xref: /openbmc/linux/drivers/net/ethernet/sfc/tx.c (revision 3932b9ca)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27 
28 #ifdef EFX_USE_PIO
29 
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33 
34 #endif /* EFX_USE_PIO */
35 
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38 {
39 	return tx_queue->insert_count & tx_queue->ptr_mask;
40 }
41 
42 static inline struct efx_tx_buffer *
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44 {
45 	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46 }
47 
48 static inline struct efx_tx_buffer *
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50 {
51 	struct efx_tx_buffer *buffer =
52 		__efx_tx_queue_get_insert_buffer(tx_queue);
53 
54 	EFX_BUG_ON_PARANOID(buffer->len);
55 	EFX_BUG_ON_PARANOID(buffer->flags);
56 	EFX_BUG_ON_PARANOID(buffer->unmap_len);
57 
58 	return buffer;
59 }
60 
61 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62 			       struct efx_tx_buffer *buffer,
63 			       unsigned int *pkts_compl,
64 			       unsigned int *bytes_compl)
65 {
66 	if (buffer->unmap_len) {
67 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71 					 DMA_TO_DEVICE);
72 		else
73 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74 				       DMA_TO_DEVICE);
75 		buffer->unmap_len = 0;
76 	}
77 
78 	if (buffer->flags & EFX_TX_BUF_SKB) {
79 		(*pkts_compl)++;
80 		(*bytes_compl) += buffer->skb->len;
81 		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
82 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83 			   "TX queue %d transmission id %x complete\n",
84 			   tx_queue->queue, tx_queue->read_count);
85 	} else if (buffer->flags & EFX_TX_BUF_HEAP) {
86 		kfree(buffer->heap_buf);
87 	}
88 
89 	buffer->len = 0;
90 	buffer->flags = 0;
91 }
92 
93 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94 			       struct sk_buff *skb);
95 
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98 {
99 	/* Depending on the NIC revision, we can use descriptor
100 	 * lengths up to 8K or 8K-1.  However, since PCI Express
101 	 * devices must split read requests at 4K boundaries, there is
102 	 * little benefit from using descriptors that cross those
103 	 * boundaries and we keep things simple by not doing so.
104 	 */
105 	unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106 
107 	/* Work around hardware bug for unaligned buffers. */
108 	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109 		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110 
111 	return len;
112 }
113 
114 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115 {
116 	/* Header and payload descriptor for each output segment, plus
117 	 * one for every input fragment boundary within a segment
118 	 */
119 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120 
121 	/* Possibly one more per segment for the alignment workaround,
122 	 * or for option descriptors
123 	 */
124 	if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125 		max_descs += EFX_TSO_MAX_SEGS;
126 
127 	/* Possibly more for PCIe page boundaries within input fragments */
128 	if (PAGE_SIZE > EFX_PAGE_SIZE)
129 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131 
132 	return max_descs;
133 }
134 
135 /* Get partner of a TX queue, seen as part of the same net core queue */
136 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
137 {
138 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
139 		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
140 	else
141 		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
142 }
143 
144 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
145 {
146 	/* We need to consider both queues that the net core sees as one */
147 	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
148 	struct efx_nic *efx = txq1->efx;
149 	unsigned int fill_level;
150 
151 	fill_level = max(txq1->insert_count - txq1->old_read_count,
152 			 txq2->insert_count - txq2->old_read_count);
153 	if (likely(fill_level < efx->txq_stop_thresh))
154 		return;
155 
156 	/* We used the stale old_read_count above, which gives us a
157 	 * pessimistic estimate of the fill level (which may even
158 	 * validly be >= efx->txq_entries).  Now try again using
159 	 * read_count (more likely to be a cache miss).
160 	 *
161 	 * If we read read_count and then conditionally stop the
162 	 * queue, it is possible for the completion path to race with
163 	 * us and complete all outstanding descriptors in the middle,
164 	 * after which there will be no more completions to wake it.
165 	 * Therefore we stop the queue first, then read read_count
166 	 * (with a memory barrier to ensure the ordering), then
167 	 * restart the queue if the fill level turns out to be low
168 	 * enough.
169 	 */
170 	netif_tx_stop_queue(txq1->core_txq);
171 	smp_mb();
172 	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
173 	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
174 
175 	fill_level = max(txq1->insert_count - txq1->old_read_count,
176 			 txq2->insert_count - txq2->old_read_count);
177 	EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
178 	if (likely(fill_level < efx->txq_stop_thresh)) {
179 		smp_mb();
180 		if (likely(!efx->loopback_selftest))
181 			netif_tx_start_queue(txq1->core_txq);
182 	}
183 }
184 
185 #ifdef EFX_USE_PIO
186 
187 struct efx_short_copy_buffer {
188 	int used;
189 	u8 buf[L1_CACHE_BYTES];
190 };
191 
192 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
193  * Advances piobuf pointer. Leaves additional data in the copy buffer.
