xref: /openbmc/linux/drivers/net/ethernet/sfc/tx.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27 
28 #ifdef EFX_USE_PIO
29 
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33 
34 #endif /* EFX_USE_PIO */
35 
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38 {
39 	return tx_queue->insert_count & tx_queue->ptr_mask;
40 }
41 
42 static inline struct efx_tx_buffer *
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44 {
45 	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46 }
47 
48 static inline struct efx_tx_buffer *
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50 {
51 	struct efx_tx_buffer *buffer =
52 		__efx_tx_queue_get_insert_buffer(tx_queue);
53 
54 	EFX_BUG_ON_PARANOID(buffer->len);
55 	EFX_BUG_ON_PARANOID(buffer->flags);
56 	EFX_BUG_ON_PARANOID(buffer->unmap_len);
57 
58 	return buffer;
59 }
60 
61 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62 			       struct efx_tx_buffer *buffer,
63 			       unsigned int *pkts_compl,
64 			       unsigned int *bytes_compl)
65 {
66 	if (buffer->unmap_len) {
67 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71 					 DMA_TO_DEVICE);
72 		else
73 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74 				       DMA_TO_DEVICE);
75 		buffer->unmap_len = 0;
76 	}
77 
78 	if (buffer->flags & EFX_TX_BUF_SKB) {
79 		(*pkts_compl)++;
80 		(*bytes_compl) += buffer->skb->len;
81 		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
82 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83 			   "TX queue %d transmission id %x complete\n",
84 			   tx_queue->queue, tx_queue->read_count);
85 	} else if (buffer->flags & EFX_TX_BUF_HEAP) {
86 		kfree(buffer->heap_buf);
87 	}
88 
89 	buffer->len = 0;
90 	buffer->flags = 0;
91 }
92 
93 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94 			       struct sk_buff *skb);
95 
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98 {
99 	/* Depending on the NIC revision, we can use descriptor
100 	 * lengths up to 8K or 8K-1.  However, since PCI Express
101 	 * devices must split read requests at 4K boundaries, there is
102 	 * little benefit from using descriptors that cross those
103 	 * boundaries and we keep things simple by not doing so.
104 	 */
105 	unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106 
107 	/* Work around hardware bug for unaligned buffers. */
108 	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109 		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110 
111 	return len;
112 }
113 
114 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115 {
116 	/* Header and payload descriptor for each output segment, plus
117 	 * one for every input fragment boundary within a segment
118 	 */
119 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120 
121 	/* Possibly one more per segment for the alignment workaround,
122 	 * or for option descriptors
123 	 */
124 	if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125 		max_descs += EFX_TSO_MAX_SEGS;
126 
127 	/* Possibly more for PCIe page boundaries within input fragments */
128 	if (PAGE_SIZE > EFX_PAGE_SIZE)
129 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131 
132 	return max_descs;
133 }
134 
135 /* Get partner of a TX queue, seen as part of the same net core queue */
136 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
137 {
138 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
139 		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
140 	else
141 		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
142 }
143 
144 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
145 {
146 	/* We need to consider both queues that the net core sees as one */
147 	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
148 	struct efx_nic *efx = txq1->efx;
149 	unsigned int fill_level;
150 
151 	fill_level = max(txq1->insert_count - txq1->old_read_count,
152 			 txq2->insert_count - txq2->old_read_count);
153 	if (likely(fill_level < efx->txq_stop_thresh))
154 		return;
155 
156 	/* We used the stale old_read_count above, which gives us a
157 	 * pessimistic estimate of the fill level (which may even
158 	 * validly be >= efx->txq_entries).  Now try again using
159 	 * read_count (more likely to be a cache miss).
160 	 *
161 	 * If we read read_count and then conditionally stop the
162 	 * queue, it is possible for the completion path to race with
163 	 * us and complete all outstanding descriptors in the middle,
164 	 * after which there will be no more completions to wake it.
165 	 * Therefore we stop the queue first, then read read_count
166 	 * (with a memory barrier to ensure the ordering), then
167 	 * restart the queue if the fill level turns out to be low
168 	 * enough.
169 	 */
170 	netif_tx_stop_queue(txq1->core_txq);
171 	smp_mb();
172 	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
173 	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
174 
175 	fill_level = max(txq1->insert_count - txq1->old_read_count,
176 			 txq2->insert_count - txq2->old_read_count);
177 	EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
178 	if (likely(fill_level < efx->txq_stop_thresh)) {
179 		smp_mb();
180 		if (likely(!efx->loopback_selftest))
181 			netif_tx_start_queue(txq1->core_txq);
182 	}
183 }
184 
185 #ifdef EFX_USE_PIO
186 
187 struct efx_short_copy_buffer {
188 	int used;
189 	u8 buf[L1_CACHE_BYTES];
190 };
191 
192 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
193  * Advances piobuf pointer. Leaves additional data in the copy buffer.
