xref: /openbmc/linux/drivers/net/ethernet/sfc/tx.c (revision 61163895)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/tcp.h>
10 #include <linux/ip.h>
11 #include <linux/in.h>
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
14 #include <net/ipv6.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/cache.h>
18 #include "net_driver.h"
19 #include "efx.h"
20 #include "io.h"
21 #include "nic.h"
22 #include "tx.h"
23 #include "tx_common.h"
24 #include "workarounds.h"
25 #include "ef10_regs.h"
26 
27 #ifdef EFX_USE_PIO
28 
29 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
30 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
31 
32 #endif /* EFX_USE_PIO */
33 
34 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
35 					 struct efx_tx_buffer *buffer)
36 {
37 	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
38 	struct efx_buffer *page_buf =
39 		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
40 	unsigned int offset =
41 		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
42 
43 	if (unlikely(!page_buf->addr) &&
44 	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
45 				 GFP_ATOMIC))
46 		return NULL;
47 	buffer->dma_addr = page_buf->dma_addr + offset;
48 	buffer->unmap_len = 0;
49 	return (u8 *)page_buf->addr + offset;
50 }
51 
52 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
53 				   struct efx_tx_buffer *buffer, size_t len)
54 {
55 	if (len > EFX_TX_CB_SIZE)
56 		return NULL;
57 	return efx_tx_get_copy_buffer(tx_queue, buffer);
58 }
59 
60 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
61 {
62 	/* We need to consider both queues that the net core sees as one */
63 	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
64 	struct efx_nic *efx = txq1->efx;
65 	unsigned int fill_level;
66 
67 	fill_level = max(txq1->insert_count - txq1->old_read_count,
68 			 txq2->insert_count - txq2->old_read_count);
69 	if (likely(fill_level < efx->txq_stop_thresh))
70 		return;
71 
72 	/* We used the stale old_read_count above, which gives us a
73 	 * pessimistic estimate of the fill level (which may even
74 	 * validly be >= efx->txq_entries).  Now try again using
75 	 * read_count (more likely to be a cache miss).
76 	 *
77 	 * If we read read_count and then conditionally stop the
78 	 * queue, it is possible for the completion path to race with
79 	 * us and complete all outstanding descriptors in the middle,
80 	 * after which there will be no more completions to wake it.
81 	 * Therefore we stop the queue first, then read read_count
82 	 * (with a memory barrier to ensure the ordering), then
83 	 * restart the queue if the fill level turns out to be low
84 	 * enough.
85 	 */
86 	netif_tx_stop_queue(txq1->core_txq);
87 	smp_mb();
88 	txq1->old_read_count = READ_ONCE(txq1->read_count);
89 	txq2->old_read_count = READ_ONCE(txq2->read_count);
90 
91 	fill_level = max(txq1->insert_count - txq1->old_read_count,
92 			 txq2->insert_count - txq2->old_read_count);
93 	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
94 	if (likely(fill_level < efx->txq_stop_thresh)) {
95 		smp_mb();
96 		if (likely(!efx->loopback_selftest))
97 			netif_tx_start_queue(txq1->core_txq);
98 	}
99 }
100 
101 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
102 				struct sk_buff *skb)
103 {
104 	unsigned int copy_len = skb->len;
105 	struct efx_tx_buffer *buffer;
106 	u8 *copy_buffer;
107 	int rc;
108 
109 	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
110 
111 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
112 
113 	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
114 	if (unlikely(!copy_buffer))
115 		return -ENOMEM;
116 
117 	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
118 	EFX_WARN_ON_PARANOID(rc);
119 	buffer->len = copy_len;
120 
121 	buffer->skb = skb;
122 	buffer->flags = EFX_TX_BUF_SKB;
123 
124 	++tx_queue->insert_count;
125 	return rc;
126 }
127 
128 #ifdef EFX_USE_PIO
129 
130 struct efx_short_copy_buffer {
131 	int used;
132 	u8 buf[L1_CACHE_BYTES];
133 };
134 
135 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
136  * Advances piobuf pointer. Leaves additional data in the copy buffer.
137  */
138 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
139 				    u8 *data, int len,
140 				    struct efx_short_copy_buffer *copy_buf)
141 {
142 	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
143 
144 	__iowrite64_copy(*piobuf, data, block_len >> 3);
145 	*piobuf += block_len;
146 	len -= block_len;
147 
148 	if (len) {
149 		data += block_len;
150 		BUG_ON(copy_buf->used);
151 		BUG_ON(len > sizeof(copy_buf->buf));
152 		memcpy(copy_buf->buf, data, len);
153 		copy_buf->used = len;
154 	}
155 }
156 
157 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
158  * Advances piobuf pointer. Leaves additional data in the copy buffer.
