1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/tcp.h> 13 #include <linux/ip.h> 14 #include <linux/in.h> 15 #include <linux/ipv6.h> 16 #include <linux/slab.h> 17 #include <net/ipv6.h> 18 #include <linux/if_ether.h> 19 #include <linux/highmem.h> 20 #include <linux/cache.h> 21 #include "net_driver.h" 22 #include "efx.h" 23 #include "io.h" 24 #include "nic.h" 25 #include "tx.h" 26 #include "workarounds.h" 27 #include "ef10_regs.h" 28 29 #ifdef EFX_USE_PIO 30 31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES) 32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF; 33 34 #endif /* EFX_USE_PIO */ 35 36 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue, 37 struct efx_tx_buffer *buffer) 38 { 39 unsigned int index = efx_tx_queue_get_insert_index(tx_queue); 40 struct efx_buffer *page_buf = 41 &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)]; 42 unsigned int offset = 43 ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1); 44 45 if (unlikely(!page_buf->addr) && 46 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, 47 GFP_ATOMIC)) 48 return NULL; 49 buffer->dma_addr = page_buf->dma_addr + offset; 50 buffer->unmap_len = 0; 51 return (u8 *)page_buf->addr + offset; 52 } 53 54 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue, 55 struct efx_tx_buffer *buffer, size_t len) 56 { 57 if (len > EFX_TX_CB_SIZE) 58 return NULL; 59 return efx_tx_get_copy_buffer(tx_queue, buffer); 60 } 61 62 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, 63 struct efx_tx_buffer *buffer, 64 unsigned int *pkts_compl, 65 unsigned int *bytes_compl) 66 { 67 if (buffer->unmap_len) { 68 struct device *dma_dev = &tx_queue->efx->pci_dev->dev; 69 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; 70 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE) 71 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, 72 DMA_TO_DEVICE); 73 else 74 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, 75 DMA_TO_DEVICE); 76 buffer->unmap_len = 0; 77 } 78 79 if (buffer->flags & EFX_TX_BUF_SKB) { 80 EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl); 81 (*pkts_compl)++; 82 (*bytes_compl) += buffer->skb->len; 83 dev_consume_skb_any((struct sk_buff *)buffer->skb); 84 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, 85 "TX queue %d transmission id %x complete\n", 86 tx_queue->queue, tx_queue->read_count); 87 } 88 89 buffer->len = 0; 90 buffer->flags = 0; 91 } 92 93 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx) 94 { 95 /* Header and payload descriptor for each output segment, plus 96 * one for every input fragment boundary within a segment 97 */ 98 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; 99 100 /* Possibly one more per segment for option descriptors */ 101 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 102 max_descs += EFX_TSO_MAX_SEGS; 103 104 /* Possibly more for PCIe page boundaries within input fragments */ 105 if (PAGE_SIZE > EFX_PAGE_SIZE) 106 max_descs += max_t(unsigned int, MAX_SKB_FRAGS, 107 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE)); 108 109 return max_descs; 110 } 111 112 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1) 113 { 114 /* We need to consider both queues that the net core sees as one */ 115 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1); 116 struct efx_nic *efx = txq1->efx; 117 unsigned int fill_level; 118 119 fill_level = max(txq1->insert_count - txq1->old_read_count, 120 txq2->insert_count - txq2->old_read_count); 121 if (likely(fill_level < efx->txq_stop_thresh)) 122 return; 123 124 /* We used the stale old_read_count above, which gives us a 125 * pessimistic estimate of the fill level (which may even 126 * validly be >= efx->txq_entries). Now try again using 127 * read_count (more likely to be a cache miss). 