194  */
195 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
196 				    u8 *data, int len,
197 				    struct efx_short_copy_buffer *copy_buf)
198 {
199 	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
200 
201 	memcpy_toio(*piobuf, data, block_len);
202 	*piobuf += block_len;
203 	len -= block_len;
204 
205 	if (len) {
206 		data += block_len;
207 		BUG_ON(copy_buf->used);
208 		BUG_ON(len > sizeof(copy_buf->buf));
209 		memcpy(copy_buf->buf, data, len);
210 		copy_buf->used = len;
211 	}
212 }
213 
214 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
215  * Advances piobuf pointer. Leaves additional data in the copy buffer.
216  */
217 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
218 				       u8 *data, int len,
219 				       struct efx_short_copy_buffer *copy_buf)
220 {
221 	if (copy_buf->used) {
222 		/* if the copy buffer is partially full, fill it up and write */
223 		int copy_to_buf =
224 			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
225 
226 		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
227 		copy_buf->used += copy_to_buf;
228 
229 		/* if we didn't fill it up then we're done for now */
230 		if (copy_buf->used < sizeof(copy_buf->buf))
231 			return;
232 
233 		memcpy_toio(*piobuf, copy_buf->buf, sizeof(copy_buf->buf));
234 		*piobuf += sizeof(copy_buf->buf);
235 		data += copy_to_buf;
236 		len -= copy_to_buf;
237 		copy_buf->used = 0;
238 	}
239 
240 	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
241 }
242 
243 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
244 				  struct efx_short_copy_buffer *copy_buf)
245 {
246 	/* if there's anything in it, write the whole buffer, including junk */
247 	if (copy_buf->used)
248 		memcpy_toio(piobuf, copy_buf->buf, sizeof(copy_buf->buf));
249 }
250 
251 /* Traverse skb structure and copy fragments in to PIO buffer.
252  * Advances piobuf pointer.
253  */
254 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
255 				     u8 __iomem **piobuf,
256 				     struct efx_short_copy_buffer *copy_buf)
257 {
258 	int i;
259 
260 	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
261 				copy_buf);
262 
263 	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
264 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
265 		u8 *vaddr;
266 
267 		vaddr = kmap_atomic(skb_frag_page(f));
268 
269 		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
270 					   skb_frag_size(f), copy_buf);
271 		kunmap_atomic(vaddr);
272 	}
273 
274 	EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
275 }
276 
277 static struct efx_tx_buffer *
278 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
279 {
280 	struct efx_tx_buffer *buffer =
281 		efx_tx_queue_get_insert_buffer(tx_queue);
282 	u8 __iomem *piobuf = tx_queue->piobuf;
283 
284 	/* Copy to PIO buffer. Ensure the writes are padded to the end
285 	 * of a cache line, as this is required for write-combining to be
286 	 * effective on at least x86.
287 	 */
288 
289 	if (skb_shinfo(skb)->nr_frags) {
290 		/* The size of the copy buffer will ensure all writes
291 		 * are the size of a cache line.
292 		 */
293 		struct efx_short_copy_buffer copy_buf;
294 
295 		copy_buf.used = 0;
296 
297 		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
298 					 &piobuf, &copy_buf);
299 		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
300 	} else {
301 		/* Pad the write to the size of a cache line.
302 		 * We can do this because we know the skb_shared_info sruct is
303 		 * after the source, and the destination buffer is big enough.
304 		 */
305 		BUILD_BUG_ON(L1_CACHE_BYTES >
306 			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
307 		memcpy_toio(tx_queue->piobuf, skb->data,
308 			    ALIGN(skb->len, L1_CACHE_BYTES));
309 	}
310 
311 	EFX_POPULATE_QWORD_5(buffer->option,
312 			     ESF_DZ_TX_DESC_IS_OPT, 1,
313 			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
314 			     ESF_DZ_TX_PIO_CONT, 0,
315 			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
316 			     ESF_DZ_TX_PIO_BUF_ADDR,
317 			     tx_queue->piobuf_offset);
318 	++tx_queue->pio_packets;
319 	++tx_queue->insert_count;
320 	return buffer;
321 }
322 #endif /* EFX_USE_PIO */
323 
324 /*
325  * Add a socket buffer to a TX queue
326  *
327  * This maps all fragments of a socket buffer for DMA and adds them to
328  * the TX queue.  The queue's insert pointer will be incremented by
329  * the number of fragments in the socket buffer.
330  *
331  * If any DMA mapping fails, any mapped fragments will be unmapped,
332  * the queue's insert pointer will be restored to its original value.
333  *
334  * This function is split out from efx_hard_start_xmit to allow the
335  * loopback test to direct packets via specific TX queues.
336  *
337  * Returns NETDEV_TX_OK.
338  * You must hold netif_tx_lock() to call this function.
