xref: /openbmc/linux/drivers/net/ethernet/sfc/tx.c (revision 68198dca)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "tx.h"
26 #include "workarounds.h"
27 #include "ef10_regs.h"
28 
29 #ifdef EFX_USE_PIO
30 
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33 
34 #endif /* EFX_USE_PIO */
35 
36 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
37 					 struct efx_tx_buffer *buffer)
38 {
39 	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
40 	struct efx_buffer *page_buf =
41 		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
42 	unsigned int offset =
43 		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
44 
45 	if (unlikely(!page_buf->addr) &&
46 	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
47 				 GFP_ATOMIC))
48 		return NULL;
49 	buffer->dma_addr = page_buf->dma_addr + offset;
50 	buffer->unmap_len = 0;
51 	return (u8 *)page_buf->addr + offset;
52 }
53 
54 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
55 				   struct efx_tx_buffer *buffer, size_t len)
56 {
57 	if (len > EFX_TX_CB_SIZE)
58 		return NULL;
59 	return efx_tx_get_copy_buffer(tx_queue, buffer);
60 }
61 
62 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
63 			       struct efx_tx_buffer *buffer,
64 			       unsigned int *pkts_compl,
65 			       unsigned int *bytes_compl)
66 {
67 	if (buffer->unmap_len) {
68 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
69 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
70 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
71 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
72 					 DMA_TO_DEVICE);
73 		else
74 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
75 				       DMA_TO_DEVICE);
76 		buffer->unmap_len = 0;
77 	}
78 
79 	if (buffer->flags & EFX_TX_BUF_SKB) {
80 		EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
81 		(*pkts_compl)++;
82 		(*bytes_compl) += buffer->skb->len;
83 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
84 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
85 			   "TX queue %d transmission id %x complete\n",
86 			   tx_queue->queue, tx_queue->read_count);
87 	}
88 
89 	buffer->len = 0;
90 	buffer->flags = 0;
91 }
92 
93 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
94 {
95 	/* Header and payload descriptor for each output segment, plus
96 	 * one for every input fragment boundary within a segment
97 	 */
98 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
99 
100 	/* Possibly one more per segment for option descriptors */
101 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
102 		max_descs += EFX_TSO_MAX_SEGS;
103 
104 	/* Possibly more for PCIe page boundaries within input fragments */
105 	if (PAGE_SIZE > EFX_PAGE_SIZE)
106 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
107 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
108 
109 	return max_descs;
110 }
111 
112 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
113 {
114 	/* We need to consider both queues that the net core sees as one */
115 	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
116 	struct efx_nic *efx = txq1->efx;
117 	unsigned int fill_level;
118 
119 	fill_level = max(txq1->insert_count - txq1->old_read_count,
120 			 txq2->insert_count - txq2->old_read_count);
121 	if (likely(fill_level < efx->txq_stop_thresh))
122 		return;
123 
124 	/* We used the stale old_read_count above, which gives us a
125 	 * pessimistic estimate of the fill level (which may even
126 	 * validly be >= efx->txq_entries).  Now try again using
127 	 * read_count (more likely to be a cache miss).
128 	 *
129 	 * If we read read_count and then conditionally stop the
130 	 * queue, it is possible for the completion path to race with
131 	 * us and complete all outstanding descriptors in the middle,
132 	 * after which there will be no more completions to wake it.
133 	 * Therefore we stop the queue first, then read read_count
134 	 * (with a memory barrier to ensure the ordering), then
135 	 * restart the queue if the fill level turns out to be low
136 	 * enough.
137 	 */
138 	netif_tx_stop_queue(txq1->core_txq);
139 	smp_mb();
140 	txq1->old_read_count = READ_ONCE(txq1->read_count);
141 	txq2->old_read_count = READ_ONCE(txq2->read_count);
142 
143 	fill_level = max(txq1->insert_count - txq1->old_read_count,
144 			 txq2->insert_count - txq2->old_read_count);
145 	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
146 	if (likely(fill_level < efx->txq_stop_thresh)) {
147 		smp_mb();
148 		if (likely(!efx->loopback_selftest))
149 			netif_tx_start_queue(txq1->core_txq);
150 	}
151 }
152 
153 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
154 				struct sk_buff *skb)
155 {
156 	unsigned int copy_len = skb->len;
157 	struct efx_tx_buffer *buffer;
158 	u8 *copy_buffer;
159 	int rc;
160 
161 	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
162 
163 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
164 
165 	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
166 	if (unlikely(!copy_buffer))
167 		return -ENOMEM;
168 
169 	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
170 	EFX_WARN_ON_PARANOID(rc);
171 	buffer->len = copy_len;
172 
173 	buffer->skb = skb;
174 	buffer->flags = EFX_TX_BUF_SKB;
175 
176 	++tx_queue->insert_count;
177 	return rc;
178 }
179 
180 #ifdef EFX_USE_PIO
181 
182 struct efx_short_copy_buffer {
183 	int used;
184 	u8 buf[L1_CACHE_BYTES];
185 };
186 
187 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
188  * Advances piobuf pointer. Leaves additional data in the copy buffer.