128 * 129 * If we read read_count and then conditionally stop the 130 * queue, it is possible for the completion path to race with 131 * us and complete all outstanding descriptors in the middle, 132 * after which there will be no more completions to wake it. 133 * Therefore we stop the queue first, then read read_count 134 * (with a memory barrier to ensure the ordering), then 135 * restart the queue if the fill level turns out to be low 136 * enough. 137 */ 138 netif_tx_stop_queue(txq1->core_txq); 139 smp_mb(); 140 txq1->old_read_count = READ_ONCE(txq1->read_count); 141 txq2->old_read_count = READ_ONCE(txq2->read_count); 142 143 fill_level = max(txq1->insert_count - txq1->old_read_count, 144 txq2->insert_count - txq2->old_read_count); 145 EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries); 146 if (likely(fill_level < efx->txq_stop_thresh)) { 147 smp_mb(); 148 if (likely(!efx->loopback_selftest)) 149 netif_tx_start_queue(txq1->core_txq); 150 } 151 } 152 153 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue, 154 struct sk_buff *skb) 155 { 156 unsigned int copy_len = skb->len; 157 struct efx_tx_buffer *buffer; 158 u8 *copy_buffer; 159 int rc; 160 161 EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE); 162 163 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 164 165 copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer); 166 if (unlikely(!copy_buffer)) 167 return -ENOMEM; 168 169 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len); 170 EFX_WARN_ON_PARANOID(rc); 171 buffer->len = copy_len; 172 173 buffer->skb = skb; 174 buffer->flags = EFX_TX_BUF_SKB; 175 176 ++tx_queue->insert_count; 177 return rc; 178 } 179 180 #ifdef EFX_USE_PIO 181 182 struct efx_short_copy_buffer { 183 int used; 184 u8 buf[L1_CACHE_BYTES]; 185 }; 186 187 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned. 188 * Advances piobuf pointer. Leaves additional data in the copy buffer. 189 */ 190 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf, 191 u8 *data, int len, 192 struct efx_short_copy_buffer *copy_buf) 193 { 194 int block_len = len & ~(sizeof(copy_buf->buf) - 1); 195 196 __iowrite64_copy(*piobuf, data, block_len >> 3); 197 *piobuf += block_len; 198 len -= block_len; 199 200 if (len) { 201 data += block_len; 202 BUG_ON(copy_buf->used); 203 BUG_ON(len > sizeof(copy_buf->buf)); 204 memcpy(copy_buf->buf, data, len); 205 copy_buf->used = len; 206 } 207 } 208 209 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first. 210 * Advances piobuf pointer. Leaves additional data in the copy buffer. 211 */ 212 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf, 213 u8 *data, int len, 214 struct efx_short_copy_buffer *copy_buf) 215 { 216 if (copy_buf->used) { 217 /* if the copy buffer is partially full, fill it up and write */ 218 int copy_to_buf = 219 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len); 220 221 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf); 222 copy_buf->used += copy_to_buf; 223 224 /* if we didn't fill it up then we're done for now */ 225 if (copy_buf->used < sizeof(copy_buf->buf)) 226 return; 227 228 __iowrite64_copy(*piobuf, copy_buf->buf, 229 sizeof(copy_buf->buf) >> 3); 230 *piobuf += sizeof(copy_buf->buf); 231 data += copy_to_buf; 232 len -= copy_to_buf; 233 copy_buf->used = 0; 234 } 235 236 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf); 237 } 238 239 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf, 240 struct efx_short_copy_buffer *copy_buf) 241 { 242 /* if there's anything in it, write the whole buffer, including junk */ 243 if (copy_buf->used) 244 __iowrite64_copy(piobuf, copy_buf->buf, 245 sizeof(copy_buf->buf) >> 3); 246 } 247 248 /* Traverse skb structure and copy fragments in to PIO buffer. 