_packets++;
539 		data_mapped = true;
540 #endif
541 	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
542 		/* Pad short packets or coalesce short fragmented packets. */
543 		if (efx_enqueue_skb_copy(tx_queue, skb))
544 			goto err;
545 		tx_queue->cb_packets++;
546 		data_mapped = true;
547 	}
548 
549 	/* Map for DMA and create descriptors if we haven't done so already. */
550 	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
551 		goto err;
552 
553 	efx_tx_maybe_stop_queue(tx_queue);
554 
555 	/* Pass off to hardware */
556 	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more)) {
557 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
558 
559 		/* There could be packets left on the partner queue if
560 		 * xmit_more was set. If we do not push those they
561 		 * could be left for a long time and cause a netdev watchdog.
562 		 */
563 		if (txq2->xmit_more_available)
564 			efx_nic_push_buffers(txq2);
565 
566 		efx_nic_push_buffers(tx_queue);
567 	} else {
568 		tx_queue->xmit_more_available = xmit_more;
569 	}
570 
571 	if (segments) {
572 		tx_queue->tso_bursts++;
573 		tx_queue->tso_packets += segments;
574 		tx_queue->tx_packets  += segments;
575 	} else {
576 		tx_queue->tx_packets++;
577 	}
578 
579 	return NETDEV_TX_OK;
580 
581 
582 err:
583 	efx_enqueue_unwind(tx_queue, old_insert_count);
584 	dev_kfree_skb_any(skb);
585 
586 	/* If we're not expecting another transmit and we had something to push
587 	 * on this queue or a partner queue then we need to push here to get the
588 	 * previous packets out.
589 	 */
590 	if (!xmit_more) {
591 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
592 
593 		if (txq2->xmit_more_available)
594 			efx_nic_push_buffers(txq2);
595 
596 		efx_nic_push_buffers(tx_queue);
597 	}
598 
599 	return NETDEV_TX_OK;
600 }
601 
602 static void efx_xdp_return_frames(int n,  struct xdp_frame **xdpfs)
603 {
604 	int i;
605 
606 	for (i = 0; i < n; i++)
607 		xdp_return_frame_rx_napi(xdpfs[i]);
608 }
609 
610 /* Transmit a packet from an XDP buffer
611  *
612  * Returns number of packets sent on success, error code otherwise.
613  * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
614  * (for XDP redirect).
615  */
616 int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
617 		       bool flush)
618 {
619 	struct efx_tx_buffer *tx_buffer;
620 	struct efx_tx_queue *tx_queue;
621 	struct xdp_frame *xdpf;
622 	dma_addr_t dma_addr;
623 	unsigned int len;
624 	int space;
625 	int cpu;
626 	int i;
627 
628 	cpu = raw_smp_processor_id();
629 
630 	if (!efx->xdp_tx_queue_count ||
631 	    unlikely(cpu >= efx->xdp_tx_queue_count))
632 		return -EINVAL;
633 
634 	tx_queue = efx->xdp_tx_queues[cpu];
635 	if (unlikely(!tx_queue))
636 		return -EINVAL;
637 
638 	if (unlikely(n && !xdpfs))
639 		return -EINVAL;
640 
641 	if (!n)
642 		return 0;
643 
644 	/* Check for available space. We should never need multiple
645 	 * descriptors per frame.
646 	 */
647 	space = efx->txq_entries +
648 		tx_queue->read_count - tx_queue->insert_count;
649 
650 	for (i = 0; i < n; i++) {
651 		xdpf = xdpfs[i];
652 
653 		if (i >= space)
654 			break;
655 
656 		/* We'll want a descriptor for this tx. */
657 		prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
658 
659 		len = xdpf->len;
660 
661 		/* Map for DMA. */
662 		dma_addr = dma_map_single(&efx->pci_dev->dev,
663 					  xdpf->data, len,
664 					  DMA_TO_DEVICE);
665 		if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
666 			break;
667 
668 		/*  Create descriptor and set up for unmapping DMA. */
669 		tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
670 		tx_buffer->xdpf = xdpf;
671 		tx_buffer->flags = EFX_TX_BUF_XDP |
672 				   EFX_TX_BUF_MAP_SINGLE;
673 		tx_buffer->dma_offset = 0;
674 		tx_buffer->unmap_len = len;
675 		tx_queue->tx_packets++;
676 	}
677 
678 	/* Pass mapped frames to hardware. */
679 	if (flush && i > 0)
680 		efx_nic_push_buffers(tx_queue);
681 
682 	if (i == 0)
683 		return -EIO;
684 
685 	efx_xdp_return_frames(n - i, xdpfs + i);
686 
687 	return i;
688 }
689 
690 /* Remove packets from the TX queue
691  *
692  * This removes packets from the TX queue, up to and including the
693  * specified index.