189  */
190 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
191 				    u8 *data, int len,
192 				    struct efx_short_copy_buffer *copy_buf)
193 {
194 	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
195 
196 	__iowrite64_copy(*piobuf, data, block_len >> 3);
197 	*piobuf += block_len;
198 	len -= block_len;
199 
200 	if (len) {
201 		data += block_len;
202 		BUG_ON(copy_buf->used);
203 		BUG_ON(len > sizeof(copy_buf->buf));
204 		memcpy(copy_buf->buf, data, len);
205 		copy_buf->used = len;
206 	}
207 }
208 
209 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
210  * Advances piobuf pointer. Leaves additional data in the copy buffer.
211  */
212 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
213 				       u8 *data, int len,
214 				       struct efx_short_copy_buffer *copy_buf)
215 {
216 	if (copy_buf->used) {
217 		/* if the copy buffer is partially full, fill it up and write */
218 		int copy_to_buf =
219 			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
220 
221 		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
222 		copy_buf->used += copy_to_buf;
223 
224 		/* if we didn't fill it up then we're done for now */
225 		if (copy_buf->used < sizeof(copy_buf->buf))
226 			return;
227 
228 		__iowrite64_copy(*piobuf, copy_buf->buf,
229 				 sizeof(copy_buf->buf) >> 3);
230 		*piobuf += sizeof(copy_buf->buf);
231 		data += copy_to_buf;
232 		len -= copy_to_buf;
233 		copy_buf->used = 0;
234 	}
235 
236 	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
237 }
238 
239 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
240 				  struct efx_short_copy_buffer *copy_buf)
241 {
242 	/* if there's anything in it, write the whole buffer, including junk */
243 	if (copy_buf->used)
244 		__iowrite64_copy(piobuf, copy_buf->buf,
245 				 sizeof(copy_buf->buf) >> 3);
246 }
247 
248 /* Traverse skb structure and copy fragments in to PIO buffer.
249  * Advances piobuf pointer.
250  */
251 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
252 				     u8 __iomem **piobuf,
253 				     struct efx_short_copy_buffer *copy_buf)
254 {
255 	int i;
256 
257 	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
258 				copy_buf);
259 
260 	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
261 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
262 		u8 *vaddr;
263 
264 		vaddr = kmap_atomic(skb_frag_page(f));
265 
266 		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
267 					   skb_frag_size(f), copy_buf);
268 		kunmap_atomic(vaddr);
269 	}
270 
271 	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
272 }
273 
274 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
275 			       struct sk_buff *skb)
276 {
277 	struct efx_tx_buffer *buffer =
278 		efx_tx_queue_get_insert_buffer(tx_queue);
279 	u8 __iomem *piobuf = tx_queue->piobuf;
280 
281 	/* Copy to PIO buffer. Ensure the writes are padded to the end
282 	 * of a cache line, as this is required for write-combining to be
283 	 * effective on at least x86.
284 	 */
285 
286 	if (skb_shinfo(skb)->nr_frags) {
287 		/* The size of the copy buffer will ensure all writes
288 		 * are the size of a cache line.
289 		 */
290 		struct efx_short_copy_buffer copy_buf;
291 
292 		copy_buf.used = 0;
293 
294 		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
295 					 &piobuf, &copy_buf);
296 		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
297 	} else {
298 		/* Pad the write to the size of a cache line.
299 		 * We can do this because we know the skb_shared_info struct is
300 		 * after the source, and the destination buffer is big enough.