249 * Advances piobuf pointer. 250 */ 251 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb, 252 u8 __iomem **piobuf, 253 struct efx_short_copy_buffer *copy_buf) 254 { 255 int i; 256 257 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb), 258 copy_buf); 259 260 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) { 261 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 262 u8 *vaddr; 263 264 vaddr = kmap_atomic(skb_frag_page(f)); 265 266 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset, 267 skb_frag_size(f), copy_buf); 268 kunmap_atomic(vaddr); 269 } 270 271 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list); 272 } 273 274 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, 275 struct sk_buff *skb) 276 { 277 struct efx_tx_buffer *buffer = 278 efx_tx_queue_get_insert_buffer(tx_queue); 279 u8 __iomem *piobuf = tx_queue->piobuf; 280 281 /* Copy to PIO buffer. Ensure the writes are padded to the end 282 * of a cache line, as this is required for write-combining to be 283 * effective on at least x86. 284 */ 285 286 if (skb_shinfo(skb)->nr_frags) { 287 /* The size of the copy buffer will ensure all writes 288 * are the size of a cache line. 289 */ 290 struct efx_short_copy_buffer copy_buf; 291 292 copy_buf.used = 0; 293 294 efx_skb_copy_bits_to_pio(tx_queue->efx, skb, 295 &piobuf, ©_buf); 296 efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf); 297 } else { 298 /* Pad the write to the size of a cache line. 299 * We can do this because we know the skb_shared_info struct is 300 * after the source, and the destination buffer is big enough. 301 */ 302 BUILD_BUG_ON(L1_CACHE_BYTES > 303 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 304 __iowrite64_copy(tx_queue->piobuf, skb->data, 305 ALIGN(skb->len, L1_CACHE_BYTES) >> 3); 306 } 307 308 buffer->skb = skb; 309 buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION; 310 311 EFX_POPULATE_QWORD_5(buffer->option, 312 ESF_DZ_TX_DESC_IS_OPT, 1, 313 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO, 314 ESF_DZ_TX_PIO_CONT, 0, 315 ESF_DZ_TX_PIO_BYTE_CNT, skb->len, 316 ESF_DZ_TX_PIO_BUF_ADDR, 317 tx_queue->piobuf_offset); 318 ++tx_queue->insert_count; 319 return 0; 320 } 321 #endif /* EFX_USE_PIO */ 322 323 static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue, 324 dma_addr_t dma_addr, 325 size_t len) 326 { 327 const struct efx_nic_type *nic_type = tx_queue->efx->type; 328 struct efx_tx_buffer *buffer; 329 unsigned int dma_len; 330 331 /* Map the fragment taking account of NIC-dependent DMA limits. */ 332 do { 333 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 334 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len); 335 336 buffer->len = dma_len; 337 buffer->dma_addr = dma_addr; 338 buffer->flags = EFX_TX_BUF_CONT; 339 len -= dma_len; 340 dma_addr += dma_len; 341 ++tx_queue->insert_count; 342 } while (len); 343 344 return buffer; 345 } 346 347 /* Map all data from an SKB for DMA and create descriptors on the queue. 348 */ 349 static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb, 350 unsigned int segment_count) 351 { 352 struct efx_nic *efx = tx_queue->efx; 353 struct device *dma_dev = &efx->pci_dev->dev; 354 unsigned int frag_index, nr_frags; 355 dma_addr_t dma_addr, unmap_addr; 356 unsigned short dma_flags; 357 size_t len, unmap_len; 358 359 nr_frags = skb_shinfo(skb)->nr_frags; 360 frag_index = 0; 361 362 /* Map header data. */ 363 len = skb_headlen(skb); 364 dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE); 365 dma_flags = EFX_TX_BUF_MAP_SINGLE; 366 unmap_len = len; 367 unmap_addr = dma_addr; 368 369 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 370 return -EIO; 371 372 if (segment_count) { 373 /* For TSO we need to put the header in to a separate 374 * descriptor. Map this separately if necessary. 