339  */
340 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
341 {
342 	struct efx_nic *efx = tx_queue->efx;
343 	struct device *dma_dev = &efx->pci_dev->dev;
344 	struct efx_tx_buffer *buffer;
345 	skb_frag_t *fragment;
346 	unsigned int len, unmap_len = 0;
347 	dma_addr_t dma_addr, unmap_addr = 0;
348 	unsigned int dma_len;
349 	unsigned short dma_flags;
350 	int i = 0;
351 
352 	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
353 
354 	if (skb_shinfo(skb)->gso_size)
355 		return efx_enqueue_skb_tso(tx_queue, skb);
356 
357 	/* Get size of the initial fragment */
358 	len = skb_headlen(skb);
359 
360 	/* Pad if necessary */
361 	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
362 		EFX_BUG_ON_PARANOID(skb->data_len);
363 		len = 32 + 1;
364 		if (skb_pad(skb, len - skb->len))
365 			return NETDEV_TX_OK;
366 	}
367 
368 	/* Consider using PIO for short packets */
369 #ifdef EFX_USE_PIO
370 	if (skb->len <= efx_piobuf_size && tx_queue->piobuf &&
371 	    efx_nic_tx_is_empty(tx_queue) &&
372 	    efx_nic_tx_is_empty(efx_tx_queue_partner(tx_queue))) {
373 		buffer = efx_enqueue_skb_pio(tx_queue, skb);
374 		dma_flags = EFX_TX_BUF_OPTION;
375 		goto finish_packet;
376 	}
377 #endif
378 
379 	/* Map for DMA.  Use dma_map_single rather than dma_map_page
380 	 * since this is more efficient on machines with sparse
381 	 * memory.
382 	 */
383 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
384 	dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
385 
386 	/* Process all fragments */
387 	while (1) {
388 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
389 			goto dma_err;
390 
391 		/* Store fields for marking in the per-fragment final
392 		 * descriptor */
393 		unmap_len = len;
394 		unmap_addr = dma_addr;
395 
396 		/* Add to TX queue, splitting across DMA boundaries */
397 		do {
398 			buffer = efx_tx_queue_get_insert_buffer(tx_queue);
399 
400 			dma_len = efx_max_tx_len(efx, dma_addr);
401 			if (likely(dma_len >= len))
402 				dma_len = len;
403 
404 			/* Fill out per descriptor fields */
405 			buffer->len = dma_len;
406 			buffer->dma_addr = dma_addr;
407 			buffer->flags = EFX_TX_BUF_CONT;
408 			len -= dma_len;
409 			dma_addr += dma_len;
410 			++tx_queue->insert_count;
411 		} while (len);
412 
413 		/* Transfer ownership of the unmapping to the final buffer */
414 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
415 		buffer->unmap_len = unmap_len;
416 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
417 		unmap_len = 0;
418 
419 		/* Get address and size of next fragment */
420 		if (i >= skb_shinfo(skb)->nr_frags)
421 			break;
422 		fragment = &skb_shinfo(skb)->frags[i];
423 		len = skb_frag_size(fragment);
424 		i++;
425 		/* Map for DMA */
426 		dma_flags = 0;
427 		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
428 					    DMA_TO_DEVICE);
429 	}
430 
431 	/* Transfer ownership of the skb to the final buffer */
432 #ifdef EFX_USE_PIO
433 finish_packet:
434 #endif
435 	buffer->skb = skb;
436 	buffer->flags = EFX_TX_BUF_SKB | dma_flags;
437 
438 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
439 
440 	/* Pass off to hardware */
441 	efx_nic_push_buffers(tx_queue);
442 
443 	efx_tx_maybe_stop_queue(tx_queue);
444 
445 	return NETDEV_TX_OK;
446 
447  dma_err:
448 	netif_err(efx, tx_err, efx->net_dev,
449 		  " TX queue %d could not map skb with %d bytes %d "
450 		  "fragments for DMA\n", tx_queue->queue, skb->len,
451 		  skb_shinfo(skb)->nr_frags + 1);
452 
453 	/* Mark the packet as transmitted, and free the SKB ourselves */
454 	dev_kfree_skb_any(skb);
455 
456 	/* Work backwards until we hit the original insert pointer value */
457 	while (tx_queue->insert_count != tx_queue->write_count) {
458 		unsigned int pkts_compl = 0, bytes_compl = 0;
459 		--tx_queue->insert_count;
460 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
461 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
462 	}
463 
464 	/* Free the fragment we were mid-way through pushing */
465 	if (unmap_len) {
466 		if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
467 			dma_unmap_single(dma_dev, unmap_addr, unmap_len,
468 					 DMA_TO_DEVICE);
469 		else
470 			dma_unmap_page(dma_dev, unmap_addr, unmap_len,
471 				       DMA_TO_DEVICE);
472 	}
473 
474 	return NETDEV_TX_OK;
475 }
476 
477 /* Remove packets from the TX queue
478  *
479  * This removes packets from the TX queue, up to and including the
480  * specified index.
481  */
482 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
483 				unsigned int index,
484 				unsigned int *pkts_compl,
485 				unsigned int *bytes_compl)
486 {
487 	struct efx_nic *efx = tx_queue->efx;
488 	unsigned int stop_index, read_ptr;
489 
490 	stop_index = (index + 1) & tx_queue->ptr_mask;
491 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
492 
493 	while (read_ptr != stop_index) {
494 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
495 
496 		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
497 		    unlikely(buffer->len == 0)) {
498 			netif_err(efx, tx_err, efx->net_dev,
499 				  "TX queue %d spurious TX completion id %x\n",
500 				  tx_queue->queue, read_ptr);
501 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
502 			return;
503 		}
504 
505 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
506 
507 		++tx_queue->read_count;
508 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
509 	}
510 }
511 
512 /* Initiate a packet transmission.  We use one channel per CPU
513  * (sharing when we have more CPUs than channels).  On Falcon, the TX
514  * completion events will be directed back to the CPU that transmitted
515  * the packet, which should be cache-efficient.