301 		 */
302 		BUILD_BUG_ON(L1_CACHE_BYTES >
303 			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
304 		__iowrite64_copy(tx_queue->piobuf, skb->data,
305 				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
306 	}
307 
308 	buffer->skb = skb;
309 	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
310 
311 	EFX_POPULATE_QWORD_5(buffer->option,
312 			     ESF_DZ_TX_DESC_IS_OPT, 1,
313 			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
314 			     ESF_DZ_TX_PIO_CONT, 0,
315 			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
316 			     ESF_DZ_TX_PIO_BUF_ADDR,
317 			     tx_queue->piobuf_offset);
318 	++tx_queue->insert_count;
319 	return 0;
320 }
321 #endif /* EFX_USE_PIO */
322 
323 static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
324 					      dma_addr_t dma_addr,
325 					      size_t len)
326 {
327 	const struct efx_nic_type *nic_type = tx_queue->efx->type;
328 	struct efx_tx_buffer *buffer;
329 	unsigned int dma_len;
330 
331 	/* Map the fragment taking account of NIC-dependent DMA limits. */
332 	do {
333 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
334 		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
335 
336 		buffer->len = dma_len;
337 		buffer->dma_addr = dma_addr;
338 		buffer->flags = EFX_TX_BUF_CONT;
339 		len -= dma_len;
340 		dma_addr += dma_len;
341 		++tx_queue->insert_count;
342 	} while (len);
343 
344 	return buffer;
345 }
346 
347 /* Map all data from an SKB for DMA and create descriptors on the queue.
348  */
349 static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
350 			   unsigned int segment_count)
351 {
352 	struct efx_nic *efx = tx_queue->efx;
353 	struct device *dma_dev = &efx->pci_dev->dev;
354 	unsigned int frag_index, nr_frags;
355 	dma_addr_t dma_addr, unmap_addr;
356 	unsigned short dma_flags;
357 	size_t len, unmap_len;
358 
359 	nr_frags = skb_shinfo(skb)->nr_frags;
360 	frag_index = 0;
361 
362 	/* Map header data. */
363 	len = skb_headlen(skb);
364 	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
365 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
366 	unmap_len = len;
367 	unmap_addr = dma_addr;
368 
369 	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
370 		return -EIO;
371 
372 	if (segment_count) {
373 		/* For TSO we need to put the header in to a separate
374 		 * descriptor. Map this separately if necessary.
375 		 */
376 		size_t header_len = skb_transport_header(skb) - skb->data +
377 				(tcp_hdr(skb)->doff << 2u);
378 
379 		if (header_len != len) {
380 			tx_queue->tso_long_headers++;
381 			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
382 			len -= header_len;
383 			dma_addr += header_len;
384 		}
385 	}
386 
387 	/* Add descriptors for each fragment. */
388 	do {
389 		struct efx_tx_buffer *buffer;
390 		skb_frag_t *fragment;
391 
392 		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
393 
394 		/* The final descriptor for a fragment is responsible for
395 		 * unmapping the whole fragment.
396 		 */
397 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
398 		buffer->unmap_len = unmap_len;
399 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
400 
401 		if (frag_index >= nr_frags) {
402 			/* Store SKB details with the final buffer for
403 			 * the completion.
404 			 */
405 			buffer->skb = skb;
406 			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
407 			return 0;
408 		}
409 
410 		/* Move on to the next fragment. */
411 		fragment = &skb_shinfo(skb)->frags[frag_index++];
412 		len = skb_frag_size(fragment);
413 		dma_addr = skb_frag_dma_map(dma_dev, fragment,
414 				0, len, DMA_TO_DEVICE);
415 		dma_flags = 0;
416 		unmap_len = len;
417 		unmap_addr = dma_addr;
418 
419 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
420 			return -EIO;
421 	} while (1);
422 }
423 
424 /* Remove buffers put into a tx_queue.  None of the buffers must have
425  * an skb attached.
426  */
427 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
428 {
429 	struct efx_tx_buffer *buffer;
430 	unsigned int bytes_compl = 0;
431 	unsigned int pkts_compl = 0;
432 
433 	/* Work backwards until we hit the original insert pointer value */
434 	while (tx_queue->insert_count != tx_queue->write_count) {
435 		--tx_queue->insert_count;
436 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
437 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
438 	}
439 }
440 
441 /*
442  * Fallback to software TSO.
443  *
444  * This is used if we are unable to send a GSO packet through hardware TSO.
445  * This should only ever happen due to per-queue restrictions - unsupported
446  * packets should first be filtered by the feature flags.
447  *
448  * Returns 0 on success, error code otherwise.