375 */ 376 size_t header_len = skb_transport_header(skb) - skb->data + 377 (tcp_hdr(skb)->doff << 2u); 378 379 if (header_len != len) { 380 tx_queue->tso_long_headers++; 381 efx_tx_map_chunk(tx_queue, dma_addr, header_len); 382 len -= header_len; 383 dma_addr += header_len; 384 } 385 } 386 387 /* Add descriptors for each fragment. */ 388 do { 389 struct efx_tx_buffer *buffer; 390 skb_frag_t *fragment; 391 392 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len); 393 394 /* The final descriptor for a fragment is responsible for 395 * unmapping the whole fragment. 396 */ 397 buffer->flags = EFX_TX_BUF_CONT | dma_flags; 398 buffer->unmap_len = unmap_len; 399 buffer->dma_offset = buffer->dma_addr - unmap_addr; 400 401 if (frag_index >= nr_frags) { 402 /* Store SKB details with the final buffer for 403 * the completion. 404 */ 405 buffer->skb = skb; 406 buffer->flags = EFX_TX_BUF_SKB | dma_flags; 407 return 0; 408 } 409 410 /* Move on to the next fragment. */ 411 fragment = &skb_shinfo(skb)->frags[frag_index++]; 412 len = skb_frag_size(fragment); 413 dma_addr = skb_frag_dma_map(dma_dev, fragment, 414 0, len, DMA_TO_DEVICE); 415 dma_flags = 0; 416 unmap_len = len; 417 unmap_addr = dma_addr; 418 419 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 420 return -EIO; 421 } while (1); 422 } 423 424 /* Remove buffers put into a tx_queue. None of the buffers must have 425 * an skb attached. 426 */ 427 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) 428 { 429 struct efx_tx_buffer *buffer; 430 unsigned int bytes_compl = 0; 431 unsigned int pkts_compl = 0; 432 433 /* Work backwards until we hit the original insert pointer value */ 434 while (tx_queue->insert_count != tx_queue->write_count) { 435 --tx_queue->insert_count; 436 buffer = __efx_tx_queue_get_insert_buffer(tx_queue); 437 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 438 } 439 } 440 441 /* 442 * Fallback to software TSO. 443 * 444 * This is used if we are unable to send a GSO packet through hardware TSO. 445 * This should only ever happen due to per-queue restrictions - unsupported 446 * packets should first be filtered by the feature flags. 447 * 448 * Returns 0 on success, error code otherwise. 449 */ 450 static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, 451 struct sk_buff *skb) 452 { 453 struct sk_buff *segments, *next; 454 455 segments = skb_gso_segment(skb, 0); 456 if (IS_ERR(segments)) 457 return PTR_ERR(segments); 458 459 dev_kfree_skb_any(skb); 460 skb = segments; 461 462 while (skb) { 463 next = skb->next; 464 skb->next = NULL; 465 466 if (next) 467 skb->xmit_more = true; 468 efx_enqueue_skb(tx_queue, skb); 469 skb = next; 470 } 471 472 return 0; 473 } 474 475 /* 476 * Add a socket buffer to a TX queue 477 * 478 * This maps all fragments of a socket buffer for DMA and adds them to 479 * the TX queue. The queue's insert pointer will be incremented by 480 * the number of fragments in the socket buffer. 481 * 482 * If any DMA mapping fails, any mapped fragments will be unmapped, 483 * the queue's insert pointer will be restored to its original value. 484 * 485 * This function is split out from efx_hard_start_xmit to allow the 486 * loopback test to direct packets via specific TX queues. 487 * 488 * Returns NETDEV_TX_OK. 489 * You must hold netif_tx_lock() to call this function. 490 */ 491 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) 492 { 493 bool data_mapped = false; 494 unsigned int segments; 495 unsigned int skb_len; 496 int rc; 497 498 skb_len = skb->len; 499 segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0; 500 if (segments == 1) 501 segments = 0; /* Don't use TSO for a single segment. */ 502 503 /* Handle TSO first - it's *possible* (although unlikely) that we might 504 * be passed a packet to segment that's smaller than the copybreak/PIO 505 * size limit. 