516  *
517  * Context: non-blocking.
518  * Note that returning anything other than NETDEV_TX_OK will cause the
519  * OS to free the skb.
520  */
521 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
522 				struct net_device *net_dev)
523 {
524 	struct efx_nic *efx = netdev_priv(net_dev);
525 	struct efx_tx_queue *tx_queue;
526 	unsigned index, type;
527 
528 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
529 
530 	/* PTP "event" packet */
531 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
532 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
533 		return efx_ptp_tx(efx, skb);
534 	}
535 
536 	index = skb_get_queue_mapping(skb);
537 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
538 	if (index >= efx->n_tx_channels) {
539 		index -= efx->n_tx_channels;
540 		type |= EFX_TXQ_TYPE_HIGHPRI;
541 	}
542 	tx_queue = efx_get_tx_queue(efx, index, type);
543 
544 	return efx_enqueue_skb(tx_queue, skb);
545 }
546 
547 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
548 {
549 	struct efx_nic *efx = tx_queue->efx;
550 
551 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
552 	tx_queue->core_txq =
553 		netdev_get_tx_queue(efx->net_dev,
554 				    tx_queue->queue / EFX_TXQ_TYPES +
555 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
556 				     efx->n_tx_channels : 0));
557 }
558 
559 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
560 {
561 	struct efx_nic *efx = netdev_priv(net_dev);
562 	struct efx_channel *channel;
563 	struct efx_tx_queue *tx_queue;
564 	unsigned tc;
565 	int rc;
566 
567 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
568 		return -EINVAL;
569 
570 	if (num_tc == net_dev->num_tc)
571 		return 0;
572 
573 	for (tc = 0; tc < num_tc; tc++) {
574 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
575 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
576 	}
577 
578 	if (num_tc > net_dev->num_tc) {
579 		/* Initialise high-priority queues as necessary */
580 		efx_for_each_channel(channel, efx) {
581 			efx_for_each_possible_channel_tx_queue(tx_queue,
582 							       channel) {
583 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
584 					continue;
585 				if (!tx_queue->buffer) {
586 					rc = efx_probe_tx_queue(tx_queue);
587 					if (rc)
588 						return rc;
589 				}
590 				if (!tx_queue->initialised)
591 					efx_init_tx_queue(tx_queue);
592 				efx_init_tx_queue_core_txq(tx_queue);
593 			}
594 		}
595 	} else {
596 		/* Reduce number of classes before number of queues */
597 		net_dev->num_tc = num_tc;
598 	}
599 
600 	rc = netif_set_real_num_tx_queues(net_dev,
601 					  max_t(int, num_tc, 1) *
602 					  efx->n_tx_channels);
603 	if (rc)
604 		return rc;
605 
606 	/* Do not destroy high-priority queues when they become
607 	 * unused.  We would have to flush them first, and it is
608 	 * fairly difficult to flush a subset of TX queues.  Leave
609 	 * it to efx_fini_channels().
610 	 */
611 
612 	net_dev->num_tc = num_tc;
613 	return 0;
614 }
615 
616 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
617 {
618 	unsigned fill_level;
619 	struct efx_nic *efx = tx_queue->efx;
620 	struct efx_tx_queue *txq2;
621 	unsigned int pkts_compl = 0, bytes_compl = 0;
622 
623 	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
624 
625 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
626 	netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
627 
628 	if (pkts_compl > 1)
629 		++tx_queue->merge_events;
630 
631 	/* See if we need to restart the netif queue.  This memory
632 	 * barrier ensures that we write read_count (inside
633 	 * efx_dequeue_buffers()) before reading the queue status.
634 	 */
635 	smp_mb();
636 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
637 	    likely(efx->port_enabled) &&
638 	    likely(netif_device_present(efx->net_dev))) {
639 		txq2 = efx_tx_queue_partner(tx_queue);
640 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
641 				 txq2->insert_count - txq2->read_count);
642 		if (fill_level <= efx->txq_wake_thresh)
643 			netif_tx_wake_queue(tx_queue->core_txq);
644 	}
645 
646 	/* Check whether the hardware queue is now empty */
647 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
648 		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
649 		if (tx_queue->read_count == tx_queue->old_write_count) {
650 			smp_mb();
651 			tx_queue->empty_read_count =
652 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
653 		}
654 	}
655 }
656 
657 /* Size of page-based TSO header buffers.  Larger blocks must be
658  * allocated from the heap.
659  */
660 #define TSOH_STD_SIZE	128
661 #define TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
662 
663 /* At most half the descriptors in the queue at any time will refer to
664  * a TSO header buffer, since they must always be followed by a
665  * payload descriptor referring to an skb.