159  */
160 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
161 				       u8 *data, int len,
162 				       struct efx_short_copy_buffer *copy_buf)
163 {
164 	if (copy_buf->used) {
165 		/* if the copy buffer is partially full, fill it up and write */
166 		int copy_to_buf =
167 			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
168 
169 		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
170 		copy_buf->used += copy_to_buf;
171 
172 		/* if we didn't fill it up then we're done for now */
173 		if (copy_buf->used < sizeof(copy_buf->buf))
174 			return;
175 
176 		__iowrite64_copy(*piobuf, copy_buf->buf,
177 				 sizeof(copy_buf->buf) >> 3);
178 		*piobuf += sizeof(copy_buf->buf);
179 		data += copy_to_buf;
180 		len -= copy_to_buf;
181 		copy_buf->used = 0;
182 	}
183 
184 	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
185 }
186 
187 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
188 				  struct efx_short_copy_buffer *copy_buf)
189 {
190 	/* if there's anything in it, write the whole buffer, including junk */
191 	if (copy_buf->used)
192 		__iowrite64_copy(piobuf, copy_buf->buf,
193 				 sizeof(copy_buf->buf) >> 3);
194 }
195 
196 /* Traverse skb structure and copy fragments in to PIO buffer.
197  * Advances piobuf pointer.
198  */
199 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
200 				     u8 __iomem **piobuf,
201 				     struct efx_short_copy_buffer *copy_buf)
202 {
203 	int i;
204 
205 	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
206 				copy_buf);
207 
208 	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
209 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
210 		u8 *vaddr;
211 
212 		vaddr = kmap_atomic(skb_frag_page(f));
213 
214 		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
215 					   skb_frag_size(f), copy_buf);
216 		kunmap_atomic(vaddr);
217 	}
218 
219 	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
220 }
221 
222 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
223 			       struct sk_buff *skb)
224 {
225 	struct efx_tx_buffer *buffer =
226 		efx_tx_queue_get_insert_buffer(tx_queue);
227 	u8 __iomem *piobuf = tx_queue->piobuf;
228 
229 	/* Copy to PIO buffer. Ensure the writes are padded to the end
230 	 * of a cache line, as this is required for write-combining to be
231 	 * effective on at least x86.
232 	 */
233 
234 	if (skb_shinfo(skb)->nr_frags) {
235 		/* The size of the copy buffer will ensure all writes
236 		 * are the size of a cache line.
237 		 */
238 		struct efx_short_copy_buffer copy_buf;
239 
240 		copy_buf.used = 0;
241 
242 		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
243 					 &piobuf, &copy_buf);
244 		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
245 	} else {
246 		/* Pad the write to the size of a cache line.
247 		 * We can do this because we know the skb_shared_info struct is
248 		 * after the source, and the destination buffer is big enough.
249 		 */
250 		BUILD_BUG_ON(L1_CACHE_BYTES >
251 			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
252 		__iowrite64_copy(tx_queue->piobuf, skb->data,
253 				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
254 	}
255 
256 	buffer->skb = skb;
257 	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
258 
259 	EFX_POPULATE_QWORD_5(buffer->option,
260 			     ESF_DZ_TX_DESC_IS_OPT, 1,
261 			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
262 			     ESF_DZ_TX_PIO_CONT, 0,
263 			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
264 			     ESF_DZ_TX_PIO_BUF_ADDR,
265 			     tx_queue->piobuf_offset);
266 	++tx_queue->insert_count;
267 	return 0;
268 }
269 #endif /* EFX_USE_PIO */
270 
271 /*
272  * Add a socket buffer to a TX queue
273  *
274  * This maps all fragments of a socket buffer for DMA and adds them to
275  * the TX queue.  The queue's insert pointer will be incremented by
276  * the number of fragments in the socket buffer.
277  *
278  * If any DMA mapping fails, any mapped fragments will be unmapped,
279  * the queue's insert pointer will be restored to its original value.
280  *
281  * This function is split out from efx_hard_start_xmit to allow the
282  * loopback test to direct packets via specific TX queues.
283  *
284  * Returns NETDEV_TX_OK.
285  * You must hold netif_tx_lock() to call this function.
286  */
287 netdev_tx_t __efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
288 {
289 	unsigned int old_insert_count = tx_queue->insert_count;
290 	bool xmit_more = netdev_xmit_more();
291 	bool data_mapped = false;
292 	unsigned int segments;
293 	unsigned int skb_len;
294 	int rc;
295 
296 	skb_len = skb->len;
297 	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
298 	if (segments == 1)
299 		segments = 0; /* Don't use TSO for a single segment. */
300 
301 	/* Handle TSO first - it's *possible* (although unlikely) that we might
302 	 * be passed a packet to segment that's smaller than the copybreak/PIO
303 	 * size limit.