506 */ 507 if (segments) { 508 EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso); 509 rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped); 510 if (rc == -EINVAL) { 511 rc = efx_tx_tso_fallback(tx_queue, skb); 512 tx_queue->tso_fallbacks++; 513 if (rc == 0) 514 return 0; 515 } 516 if (rc) 517 goto err; 518 #ifdef EFX_USE_PIO 519 } else if (skb_len <= efx_piobuf_size && !skb->xmit_more && 520 efx_nic_may_tx_pio(tx_queue)) { 521 /* Use PIO for short packets with an empty queue. */ 522 if (efx_enqueue_skb_pio(tx_queue, skb)) 523 goto err; 524 tx_queue->pio_packets++; 525 data_mapped = true; 526 #endif 527 } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) { 528 /* Pad short packets or coalesce short fragmented packets. */ 529 if (efx_enqueue_skb_copy(tx_queue, skb)) 530 goto err; 531 tx_queue->cb_packets++; 532 data_mapped = true; 533 } 534 535 /* Map for DMA and create descriptors if we haven't done so already. */ 536 if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments))) 537 goto err; 538 539 /* Update BQL */ 540 netdev_tx_sent_queue(tx_queue->core_txq, skb_len); 541 542 /* Pass off to hardware */ 543 if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) { 544 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue); 545 546 /* There could be packets left on the partner queue if those 547 * SKBs had skb->xmit_more set. If we do not push those they 548 * could be left for a long time and cause a netdev watchdog. 549 */ 550 if (txq2->xmit_more_available) 551 efx_nic_push_buffers(txq2); 552 553 efx_nic_push_buffers(tx_queue); 554 } else { 555 tx_queue->xmit_more_available = skb->xmit_more; 556 } 557 558 if (segments) { 559 tx_queue->tso_bursts++; 560 tx_queue->tso_packets += segments; 561 tx_queue->tx_packets += segments; 562 } else { 563 tx_queue->tx_packets++; 564 } 565 566 efx_tx_maybe_stop_queue(tx_queue); 567 568 return NETDEV_TX_OK; 569 570 571 err: 572 efx_enqueue_unwind(tx_queue); 573 dev_kfree_skb_any(skb); 574 return NETDEV_TX_OK; 575 } 576 577 /* Remove packets from the TX queue 578 * 579 * This removes packets from the TX queue, up to and including the 580 * specified index. 581 */ 582 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, 583 unsigned int index, 584 unsigned int *pkts_compl, 585 unsigned int *bytes_compl) 586 { 587 struct efx_nic *efx = tx_queue->efx; 588 unsigned int stop_index, read_ptr; 589 590 stop_index = (index + 1) & tx_queue->ptr_mask; 591 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 592 593 while (read_ptr != stop_index) { 594 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 595 596 if (!(buffer->flags & EFX_TX_BUF_OPTION) && 597 unlikely(buffer->len == 0)) { 598 netif_err(efx, tx_err, efx->net_dev, 599 "TX queue %d spurious TX completion id %x\n", 600 tx_queue->queue, read_ptr); 601 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); 602 return; 603 } 604 605 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); 606 607 ++tx_queue->read_count; 608 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 609 } 610 } 611 612 /* Initiate a packet transmission. We use one channel per CPU 613 * (sharing when we have more CPUs than channels). On Falcon, the TX 614 * completion events will be directed back to the CPU that transmitted 615 * the packet, which should be cache-efficient. 616 * 617 * Context: non-blocking. 