666  */
667 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
668 {
669 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
670 }
671 
672 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
673 {
674 	struct efx_nic *efx = tx_queue->efx;
675 	unsigned int entries;
676 	int rc;
677 
678 	/* Create the smallest power-of-two aligned ring */
679 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
680 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
681 	tx_queue->ptr_mask = entries - 1;
682 
683 	netif_dbg(efx, probe, efx->net_dev,
684 		  "creating TX queue %d size %#x mask %#x\n",
685 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
686 
687 	/* Allocate software ring */
688 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
689 				   GFP_KERNEL);
690 	if (!tx_queue->buffer)
691 		return -ENOMEM;
692 
693 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
694 		tx_queue->tsoh_page =
695 			kcalloc(efx_tsoh_page_count(tx_queue),
696 				sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
697 		if (!tx_queue->tsoh_page) {
698 			rc = -ENOMEM;
699 			goto fail1;
700 		}
701 	}
702 
703 	/* Allocate hardware ring */
704 	rc = efx_nic_probe_tx(tx_queue);
705 	if (rc)
706 		goto fail2;
707 
708 	return 0;
709 
710 fail2:
711 	kfree(tx_queue->tsoh_page);
712 	tx_queue->tsoh_page = NULL;
713 fail1:
714 	kfree(tx_queue->buffer);
715 	tx_queue->buffer = NULL;
716 	return rc;
717 }
718 
719 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
720 {
721 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
722 		  "initialising TX queue %d\n", tx_queue->queue);
723 
724 	tx_queue->insert_count = 0;
725 	tx_queue->write_count = 0;
726 	tx_queue->old_write_count = 0;
727 	tx_queue->read_count = 0;
728 	tx_queue->old_read_count = 0;
729 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
730 
731 	/* Set up TX descriptor ring */
732 	efx_nic_init_tx(tx_queue);
733 
734 	tx_queue->initialised = true;
735 }
736 
737 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
738 {
739 	struct efx_tx_buffer *buffer;
740 
741 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
742 		  "shutting down TX queue %d\n", tx_queue->queue);
743 
744 	if (!tx_queue->buffer)
745 		return;
746 
747 	/* Free any buffers left in the ring */
748 	while (tx_queue->read_count != tx_queue->write_count) {
749 		unsigned int pkts_compl = 0, bytes_compl = 0;
750 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
751 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
752 
753 		++tx_queue->read_count;
754 	}
755 	netdev_tx_reset_queue(tx_queue->core_txq);
756 }
757 
758 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
759 {
760 	int i;
761 
762 	if (!tx_queue->buffer)
763 		return;
764 
765 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
766 		  "destroying TX queue %d\n", tx_queue->queue);
767 	efx_nic_remove_tx(tx_queue);
768 
769 	if (tx_queue->tsoh_page) {
770 		for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
771 			efx_nic_free_buffer(tx_queue->efx,
772 					    &tx_queue->tsoh_page[i]);
773 		kfree(tx_queue->tsoh_page);
774 		tx_queue->tsoh_page = NULL;
775 	}
776 
777 	kfree(tx_queue->buffer);
778 	tx_queue->buffer = NULL;
779 }
780 
781 
782 /* Efx TCP segmentation acceleration.
783  *
784  * Why?  Because by doing it here in the driver we can go significantly
785  * faster than the GSO.
786  *
787  * Requires TX checksum offload support.
788  */
789 
790 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
791 
792 /**
793  * struct tso_state - TSO state for an SKB
794  * @out_len: Remaining length in current segment
795  * @seqnum: Current sequence number
796  * @ipv4_id: Current IPv4 ID, host endian
797  * @packet_space: Remaining space in current packet
798  * @dma_addr: DMA address of current position
799  * @in_len: Remaining length in current SKB fragment
800  * @unmap_len: Length of SKB fragment
801  * @unmap_addr: DMA address of SKB fragment
802  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
803  * @protocol: Network protocol (after any VLAN header)
804  * @ip_off: Offset of IP header
805  * @tcp_off: Offset of TCP header
806  * @header_len: Number of bytes of header
807  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
808  * @header_dma_addr: Header DMA address, when using option descriptors
809  * @header_unmap_len: Header DMA mapped length, or 0 if not using option
810  *	descriptors
811  *
812  * The state used during segmentation.  It is put into this data structure
813  * just to make it easy to pass into inline functions.
814  */
815 struct tso_state {
816 	/* Output position */
817 	unsigned out_len;
818 	unsigned seqnum;
819 	u16 ipv4_id;
820 	unsigned packet_space;
821 
822 	/* Input position */
823 	dma_addr_t dma_addr;
824 	unsigned in_len;
825 	unsigned unmap_len;
826 	dma_addr_t unmap_addr;
827 	unsigned short dma_flags;
828 
829 	__be16 protocol;
830 	unsigned int ip_off;
831 	unsigned int tcp_off;
832 	unsigned header_len;
833 	unsigned int ip_base_len;
834 	dma_addr_t header_dma_addr;
835 	unsigned int header_unmap_len;
836 };
837 
838 
839 /*
840  * Verify that our various assumptions about sk_buffs and the conditions
841  * under which TSO will be attempted hold true.  Return the protocol number.