304 	 */
305 	if (segments) {
306 		EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
307 		rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
308 		if (rc == -EINVAL) {
309 			rc = efx_tx_tso_fallback(tx_queue, skb);
310 			tx_queue->tso_fallbacks++;
311 			if (rc == 0)
312 				return 0;
313 		}
314 		if (rc)
315 			goto err;
316 #ifdef EFX_USE_PIO
317 	} else if (skb_len <= efx_piobuf_size && !xmit_more &&
318 		   efx_nic_may_tx_pio(tx_queue)) {
319 		/* Use PIO for short packets with an empty queue. */
320 		if (efx_enqueue_skb_pio(tx_queue, skb))
321 			goto err;
322 		tx_queue->pio_packets++;
323 		data_mapped = true;
324 #endif
325 	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
326 		/* Pad short packets or coalesce short fragmented packets. */
327 		if (efx_enqueue_skb_copy(tx_queue, skb))
328 			goto err;
329 		tx_queue->cb_packets++;
330 		data_mapped = true;
331 	}
332 
333 	/* Map for DMA and create descriptors if we haven't done so already. */
334 	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
335 		goto err;
336 
337 	efx_tx_maybe_stop_queue(tx_queue);
338 
339 	/* Pass off to hardware */
340 	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more)) {
341 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
342 
343 		/* There could be packets left on the partner queue if
344 		 * xmit_more was set. If we do not push those they
345 		 * could be left for a long time and cause a netdev watchdog.
346 		 */
347 		if (txq2->xmit_more_available)
348 			efx_nic_push_buffers(txq2);
349 
350 		efx_nic_push_buffers(tx_queue);
351 	} else {
352 		tx_queue->xmit_more_available = xmit_more;
353 	}
354 
355 	if (segments) {
356 		tx_queue->tso_bursts++;
357 		tx_queue->tso_packets += segments;
358 		tx_queue->tx_packets  += segments;
359 	} else {
360 		tx_queue->tx_packets++;
361 	}
362 
363 	return NETDEV_TX_OK;
364 
365 
366 err:
367 	efx_enqueue_unwind(tx_queue, old_insert_count);
368 	dev_kfree_skb_any(skb);
369 
370 	/* If we're not expecting another transmit and we had something to push
371 	 * on this queue or a partner queue then we need to push here to get the
372 	 * previous packets out.
373 	 */
374 	if (!xmit_more) {
375 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
376 
377 		if (txq2->xmit_more_available)
378 			efx_nic_push_buffers(txq2);
379 
380 		efx_nic_push_buffers(tx_queue);
381 	}
382 
383 	return NETDEV_TX_OK;
384 }
385 
386 static void efx_xdp_return_frames(int n,  struct xdp_frame **xdpfs)
387 {
388 	int i;
389 
390 	for (i = 0; i < n; i++)
391 		xdp_return_frame_rx_napi(xdpfs[i]);
392 }
393 
394 /* Transmit a packet from an XDP buffer
395  *
396  * Returns number of packets sent on success, error code otherwise.
397  * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
398  * (for XDP redirect).
399  */
400 int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
401 		       bool flush)
402 {
403 	struct efx_tx_buffer *tx_buffer;
404 	struct efx_tx_queue *tx_queue;
405 	struct xdp_frame *xdpf;
406 	dma_addr_t dma_addr;
407 	unsigned int len;
408 	int space;
409 	int cpu;
410 	int i;
411 
412 	cpu = raw_smp_processor_id();
413 
414 	if (!efx->xdp_tx_queue_count ||
415 	    unlikely(cpu >= efx->xdp_tx_queue_count))
416 		return -EINVAL;
417 
418 	tx_queue = efx->xdp_tx_queues[cpu];
419 	if (unlikely(!tx_queue))
420 		return -EINVAL;
421 
422 	if (unlikely(n && !xdpfs))
423 		return -EINVAL;
424 
425 	if (!n)
426 		return 0;
427 
428 	/* Check for available space. We should never need multiple
429 	 * descriptors per frame.