449  */
450 static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
451 			       struct sk_buff *skb)
452 {
453 	struct sk_buff *segments, *next;
454 
455 	segments = skb_gso_segment(skb, 0);
456 	if (IS_ERR(segments))
457 		return PTR_ERR(segments);
458 
459 	dev_kfree_skb_any(skb);
460 	skb = segments;
461 
462 	while (skb) {
463 		next = skb->next;
464 		skb->next = NULL;
465 
466 		if (next)
467 			skb->xmit_more = true;
468 		efx_enqueue_skb(tx_queue, skb);
469 		skb = next;
470 	}
471 
472 	return 0;
473 }
474 
475 /*
476  * Add a socket buffer to a TX queue
477  *
478  * This maps all fragments of a socket buffer for DMA and adds them to
479  * the TX queue.  The queue's insert pointer will be incremented by
480  * the number of fragments in the socket buffer.
481  *
482  * If any DMA mapping fails, any mapped fragments will be unmapped,
483  * the queue's insert pointer will be restored to its original value.
484  *
485  * This function is split out from efx_hard_start_xmit to allow the
486  * loopback test to direct packets via specific TX queues.
487  *
488  * Returns NETDEV_TX_OK.
489  * You must hold netif_tx_lock() to call this function.
490  */
491 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
492 {
493 	bool data_mapped = false;
494 	unsigned int segments;
495 	unsigned int skb_len;
496 	int rc;
497 
498 	skb_len = skb->len;
499 	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
500 	if (segments == 1)
501 		segments = 0; /* Don't use TSO for a single segment. */
502 
503 	/* Handle TSO first - it's *possible* (although unlikely) that we might
504 	 * be passed a packet to segment that's smaller than the copybreak/PIO
505 	 * size limit.
506 	 */
507 	if (segments) {
508 		EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
509 		rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
510 		if (rc == -EINVAL) {
511 			rc = efx_tx_tso_fallback(tx_queue, skb);
512 			tx_queue->tso_fallbacks++;
513 			if (rc == 0)
514 				return 0;
515 		}
516 		if (rc)
517 			goto err;
518 #ifdef EFX_USE_PIO
519 	} else if (skb_len <= efx_piobuf_size && !skb->xmit_more &&
520 		   efx_nic_may_tx_pio(tx_queue)) {
521 		/* Use PIO for short packets with an empty queue. */
522 		if (efx_enqueue_skb_pio(tx_queue, skb))
523 			goto err;
524 		tx_queue->pio_packets++;
525 		data_mapped = true;
526 #endif
527 	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
528 		/* Pad short packets or coalesce short fragmented packets. */
529 		if (efx_enqueue_skb_copy(tx_queue, skb))
530 			goto err;
531 		tx_queue->cb_packets++;
532 		data_mapped = true;
533 	}
534 
535 	/* Map for DMA and create descriptors if we haven't done so already. */
536 	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
537 		goto err;
538 
539 	/* Update BQL */
540 	netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
541 
542 	/* Pass off to hardware */
543 	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
544 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
545 
546 		/* There could be packets left on the partner queue if those
547 		 * SKBs had skb->xmit_more set. If we do not push those they
548 		 * could be left for a long time and cause a netdev watchdog.
549 		 */
550 		if (txq2->xmit_more_available)
551 			efx_nic_push_buffers(txq2);
552 
553 		efx_nic_push_buffers(tx_queue);
554 	} else {
555 		tx_queue->xmit_more_available = skb->xmit_more;
556 	}
557 
558 	if (segments) {
559 		tx_queue->tso_bursts++;
560 		tx_queue->tso_packets += segments;
561 		tx_queue->tx_packets  += segments;
562 	} else {
563 		tx_queue->tx_packets++;
564 	}
565 
566 	efx_tx_maybe_stop_queue(tx_queue);
567 
568 	return NETDEV_TX_OK;
569 
570 
571 err:
572 	efx_enqueue_unwind(tx_queue);
573 	dev_kfree_skb_any(skb);
574 	return NETDEV_TX_OK;
575 }
576 
577 /* Remove packets from the TX queue
578  *
579  * This removes packets from the TX queue, up to and including the
580  * specified index.