842  */
843 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
844 {
845 	__be16 protocol = skb->protocol;
846 
847 	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
848 			    protocol);
849 	if (protocol == htons(ETH_P_8021Q)) {
850 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
851 		protocol = veh->h_vlan_encapsulated_proto;
852 	}
853 
854 	if (protocol == htons(ETH_P_IP)) {
855 		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
856 	} else {
857 		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
858 		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
859 	}
860 	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
861 			     + (tcp_hdr(skb)->doff << 2u)) >
862 			    skb_headlen(skb));
863 
864 	return protocol;
865 }
866 
867 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
868 			       struct efx_tx_buffer *buffer, unsigned int len)
869 {
870 	u8 *result;
871 
872 	EFX_BUG_ON_PARANOID(buffer->len);
873 	EFX_BUG_ON_PARANOID(buffer->flags);
874 	EFX_BUG_ON_PARANOID(buffer->unmap_len);
875 
876 	if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
877 		unsigned index =
878 			(tx_queue->insert_count & tx_queue->ptr_mask) / 2;
879 		struct efx_buffer *page_buf =
880 			&tx_queue->tsoh_page[index / TSOH_PER_PAGE];
881 		unsigned offset =
882 			TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
883 
884 		if (unlikely(!page_buf->addr) &&
885 		    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
886 					 GFP_ATOMIC))
887 			return NULL;
888 
889 		result = (u8 *)page_buf->addr + offset;
890 		buffer->dma_addr = page_buf->dma_addr + offset;
891 		buffer->flags = EFX_TX_BUF_CONT;
892 	} else {
893 		tx_queue->tso_long_headers++;
894 
895 		buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
896 		if (unlikely(!buffer->heap_buf))
897 			return NULL;
898 		result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
899 		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
900 	}
901 
902 	buffer->len = len;
903 
904 	return result;
905 }
906 
907 /**
908  * efx_tx_queue_insert - push descriptors onto the TX queue
909  * @tx_queue:		Efx TX queue
910  * @dma_addr:		DMA address of fragment
911  * @len:		Length of fragment
912  * @final_buffer:	The final buffer inserted into the queue
913  *
914  * Push descriptors onto the TX queue.
915  */
916 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
917 				dma_addr_t dma_addr, unsigned len,
918 				struct efx_tx_buffer **final_buffer)
919 {
920 	struct efx_tx_buffer *buffer;
921 	struct efx_nic *efx = tx_queue->efx;
922 	unsigned dma_len;
923 
924 	EFX_BUG_ON_PARANOID(len <= 0);
925 
926 	while (1) {
927 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
928 		++tx_queue->insert_count;
929 
930 		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
931 				    tx_queue->read_count >=
932 				    efx->txq_entries);
933 
934 		buffer->dma_addr = dma_addr;
935 
936 		dma_len = efx_max_tx_len(efx, dma_addr);
937 
938 		/* If there is enough space to send then do so */
939 		if (dma_len >= len)
940 			break;
941 
942 		buffer->len = dma_len;
943 		buffer->flags = EFX_TX_BUF_CONT;
944 		dma_addr += dma_len;
945 		len -= dma_len;
946 	}
947 
948 	EFX_BUG_ON_PARANOID(!len);
949 	buffer->len = len;
950 	*final_buffer = buffer;
951 }
952 
953 
954 /*
955  * Put a TSO header into the TX queue.
956  *
957  * This is special-cased because we know that it is small enough to fit in
958  * a single fragment, and we know it doesn't cross a page boundary.  It
959  * also allows us to not worry about end-of-packet etc.
960  */
961 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
962 			      struct efx_tx_buffer *buffer, u8 *header)
963 {
964 	if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
965 		buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
966 						  header, buffer->len,
967 						  DMA_TO_DEVICE);
968 		if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
969 					       buffer->dma_addr))) {
970 			kfree(buffer->heap_buf);
971 			buffer->len = 0;
972 			buffer->flags = 0;
973 			return -ENOMEM;
974 		}
975 		buffer->unmap_len = buffer->len;
976 		buffer->dma_offset = 0;
977 		buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
978 	}
979 
980 	++tx_queue->insert_count;
981 	return 0;
982 }
983 
984 
985 /* Remove buffers put into a tx_queue.  None of the buffers must have
986  * an skb attached.