694  */
695 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
696 				unsigned int index,
697 				unsigned int *pkts_compl,
698 				unsigned int *bytes_compl)
699 {
700 	struct efx_nic *efx = tx_queue->efx;
701 	unsigned int stop_index, read_ptr;
702 
703 	stop_index = (index + 1) & tx_queue->ptr_mask;
704 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
705 
706 	while (read_ptr != stop_index) {
707 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
708 
709 		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
710 		    unlikely(buffer->len == 0)) {
711 			netif_err(efx, tx_err, efx->net_dev,
712 				  "TX queue %d spurious TX completion id %x\n",
713 				  tx_queue->queue, read_ptr);
714 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
715 			return;
716 		}
717 
718 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
719 
720 		++tx_queue->read_count;
721 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
722 	}
723 }
724 
725 /* Initiate a packet transmission.  We use one channel per CPU
726  * (sharing when we have more CPUs than channels).  On Falcon, the TX
727  * completion events will be directed back to the CPU that transmitted
728  * the packet, which should be cache-efficient.
729  *
730  * Context: non-blocking.
731  * Note that returning anything other than NETDEV_TX_OK will cause the
732  * OS to free the skb.
733  */
734 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
735 				struct net_device *net_dev)
736 {
737 	struct efx_nic *efx = netdev_priv(net_dev);
738 	struct efx_tx_queue *tx_queue;
739 	unsigned index, type;
740 
741 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
742 
743 	/* PTP "event" packet */
744 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
745 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
746 		return efx_ptp_tx(efx, skb);
747 	}
748 
749 	index = skb_get_queue_mapping(skb);
750 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
751 	if (index >= efx->n_tx_channels) {
752 		index -= efx->n_tx_channels;
753 		type |= EFX_TXQ_TYPE_HIGHPRI;
754 	}
755 	tx_queue = efx_get_tx_queue(efx, index, type);
756 
757 	return efx_enqueue_skb(tx_queue, skb);
758 }
759 
760 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
761 {
762 	struct efx_nic *efx = tx_queue->efx;
763 
764 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
765 	tx_queue->core_txq =
766 		netdev_get_tx_queue(efx->net_dev,
767 				    tx_queue->queue / EFX_TXQ_TYPES +
768 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
769 				     efx->n_tx_channels : 0));
770 }
771 
772 int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
773 		 void *type_data)
774 {
775 	struct efx_nic *efx = netdev_priv(net_dev);
776 	struct tc_mqprio_qopt *mqprio = type_data;
777 	struct efx_channel *channel;
778 	struct efx_tx_queue *tx_queue;
779 	unsigned tc, num_tc;
780 	int rc;
781 
782 	if (type != TC_SETUP_QDISC_MQPRIO)
783 		return -EOPNOTSUPP;
784 
785 	num_tc = mqprio->num_tc;
786 
787 	if (num_tc > EFX_MAX_TX_TC)
788 		return -EINVAL;
789 
790 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
791 
792 	if (num_tc == net_dev->num_tc)
793 		return 0;
794 
795 	for (tc = 0; tc < num_tc; tc++) {
796 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
797 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
798 	}
799 
800 	if (num_tc > net_dev->num_tc) {
801 		/* Initialise high-priority queues as necessary */
802 		efx_for_each_channel(channel, efx) {
803 			efx_for_each_possible_channel_tx_queue(tx_queue,
804 							       channel) {
805 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
806 					continue;
807 				if (!tx_queue->buffer) {
808 					rc = efx_probe_tx_queue(tx_queue);
809 					if (rc)
810 						return rc;
811 				}
812 				if (!tx_queue->initialised)
813 					efx_init_tx_queue(tx_queue);
814 				efx_init_tx_queue_core_txq(tx_queue);
815 			}
816 		}
817 	} else {
818 		/* Reduce number of classes before number of queues */
819 		net_dev->num_tc = num_tc;
820 	}
821 
822 	rc = netif_set_real_num_tx_queues(net_dev,
823 					  max_t(int, num_tc, 1) *
824 					  efx->n_tx_channels);
825 	if (rc)
826 		return rc;
827 
828 	/* Do not destroy high-priority queues when they become
829 	 * unused.  We would have to flush them first, and it is
830 	 * fairly difficult to flush a subset of TX queues.  Leave
831 	 * it to efx_fini_channels().
832 	 */
833 
834 	net_dev->num_tc = num_tc;
835 	return 0;
836 }
837 
838 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
839 {
840 	unsigned fill_level;
841 	struct efx_nic *efx = tx_queue->efx;
842 	struct efx_tx_queue *txq2;
843 	unsigned int pkts_compl = 0, bytes_compl = 0;
844 
845 	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
846 
847 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
848 	tx_queue->pkts_compl += pkts_compl;
849 	tx_queue->bytes_compl += bytes_compl;
850 
851 	if (pkts_compl > 1)
852 		++tx_queue->merge_events;
853 
854 	/* See if we need to restart the netif queue.  This memory
855 	 * barrier ensures that we write read_count (inside
856 	 * efx_dequeue_buffers()) before reading the queue status.