618 * Note that returning anything other than NETDEV_TX_OK will cause the 619 * OS to free the skb. 620 */ 621 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, 622 struct net_device *net_dev) 623 { 624 struct efx_nic *efx = netdev_priv(net_dev); 625 struct efx_tx_queue *tx_queue; 626 unsigned index, type; 627 628 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); 629 630 /* PTP "event" packet */ 631 if (unlikely(efx_xmit_with_hwtstamp(skb)) && 632 unlikely(efx_ptp_is_ptp_tx(efx, skb))) { 633 return efx_ptp_tx(efx, skb); 634 } 635 636 index = skb_get_queue_mapping(skb); 637 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; 638 if (index >= efx->n_tx_channels) { 639 index -= efx->n_tx_channels; 640 type |= EFX_TXQ_TYPE_HIGHPRI; 641 } 642 tx_queue = efx_get_tx_queue(efx, index, type); 643 644 return efx_enqueue_skb(tx_queue, skb); 645 } 646 647 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) 648 { 649 struct efx_nic *efx = tx_queue->efx; 650 651 /* Must be inverse of queue lookup in efx_hard_start_xmit() */ 652 tx_queue->core_txq = 653 netdev_get_tx_queue(efx->net_dev, 654 tx_queue->queue / EFX_TXQ_TYPES + 655 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? 656 efx->n_tx_channels : 0)); 657 } 658 659 int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 660 void *type_data) 661 { 662 struct efx_nic *efx = netdev_priv(net_dev); 663 struct tc_mqprio_qopt *mqprio = type_data; 664 struct efx_channel *channel; 665 struct efx_tx_queue *tx_queue; 666 unsigned tc, num_tc; 667 int rc; 668 669 if (type != TC_SETUP_QDISC_MQPRIO) 670 return -EOPNOTSUPP; 671 672 num_tc = mqprio->num_tc; 673 674 if (num_tc > EFX_MAX_TX_TC) 675 return -EINVAL; 676 677 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 678 679 if (num_tc == net_dev->num_tc) 680 return 0; 681 682 for (tc = 0; tc < num_tc; tc++) { 683 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; 684 net_dev->tc_to_txq[tc].count = efx->n_tx_channels; 685 } 686 687 if (num_tc > net_dev->num_tc) { 688 /* Initialise high-priority queues as necessary */ 689 efx_for_each_channel(channel, efx) { 690 efx_for_each_possible_channel_tx_queue(tx_queue, 691 channel) { 692 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) 693 continue; 694 if (!tx_queue->buffer) { 695 rc = efx_probe_tx_queue(tx_queue); 696 if (rc) 697 return rc; 698 } 699 if (!tx_queue->initialised) 700 efx_init_tx_queue(tx_queue); 701 efx_init_tx_queue_core_txq(tx_queue); 702 } 703 } 704 } else { 705 /* Reduce number of classes before number of queues */ 706 net_dev->num_tc = num_tc; 707 } 708 709 rc = netif_set_real_num_tx_queues(net_dev, 710 max_t(int, num_tc, 1) * 711 efx->n_tx_channels); 712 if (rc) 713 return rc; 714 715 /* Do not destroy high-priority queues when they become 716 * unused. We would have to flush them first, and it is 717 * fairly difficult to flush a subset of TX queues. Leave 718 * it to efx_fini_channels(). 719 */ 720 721 net_dev->num_tc = num_tc; 722 return 0; 723 } 724 725 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) 726 { 727 unsigned fill_level; 728 struct efx_nic *efx = tx_queue->efx; 729 struct efx_tx_queue *txq2; 730 unsigned int pkts_compl = 0, bytes_compl = 0; 731 732 EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask); 733 734 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); 735 tx_queue->pkts_compl += pkts_compl; 736 tx_queue->bytes_compl += bytes_compl; 737 738 if (pkts_compl > 1) 739 ++tx_queue->merge_events; 740 741 /* See if we need to restart the netif queue. This memory 742 * barrier ensures that we write read_count (inside 743 * efx_dequeue_buffers()) before reading the queue status. 