987  */
988 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
989 {
990 	struct efx_tx_buffer *buffer;
991 
992 	/* Work backwards until we hit the original insert pointer value */
993 	while (tx_queue->insert_count != tx_queue->write_count) {
994 		--tx_queue->insert_count;
995 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
996 		efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
997 	}
998 }
999 
1000 
1001 /* Parse the SKB header and initialise state. */
1002 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1003 		     const struct sk_buff *skb)
1004 {
1005 	bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1006 	struct device *dma_dev = &efx->pci_dev->dev;
1007 	unsigned int header_len, in_len;
1008 	dma_addr_t dma_addr;
1009 
1010 	st->ip_off = skb_network_header(skb) - skb->data;
1011 	st->tcp_off = skb_transport_header(skb) - skb->data;
1012 	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1013 	in_len = skb_headlen(skb) - header_len;
1014 	st->header_len = header_len;
1015 	st->in_len = in_len;
1016 	if (st->protocol == htons(ETH_P_IP)) {
1017 		st->ip_base_len = st->header_len - st->ip_off;
1018 		st->ipv4_id = ntohs(ip_hdr(skb)->id);
1019 	} else {
1020 		st->ip_base_len = st->header_len - st->tcp_off;
1021 		st->ipv4_id = 0;
1022 	}
1023 	st->seqnum = ntohl(tcp_hdr(skb)->seq);
1024 
1025 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1026 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1027 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1028 
1029 	st->out_len = skb->len - header_len;
1030 
1031 	if (!use_opt_desc) {
1032 		st->header_unmap_len = 0;
1033 
1034 		if (likely(in_len == 0)) {
1035 			st->dma_flags = 0;
1036 			st->unmap_len = 0;
1037 			return 0;
1038 		}
1039 
1040 		dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1041 					  in_len, DMA_TO_DEVICE);
1042 		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1043 		st->dma_addr = dma_addr;
1044 		st->unmap_addr = dma_addr;
1045 		st->unmap_len = in_len;
1046 	} else {
1047 		dma_addr = dma_map_single(dma_dev, skb->data,
1048 					  skb_headlen(skb), DMA_TO_DEVICE);
1049 		st->header_dma_addr = dma_addr;
1050 		st->header_unmap_len = skb_headlen(skb);
1051 		st->dma_flags = 0;
1052 		st->dma_addr = dma_addr + header_len;
1053 		st->unmap_len = 0;
1054 	}
1055 
1056 	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1057 }
1058 
1059 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1060 			    skb_frag_t *frag)
1061 {
1062 	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1063 					  skb_frag_size(frag), DMA_TO_DEVICE);
1064 	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1065 		st->dma_flags = 0;
1066 		st->unmap_len = skb_frag_size(frag);
1067 		st->in_len = skb_frag_size(frag);
1068 		st->dma_addr = st->unmap_addr;
1069 		return 0;
1070 	}
1071 	return -ENOMEM;
1072 }
1073 
1074 
1075 /**
1076  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1077  * @tx_queue:		Efx TX queue
1078  * @skb:		Socket buffer
1079  * @st:			TSO state
1080  *
1081  * Form descriptors for the current fragment, until we reach the end
1082  * of fragment or end-of-packet.
1083  */
1084 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1085 					  const struct sk_buff *skb,
1086 					  struct tso_state *st)
1087 {
1088 	struct efx_tx_buffer *buffer;
1089 	int n;
1090 
1091 	if (st->in_len == 0)
1092 		return;
1093 	if (st->packet_space == 0)
1094 		return;
1095 
1096 	EFX_BUG_ON_PARANOID(st->in_len <= 0);
1097 	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1098 
1099 	n = min(st->in_len, st->packet_space);
1100 
1101 	st->packet_space -= n;
1102 	st->out_len -= n;
1103 	st->in_len -= n;
1104 
1105 	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1106 
1107 	if (st->out_len == 0) {
1108 		/* Transfer ownership of the skb */
1109 		buffer->skb = skb;
1110 		buffer->flags = EFX_TX_BUF_SKB;
1111 	} else if (st->packet_space != 0) {
1112 		buffer->flags = EFX_TX_BUF_CONT;
1113 	}
1114 
1115 	if (st->in_len == 0) {
1116 		/* Transfer ownership of the DMA mapping */
1117 		buffer->unmap_len = st->unmap_len;
1118 		buffer->dma_offset = buffer->unmap_len - buffer->len;
1119 		buffer->flags |= st->dma_flags;
1120 		st->unmap_len = 0;
1121 	}
1122 
1123 	st->dma_addr += n;
1124 }
1125 
1126 
1127 /**
1128  * tso_start_new_packet - generate a new header and prepare for the new packet
1129  * @tx_queue:		Efx TX queue
1130  * @skb:		Socket buffer
1131  * @st:			TSO state
1132  *
1133  * Generate a new header and prepare for the new packet.  Return 0 on
1134  * success, or -%ENOMEM if failed to alloc header.
1135  */
1136 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1137 				const struct sk_buff *skb,
1138 				struct tso_state *st)
1139 {
1140 	struct efx_tx_buffer *buffer =
1141 		efx_tx_queue_get_insert_buffer(tx_queue);
1142 	bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1143 	u8 tcp_flags_clear;
1144 
1145 	if (!is_last) {
1146 		st->packet_space = skb_shinfo(skb)->gso_size;
1147 		tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1148 	} else {
1149 		st->packet_space = st->out_len;
1150 		tcp_flags_clear = 0x00;
1151 	}
1152 
1153 	if (!st->header_unmap_len) {
1154 		/* Allocate and insert a DMA-mapped header buffer. */
1155 		struct tcphdr *tsoh_th;
1156 		unsigned ip_length;
1157 		u8 *header;
1158 		int rc;
1159 
1160 		header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1161 		if (!header)
1162 			return -ENOMEM;
1163 
1164 		tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1165 
1166 		/* Copy and update the headers. */
1167 		memcpy(header, skb->data, st->header_len);
1168 
1169 		tsoh_th->seq = htonl(st->seqnum);
1170 		((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1171 
1172 		ip_length = st->ip_base_len + st->packet_space;
1173 
1174 		if (st->protocol == htons(ETH_P_IP)) {
1175 			struct iphdr *tsoh_iph =
1176 				(struct iphdr *)(header + st->ip_off);
1177 
1178 			tsoh_iph->tot_len = htons(ip_length);
1179 			tsoh_iph->id = htons(st->ipv4_id);
1180 		} else {
1181 			struct ipv6hdr *tsoh_iph =
1182 				(struct ipv6hdr *)(header + st->ip_off);
1183 
1184 			tsoh_iph->payload_len = htons(ip_length);
1185 		}
1186 
1187 		rc = efx_tso_put_header(tx_queue, buffer, header);
1188 		if (unlikely(rc))
1189 			return rc;
1190 	} else {
1191 		/* Send the original headers with a TSO option descriptor
1192 		 * in front
1193 		 */
1194 		u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1195 
1196 		buffer->flags = EFX_TX_BUF_OPTION;
1197 		buffer->len = 0;
1198 		buffer->unmap_len = 0;
1199 		EFX_POPULATE_QWORD_5(buffer->option,
1200 				     ESF_DZ_TX_DESC_IS_OPT, 1,
1201 				     ESF_DZ_TX_OPTION_TYPE,
1202 				     ESE_DZ_TX_OPTION_DESC_TSO,
1203 				     ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1204 				     ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1205 				     ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1206 		++tx_queue->insert_count;
1207 
1208 		/* We mapped the headers in tso_start().  Unmap them
1209 		 * when the last segment is completed.