194  */
195 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
196 				    u8 *data, int len,
197 				    struct efx_short_copy_buffer *copy_buf)
198 {
199 	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
200 
201 	__iowrite64_copy(*piobuf, data, block_len >> 3);
202 	*piobuf += block_len;
203 	len -= block_len;
204 
205 	if (len) {
206 		data += block_len;
207 		BUG_ON(copy_buf->used);
208 		BUG_ON(len > sizeof(copy_buf->buf));
209 		memcpy(copy_buf->buf, data, len);
210 		copy_buf->used = len;
211 	}
212 }
213 
214 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
215  * Advances piobuf pointer. Leaves additional data in the copy buffer.
216  */
217 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
218 				       u8 *data, int len,
219 				       struct efx_short_copy_buffer *copy_buf)
220 {
221 	if (copy_buf->used) {
222 		/* if the copy buffer is partially full, fill it up and write */
223 		int copy_to_buf =
224 			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
225 
226 		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
227 		copy_buf->used += copy_to_buf;
228 
229 		/* if we didn't fill it up then we're done for now */
230 		if (copy_buf->used < sizeof(copy_buf->buf))
231 			return;
232 
233 		__iowrite64_copy(*piobuf, copy_buf->buf,
234 				 sizeof(copy_buf->buf) >> 3);
235 		*piobuf += sizeof(copy_buf->buf);
236 		data += copy_to_buf;
237 		len -= copy_to_buf;
238 		copy_buf->used = 0;
239 	}
240 
241 	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
242 }
243 
244 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
245 				  struct efx_short_copy_buffer *copy_buf)
246 {
247 	/* if there's anything in it, write the whole buffer, including junk */
248 	if (copy_buf->used)
249 		__iowrite64_copy(piobuf, copy_buf->buf,
250 				 sizeof(copy_buf->buf) >> 3);
251 }
252 
253 /* Traverse skb structure and copy fragments in to PIO buffer.
254  * Advances piobuf pointer.
255  */
256 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
257 				     u8 __iomem **piobuf,
258 				     struct efx_short_copy_buffer *copy_buf)
259 {
260 	int i;
261 
262 	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
263 				copy_buf);
264 
265 	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
266 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
267 		u8 *vaddr;
268 
269 		vaddr = kmap_atomic(skb_frag_page(f));
270 
271 		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
272 					   skb_frag_size(f), copy_buf);
273 		kunmap_atomic(vaddr);
274 	}
275 
276 	EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
277 }
278 
279 static struct efx_tx_buffer *
280 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
281 {
282 	struct efx_tx_buffer *buffer =
283 		efx_tx_queue_get_insert_buffer(tx_queue);
284 	u8 __iomem *piobuf = tx_queue->piobuf;
285 
286 	/* Copy to PIO buffer. Ensure the writes are padded to the end
287 	 * of a cache line, as this is required for write-combining to be
288 	 * effective on at least x86.
289 	 */
290 
291 	if (skb_shinfo(skb)->nr_frags) {
292 		/* The size of the copy buffer will ensure all writes
293 		 * are the size of a cache line.
294 		 */
295 		struct efx_short_copy_buffer copy_buf;
296 
297 		copy_buf.used = 0;
298 
299 		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
300 					 &piobuf, &copy_buf);
301 		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
302 	} else {
303 		/* Pad the write to the size of a cache line.
304 		 * We can do this because we know the skb_shared_info sruct is
305 		 * after the source, and the destination buffer is big enough.
306 		 */
307 		BUILD_BUG_ON(L1_CACHE_BYTES >
308 			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
309 		__iowrite64_copy(tx_queue->piobuf, skb->data,
310 				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
311 	}
312 
313 	EFX_POPULATE_QWORD_5(buffer->option,
314 			     ESF_DZ_TX_DESC_IS_OPT, 1,
315 			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
316 			     ESF_DZ_TX_PIO_CONT, 0,
317 			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
318 			     ESF_DZ_TX_PIO_BUF_ADDR,
319 			     tx_queue->piobuf_offset);
320 	++tx_queue->pio_packets;
321 	++tx_queue->insert_count;
322 	return buffer;
323 }
324 #endif /* EFX_USE_PIO */
325 
326 /*
327  * Add a socket buffer to a TX queue
328  *
329  * This maps all fragments of a socket buffer for DMA and adds them to
330  * the TX queue.  The queue's insert pointer will be incremented by
331  * the number of fragments in the socket buffer.