581  */
582 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
583 				unsigned int index,
584 				unsigned int *pkts_compl,
585 				unsigned int *bytes_compl)
586 {
587 	struct efx_nic *efx = tx_queue->efx;
588 	unsigned int stop_index, read_ptr;
589 
590 	stop_index = (index + 1) & tx_queue->ptr_mask;
591 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
592 
593 	while (read_ptr != stop_index) {
594 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
595 
596 		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
597 		    unlikely(buffer->len == 0)) {
598 			netif_err(efx, tx_err, efx->net_dev,
599 				  "TX queue %d spurious TX completion id %x\n",
600 				  tx_queue->queue, read_ptr);
601 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
602 			return;
603 		}
604 
605 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
606 
607 		++tx_queue->read_count;
608 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
609 	}
610 }
611 
612 /* Initiate a packet transmission.  We use one channel per CPU
613  * (sharing when we have more CPUs than channels).  On Falcon, the TX
614  * completion events will be directed back to the CPU that transmitted
615  * the packet, which should be cache-efficient.
616  *
617  * Context: non-blocking.
618  * Note that returning anything other than NETDEV_TX_OK will cause the
619  * OS to free the skb.
620  */
621 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
622 				struct net_device *net_dev)
623 {
624 	struct efx_nic *efx = netdev_priv(net_dev);
625 	struct efx_tx_queue *tx_queue;
626 	unsigned index, type;
627 
628 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
629 
630 	/* PTP "event" packet */
631 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
632 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
633 		return efx_ptp_tx(efx, skb);
634 	}
635 
636 	index = skb_get_queue_mapping(skb);
637 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
638 	if (index >= efx->n_tx_channels) {
639 		index -= efx->n_tx_channels;
640 		type |= EFX_TXQ_TYPE_HIGHPRI;
641 	}
642 	tx_queue = efx_get_tx_queue(efx, index, type);
643 
644 	return efx_enqueue_skb(tx_queue, skb);
645 }
646 
647 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
648 {
649 	struct efx_nic *efx = tx_queue->efx;
650 
651 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
652 	tx_queue->core_txq =
653 		netdev_get_tx_queue(efx->net_dev,
654 				    tx_queue->queue / EFX_TXQ_TYPES +
655 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
656 				     efx->n_tx_channels : 0));
657 }
658 
659 int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
660 		 void *type_data)
661 {
662 	struct efx_nic *efx = netdev_priv(net_dev);
663 	struct tc_mqprio_qopt *mqprio = type_data;
664 	struct efx_channel *channel;
665 	struct efx_tx_queue *tx_queue;
666 	unsigned tc, num_tc;
667 	int rc;
668 
669 	if (type != TC_SETUP_QDISC_MQPRIO)
670 		return -EOPNOTSUPP;
671 
672 	num_tc = mqprio->num_tc;
673 
674 	if (num_tc > EFX_MAX_TX_TC)
675 		return -EINVAL;
676 
677 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
678 
679 	if (num_tc == net_dev->num_tc)
680 		return 0;
681 
682 	for (tc = 0; tc < num_tc; tc++) {
683 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
684 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
685 	}
686 
687 	if (num_tc > net_dev->num_tc) {
688 		/* Initialise high-priority queues as necessary */
689 		efx_for_each_channel(channel, efx) {
690 			efx_for_each_possible_channel_tx_queue(tx_queue,
691 							       channel) {
692 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
693 					continue;
694 				if (!tx_queue->buffer) {
695 					rc = efx_probe_tx_queue(tx_queue);
696 					if (rc)
697 						return rc;
698 				}
699 				if (!tx_queue->initialised)
700 					efx_init_tx_queue(tx_queue);
701 				efx_init_tx_queue_core_txq(tx_queue);
702 			}
703 		}
704 	} else {
705 		/* Reduce number of classes before number of queues */
706 		net_dev->num_tc = num_tc;
707 	}
708 
709 	rc = netif_set_real_num_tx_queues(net_dev,
710 					  max_t(int, num_tc, 1) *
711 					  efx->n_tx_channels);
712 	if (rc)
713 		return rc;
714 
715 	/* Do not destroy high-priority queues when they become
716 	 * unused.  We would have to flush them first, and it is
717 	 * fairly difficult to flush a subset of TX queues.  Leave
718 	 * it to efx_fini_channels().
719 	 */
720 
721 	net_dev->num_tc = num_tc;
722 	return 0;
723 }
724 
725 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
726 {
727 	unsigned fill_level;
728 	struct efx_nic *efx = tx_queue->efx;
729 	struct efx_tx_queue *txq2;
730 	unsigned int pkts_compl = 0, bytes_compl = 0;
731 
732 	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
733 
734 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
735 	tx_queue->pkts_compl += pkts_compl;
736 	tx_queue->bytes_compl += bytes_compl;
737 
738 	if (pkts_compl > 1)
739 		++tx_queue->merge_events;
740 
741 	/* See if we need to restart the netif queue.  This memory
742 	 * barrier ensures that we write read_count (inside
743 	 * efx_dequeue_buffers()) before reading the queue status.