1210 		 */
1211 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1212 		buffer->dma_addr = st->header_dma_addr;
1213 		buffer->len = st->header_len;
1214 		if (is_last) {
1215 			buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1216 			buffer->unmap_len = st->header_unmap_len;
1217 			buffer->dma_offset = 0;
1218 			/* Ensure we only unmap them once in case of a
1219 			 * later DMA mapping error and rollback
1220 			 */
1221 			st->header_unmap_len = 0;
1222 		} else {
1223 			buffer->flags = EFX_TX_BUF_CONT;
1224 			buffer->unmap_len = 0;
1225 		}
1226 		++tx_queue->insert_count;
1227 	}
1228 
1229 	st->seqnum += skb_shinfo(skb)->gso_size;
1230 
1231 	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
1232 	++st->ipv4_id;
1233 
1234 	++tx_queue->tso_packets;
1235 
1236 	return 0;
1237 }
1238 
1239 
1240 /**
1241  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1242  * @tx_queue:		Efx TX queue
1243  * @skb:		Socket buffer
1244  *
1245  * Context: You must hold netif_tx_lock() to call this function.
1246  *
1247  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1248  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1249  * %NETDEV_TX_OK.
1250  */
1251 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1252 			       struct sk_buff *skb)
1253 {
1254 	struct efx_nic *efx = tx_queue->efx;
1255 	int frag_i, rc;
1256 	struct tso_state state;
1257 
1258 	/* Find the packet protocol and sanity-check it */
1259 	state.protocol = efx_tso_check_protocol(skb);
1260 
1261 	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1262 
1263 	rc = tso_start(&state, efx, skb);
1264 	if (rc)
1265 		goto mem_err;
1266 
1267 	if (likely(state.in_len == 0)) {
1268 		/* Grab the first payload fragment. */
1269 		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1270 		frag_i = 0;
1271 		rc = tso_get_fragment(&state, efx,
1272 				      skb_shinfo(skb)->frags + frag_i);
1273 		if (rc)
1274 			goto mem_err;
1275 	} else {
1276 		/* Payload starts in the header area. */
1277 		frag_i = -1;
1278 	}
1279 
1280 	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1281 		goto mem_err;
1282 
1283 	while (1) {
1284 		tso_fill_packet_with_fragment(tx_queue, skb, &state);
1285 
1286 		/* Move onto the next fragment? */
1287 		if (state.in_len == 0) {
1288 			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1289 				/* End of payload reached. */
1290 				break;
1291 			rc = tso_get_fragment(&state, efx,
1292 					      skb_shinfo(skb)->frags + frag_i);
1293 			if (rc)
1294 				goto mem_err;
1295 		}
1296 
1297 		/* Start at new packet? */
1298 		if (state.packet_space == 0 &&
1299 		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1300 			goto mem_err;
1301 	}
1302 
1303 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1304 
1305 	/* Pass off to hardware */
1306 	efx_nic_push_buffers(tx_queue);
1307 
1308 	efx_tx_maybe_stop_queue(tx_queue);
1309 
1310 	tx_queue->tso_bursts++;
1311 	return NETDEV_TX_OK;
1312 
1313  mem_err:
1314 	netif_err(efx, tx_err, efx->net_dev,
1315 		  "Out of memory for TSO headers, or DMA mapping error\n");
1316 	dev_kfree_skb_any(skb);
1317 
1318 	/* Free the DMA mapping we were in the process of writing out */
1319 	if (state.unmap_len) {
1320 		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1321 			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1322 					 state.unmap_len, DMA_TO_DEVICE);
1323 		else
1324 			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1325 				       state.unmap_len, DMA_TO_DEVICE);
1326 	}
1327 
1328 	/* Free the header DMA mapping, if using option descriptors */
1329 	if (state.header_unmap_len)
1330 		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1331 				 state.header_unmap_len, DMA_TO_DEVICE);
1332 
1333 	efx_enqueue_unwind(tx_queue);
1334 	return NETDEV_TX_OK;
1335 }
1336