430 	 */
431 	space = efx->txq_entries +
432 		tx_queue->read_count - tx_queue->insert_count;
433 
434 	for (i = 0; i < n; i++) {
435 		xdpf = xdpfs[i];
436 
437 		if (i >= space)
438 			break;
439 
440 		/* We'll want a descriptor for this tx. */
441 		prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
442 
443 		len = xdpf->len;
444 
445 		/* Map for DMA. */
446 		dma_addr = dma_map_single(&efx->pci_dev->dev,
447 					  xdpf->data, len,
448 					  DMA_TO_DEVICE);
449 		if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
450 			break;
451 
452 		/*  Create descriptor and set up for unmapping DMA. */
453 		tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
454 		tx_buffer->xdpf = xdpf;
455 		tx_buffer->flags = EFX_TX_BUF_XDP |
456 				   EFX_TX_BUF_MAP_SINGLE;
457 		tx_buffer->dma_offset = 0;
458 		tx_buffer->unmap_len = len;
459 		tx_queue->tx_packets++;
460 	}
461 
462 	/* Pass mapped frames to hardware. */
463 	if (flush && i > 0)
464 		efx_nic_push_buffers(tx_queue);
465 
466 	if (i == 0)
467 		return -EIO;
468 
469 	efx_xdp_return_frames(n - i, xdpfs + i);
470 
471 	return i;
472 }
473 
474 /* Initiate a packet transmission.  We use one channel per CPU
475  * (sharing when we have more CPUs than channels).  On Falcon, the TX
476  * completion events will be directed back to the CPU that transmitted
477  * the packet, which should be cache-efficient.
478  *
479  * Context: non-blocking.
480  * Note that returning anything other than NETDEV_TX_OK will cause the
481  * OS to free the skb.
482  */
483 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
484 				struct net_device *net_dev)
485 {
486 	struct efx_nic *efx = netdev_priv(net_dev);
487 	struct efx_tx_queue *tx_queue;
488 	unsigned index, type;
489 
490 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
491 
492 	/* PTP "event" packet */
493 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
494 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
495 		return efx_ptp_tx(efx, skb);
496 	}
497 
498 	index = skb_get_queue_mapping(skb);
499 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
500 	if (index >= efx->n_tx_channels) {
501 		index -= efx->n_tx_channels;
502 		type |= EFX_TXQ_TYPE_HIGHPRI;
503 	}
504 	tx_queue = efx_get_tx_queue(efx, index, type);
505 
506 	return __efx_enqueue_skb(tx_queue, skb);
507 }
508 
509 void efx_xmit_done_single(struct efx_tx_queue *tx_queue)
510 {
511 	unsigned int pkts_compl = 0, bytes_compl = 0;
512 	unsigned int read_ptr;
513 	bool finished = false;
514 
515 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
516 
517 	while (!finished) {
518 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
519 
520 		if (!efx_tx_buffer_in_use(buffer)) {
521 			struct efx_nic *efx = tx_queue->efx;
522 
523 			netif_err(efx, hw, efx->net_dev,
524 				  "TX queue %d spurious single TX completion\n",
525 				  tx_queue->queue);
526 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
527 			return;
528 		}
529 
530 		/* Need to check the flag before dequeueing. */
531 		if (buffer->flags & EFX_TX_BUF_SKB)
532 			finished = true;
533 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
534 
535 		++tx_queue->read_count;
536 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
537 	}
538 
539 	tx_queue->pkts_compl += pkts_compl;
540 	tx_queue->bytes_compl += bytes_compl;
541 
542 	EFX_WARN_ON_PARANOID(pkts_compl != 1);
543 
544 	efx_xmit_done_check_empty(tx_queue);
545 }
546 
547 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
548 {
549 	struct efx_nic *efx = tx_queue->efx;
550 
551 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
552 	tx_queue->core_txq =
553 		netdev_get_tx_queue(efx->net_dev,
554 				    tx_queue->channel->channel +
555 				    ((tx_queue->label & EFX_TXQ_TYPE_HIGHPRI) ?
556 				     efx->n_tx_channels : 0));
557 }
558 
559 int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
560 		 void *type_data)
561 {
562 	struct efx_nic *efx = netdev_priv(net_dev);
563 	struct tc_mqprio_qopt *mqprio = type_data;
564 	unsigned tc, num_tc;
565 
566 	if (type != TC_SETUP_QDISC_MQPRIO)
567 		return -EOPNOTSUPP;
568 
569 	/* Only Siena supported highpri queues */
570 	if (efx_nic_rev(efx) > EFX_REV_SIENA_A0)
571 		return -EOPNOTSUPP;
572 
573 	num_tc = mqprio->num_tc;
574 
575 	if (num_tc > EFX_MAX_TX_TC)
576 		return -EINVAL;
577 
578 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
579 
580 	if (num_tc == net_dev->num_tc)
581 		return 0;
582 
583 	for (tc = 0; tc < num_tc; tc++) {
584 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
585 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
586 	}
587 
588 	net_dev->num_tc = num_tc;
589 
590 	return netif_set_real_num_tx_queues(net_dev,
591 					    max_t(int, num_tc, 1) *
592 					    efx->n_tx_channels);
593 }
594