857 	 */
858 	smp_mb();
859 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
860 	    likely(efx->port_enabled) &&
861 	    likely(netif_device_present(efx->net_dev))) {
862 		txq2 = efx_tx_queue_partner(tx_queue);
863 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
864 				 txq2->insert_count - txq2->read_count);
865 		if (fill_level <= efx->txq_wake_thresh)
866 			netif_tx_wake_queue(tx_queue->core_txq);
867 	}
868 
869 	/* Check whether the hardware queue is now empty */
870 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
871 		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
872 		if (tx_queue->read_count == tx_queue->old_write_count) {
873 			smp_mb();
874 			tx_queue->empty_read_count =
875 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
876 		}
877 	}
878 }
879 
880 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
881 {
882 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
883 }
884 
885 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
886 {
887 	struct efx_nic *efx = tx_queue->efx;
888 	unsigned int entries;
889 	int rc;
890 
891 	/* Create the smallest power-of-two aligned ring */
892 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
893 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
894 	tx_queue->ptr_mask = entries - 1;
895 
896 	netif_dbg(efx, probe, efx->net_dev,
897 		  "creating TX queue %d size %#x mask %#x\n",
898 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
899 
900 	/* Allocate software ring */
901 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
902 				   GFP_KERNEL);
903 	if (!tx_queue->buffer)
904 		return -ENOMEM;
905 
906 	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
907 				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
908 	if (!tx_queue->cb_page) {
909 		rc = -ENOMEM;
910 		goto fail1;
911 	}
912 
913 	/* Allocate hardware ring */
914 	rc = efx_nic_probe_tx(tx_queue);
915 	if (rc)
916 		goto fail2;
917 
918 	return 0;
919 
920 fail2:
921 	kfree(tx_queue->cb_page);
922 	tx_queue->cb_page = NULL;
923 fail1:
924 	kfree(tx_queue->buffer);
925 	tx_queue->buffer = NULL;
926 	return rc;
927 }
928 
929 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
930 {
931 	struct efx_nic *efx = tx_queue->efx;
932 
933 	netif_dbg(efx, drv, efx->net_dev,
934 		  "initialising TX queue %d\n", tx_queue->queue);
935 
936 	tx_queue->insert_count = 0;
937 	tx_queue->write_count = 0;
938 	tx_queue->packet_write_count = 0;
939 	tx_queue->old_write_count = 0;
940 	tx_queue->read_count = 0;
941 	tx_queue->old_read_count = 0;
942 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
943 	tx_queue->xmit_more_available = false;
944 	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
945 				  tx_queue->channel == efx_ptp_channel(efx));
946 	tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
947 	tx_queue->completed_timestamp_major = 0;
948 	tx_queue->completed_timestamp_minor = 0;
949 
950 	tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
951 
952 	/* Set up default function pointers. These may get replaced by
953 	 * efx_nic_init_tx() based off NIC/queue capabilities.
954 	 */
955 	tx_queue->handle_tso = efx_enqueue_skb_tso;
956 
957 	/* Set up TX descriptor ring */
958 	efx_nic_init_tx(tx_queue);
959 
960 	tx_queue->initialised = true;
961 }
962 
963 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
964 {
965 	struct efx_tx_buffer *buffer;
966 
967 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
968 		  "shutting down TX queue %d\n", tx_queue->queue);
969 
970 	if (!tx_queue->buffer)
971 		return;
972 
973 	/* Free any buffers left in the ring */
974 	while (tx_queue->read_count != tx_queue->write_count) {
975 		unsigned int pkts_compl = 0, bytes_compl = 0;
976 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
977 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
978 
979 		++tx_queue->read_count;
980 	}
981 	tx_queue->xmit_more_available = false;
982 	netdev_tx_reset_queue(tx_queue->core_txq);
983 }
984 
985 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
986 {
987 	int i;
988 
989 	if (!tx_queue->buffer)
990 		return;
991 
992 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
993 		  "destroying TX queue %d\n", tx_queue->queue);
994 	efx_nic_remove_tx(tx_queue);
995 
996 	if (tx_queue->cb_page) {
997 		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
998 			efx_nic_free_buffer(tx_queue->efx,
999 					    &tx_queue->cb_page[i]);
1000 		kfree(tx_queue->cb_page);
1001 		tx_queue->cb_page = NULL;
1002 	}
1003 
1004 	kfree(tx_queue->buffer);
1005 	tx_queue->buffer = NULL;
1006 }
1007