744 */ 745 smp_mb(); 746 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && 747 likely(efx->port_enabled) && 748 likely(netif_device_present(efx->net_dev))) { 749 txq2 = efx_tx_queue_partner(tx_queue); 750 fill_level = max(tx_queue->insert_count - tx_queue->read_count, 751 txq2->insert_count - txq2->read_count); 752 if (fill_level <= efx->txq_wake_thresh) 753 netif_tx_wake_queue(tx_queue->core_txq); 754 } 755 756 /* Check whether the hardware queue is now empty */ 757 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { 758 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count); 759 if (tx_queue->read_count == tx_queue->old_write_count) { 760 smp_mb(); 761 tx_queue->empty_read_count = 762 tx_queue->read_count | EFX_EMPTY_COUNT_VALID; 763 } 764 } 765 } 766 767 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue) 768 { 769 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER); 770 } 771 772 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) 773 { 774 struct efx_nic *efx = tx_queue->efx; 775 unsigned int entries; 776 int rc; 777 778 /* Create the smallest power-of-two aligned ring */ 779 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); 780 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 781 tx_queue->ptr_mask = entries - 1; 782 783 netif_dbg(efx, probe, efx->net_dev, 784 "creating TX queue %d size %#x mask %#x\n", 785 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); 786 787 /* Allocate software ring */ 788 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), 789 GFP_KERNEL); 790 if (!tx_queue->buffer) 791 return -ENOMEM; 792 793 tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue), 794 sizeof(tx_queue->cb_page[0]), GFP_KERNEL); 795 if (!tx_queue->cb_page) { 796 rc = -ENOMEM; 797 goto fail1; 798 } 799 800 /* Allocate hardware ring */ 801 rc = efx_nic_probe_tx(tx_queue); 802 if (rc) 803 goto fail2; 804 805 return 0; 806 807 fail2: 808 kfree(tx_queue->cb_page); 809 tx_queue->cb_page = NULL; 810 fail1: 811 kfree(tx_queue->buffer); 812 tx_queue->buffer = NULL; 813 return rc; 814 } 815 816 void efx_init_tx_queue(struct efx_tx_queue *tx_queue) 817 { 818 struct efx_nic *efx = tx_queue->efx; 819 820 netif_dbg(efx, drv, efx->net_dev, 821 "initialising TX queue %d\n", tx_queue->queue); 822 823 tx_queue->insert_count = 0; 824 tx_queue->write_count = 0; 825 tx_queue->packet_write_count = 0; 826 tx_queue->old_write_count = 0; 827 tx_queue->read_count = 0; 828 tx_queue->old_read_count = 0; 829 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; 830 tx_queue->xmit_more_available = false; 831 832 /* Set up default function pointers. These may get replaced by 833 * efx_nic_init_tx() based off NIC/queue capabilities. 834 */ 835 tx_queue->handle_tso = efx_enqueue_skb_tso; 836 837 /* Set up TX descriptor ring */ 838 efx_nic_init_tx(tx_queue); 839 840 tx_queue->initialised = true; 841 } 842 843 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) 844 { 845 struct efx_tx_buffer *buffer; 846 847 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 848 "shutting down TX queue %d\n", tx_queue->queue); 849 850 if (!tx_queue->buffer) 851 return; 852 853 /* Free any buffers left in the ring */ 854 while (tx_queue->read_count != tx_queue->write_count) { 855 unsigned int pkts_compl = 0, bytes_compl = 0; 856 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; 857 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 858 859 ++tx_queue->read_count; 860 } 861 tx_queue->xmit_more_available = false; 862 netdev_tx_reset_queue(tx_queue->core_txq); 863 } 864 865 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) 866 { 867 int i; 868 869 if (!tx_queue->buffer) 870 return; 871 872 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 873 "destroying TX queue %d\n", tx_queue->queue); 874 efx_nic_remove_tx(tx_queue); 875 876 if (tx_queue->cb_page) { 877 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++) 878 efx_nic_free_buffer(tx_queue->efx, 879 &tx_queue->cb_page[i]); 880 kfree(tx_queue->cb_page); 881 tx_queue->cb_page = NULL; 882 } 883 884 kfree(tx_queue->buffer); 885 tx_queue->buffer = NULL; 886 } 887