744 	 */
745 	smp_mb();
746 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
747 	    likely(efx->port_enabled) &&
748 	    likely(netif_device_present(efx->net_dev))) {
749 		txq2 = efx_tx_queue_partner(tx_queue);
750 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
751 				 txq2->insert_count - txq2->read_count);
752 		if (fill_level <= efx->txq_wake_thresh)
753 			netif_tx_wake_queue(tx_queue->core_txq);
754 	}
755 
756 	/* Check whether the hardware queue is now empty */
757 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
758 		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
759 		if (tx_queue->read_count == tx_queue->old_write_count) {
760 			smp_mb();
761 			tx_queue->empty_read_count =
762 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
763 		}
764 	}
765 }
766 
767 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
768 {
769 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
770 }
771 
772 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
773 {
774 	struct efx_nic *efx = tx_queue->efx;
775 	unsigned int entries;
776 	int rc;
777 
778 	/* Create the smallest power-of-two aligned ring */
779 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
780 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
781 	tx_queue->ptr_mask = entries - 1;
782 
783 	netif_dbg(efx, probe, efx->net_dev,
784 		  "creating TX queue %d size %#x mask %#x\n",
785 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
786 
787 	/* Allocate software ring */
788 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
789 				   GFP_KERNEL);
790 	if (!tx_queue->buffer)
791 		return -ENOMEM;
792 
793 	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
794 				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
795 	if (!tx_queue->cb_page) {
796 		rc = -ENOMEM;
797 		goto fail1;
798 	}
799 
800 	/* Allocate hardware ring */
801 	rc = efx_nic_probe_tx(tx_queue);
802 	if (rc)
803 		goto fail2;
804 
805 	return 0;
806 
807 fail2:
808 	kfree(tx_queue->cb_page);
809 	tx_queue->cb_page = NULL;
810 fail1:
811 	kfree(tx_queue->buffer);
812 	tx_queue->buffer = NULL;
813 	return rc;
814 }
815 
816 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
817 {
818 	struct efx_nic *efx = tx_queue->efx;
819 
820 	netif_dbg(efx, drv, efx->net_dev,
821 		  "initialising TX queue %d\n", tx_queue->queue);
822 
823 	tx_queue->insert_count = 0;
824 	tx_queue->write_count = 0;
825 	tx_queue->packet_write_count = 0;
826 	tx_queue->old_write_count = 0;
827 	tx_queue->read_count = 0;
828 	tx_queue->old_read_count = 0;
829 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
830 	tx_queue->xmit_more_available = false;
831 
832 	/* Set up default function pointers. These may get replaced by
833 	 * efx_nic_init_tx() based off NIC/queue capabilities.
834 	 */
835 	tx_queue->handle_tso = efx_enqueue_skb_tso;
836 
837 	/* Set up TX descriptor ring */
838 	efx_nic_init_tx(tx_queue);
839 
840 	tx_queue->initialised = true;
841 }
842 
843 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
844 {
845 	struct efx_tx_buffer *buffer;
846 
847 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
848 		  "shutting down TX queue %d\n", tx_queue->queue);
849 
850 	if (!tx_queue->buffer)
851 		return;
852 
853 	/* Free any buffers left in the ring */
854 	while (tx_queue->read_count != tx_queue->write_count) {
855 		unsigned int pkts_compl = 0, bytes_compl = 0;
856 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
857 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
858 
859 		++tx_queue->read_count;
860 	}
861 	tx_queue->xmit_more_available = false;
862 	netdev_tx_reset_queue(tx_queue->core_txq);
863 }
864 
865 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
866 {
867 	int i;
868 
869 	if (!tx_queue->buffer)
870 		return;
871 
872 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
873 		  "destroying TX queue %d\n", tx_queue->queue);
874 	efx_nic_remove_tx(tx_queue);
875 
876 	if (tx_queue->cb_page) {
877 		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
878 			efx_nic_free_buffer(tx_queue->efx,
879 					    &tx_queue->cb_page[i]);
880 		kfree(tx_queue->cb_page);
881 		tx_queue->cb_page = NULL;
882 	}
883 
884 	kfree(tx_queue->buffer);
885 	tx_queue->buffer = NULL;
886 }
887