332  *
333  * If any DMA mapping fails, any mapped fragments will be unmapped,
334  * the queue's insert pointer will be restored to its original value.
335  *
336  * This function is split out from efx_hard_start_xmit to allow the
337  * loopback test to direct packets via specific TX queues.
338  *
339  * Returns NETDEV_TX_OK.
340  * You must hold netif_tx_lock() to call this function.
341  */
342 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
343 {
344 	struct efx_nic *efx = tx_queue->efx;
345 	struct device *dma_dev = &efx->pci_dev->dev;
346 	struct efx_tx_buffer *buffer;
347 	skb_frag_t *fragment;
348 	unsigned int len, unmap_len = 0;
349 	dma_addr_t dma_addr, unmap_addr = 0;
350 	unsigned int dma_len;
351 	unsigned short dma_flags;
352 	int i = 0;
353 
354 	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
355 
356 	if (skb_shinfo(skb)->gso_size)
357 		return efx_enqueue_skb_tso(tx_queue, skb);
358 
359 	/* Get size of the initial fragment */
360 	len = skb_headlen(skb);
361 
362 	/* Pad if necessary */
363 	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
364 		EFX_BUG_ON_PARANOID(skb->data_len);
365 		len = 32 + 1;
366 		if (skb_pad(skb, len - skb->len))
367 			return NETDEV_TX_OK;
368 	}
369 
370 	/* Consider using PIO for short packets */
371 #ifdef EFX_USE_PIO
372 	if (skb->len <= efx_piobuf_size && tx_queue->piobuf &&
373 	    efx_nic_tx_is_empty(tx_queue) &&
374 	    efx_nic_tx_is_empty(efx_tx_queue_partner(tx_queue))) {
375 		buffer = efx_enqueue_skb_pio(tx_queue, skb);
376 		dma_flags = EFX_TX_BUF_OPTION;
377 		goto finish_packet;
378 	}
379 #endif
380 
381 	/* Map for DMA.  Use dma_map_single rather than dma_map_page
382 	 * since this is more efficient on machines with sparse
383 	 * memory.
384 	 */
385 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
386 	dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
387 
388 	/* Process all fragments */
389 	while (1) {
390 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
391 			goto dma_err;
392 
393 		/* Store fields for marking in the per-fragment final
394 		 * descriptor */
395 		unmap_len = len;
396 		unmap_addr = dma_addr;
397 
398 		/* Add to TX queue, splitting across DMA boundaries */
399 		do {
400 			buffer = efx_tx_queue_get_insert_buffer(tx_queue);
401 
402 			dma_len = efx_max_tx_len(efx, dma_addr);
403 			if (likely(dma_len >= len))
404 				dma_len = len;
405 
406 			/* Fill out per descriptor fields */
407 			buffer->len = dma_len;
408 			buffer->dma_addr = dma_addr;
409 			buffer->flags = EFX_TX_BUF_CONT;
410 			len -= dma_len;
411 			dma_addr += dma_len;
412 			++tx_queue->insert_count;
413 		} while (len);
414 
415 		/* Transfer ownership of the unmapping to the final buffer */
416 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
417 		buffer->unmap_len = unmap_len;
418 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
419 		unmap_len = 0;
420 
421 		/* Get address and size of next fragment */
422 		if (i >= skb_shinfo(skb)->nr_frags)
423 			break;
424 		fragment = &skb_shinfo(skb)->frags[i];
425 		len = skb_frag_size(fragment);
426 		i++;
427 		/* Map for DMA */
428 		dma_flags = 0;
429 		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
430 					    DMA_TO_DEVICE);
431 	}
432 
433 	/* Transfer ownership of the skb to the final buffer */
434 #ifdef EFX_USE_PIO
435 finish_packet:
436 #endif
437 	buffer->skb = skb;
438 	buffer->flags = EFX_TX_BUF_SKB | dma_flags;
439 
440 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
441 
442 	/* Pass off to hardware */
443 	efx_nic_push_buffers(tx_queue);
444 
445 	tx_queue->tx_packets++;
446 
447 	efx_tx_maybe_stop_queue(tx_queue);
448 
449 	return NETDEV_TX_OK;
450 
451  dma_err:
452 	netif_err(efx, tx_err, efx->net_dev,
453 		  " TX queue %d could not map skb with %d bytes %d "
454 		  "fragments for DMA\n", tx_queue->queue, skb->len,
455 		  skb_shinfo(skb)->nr_frags + 1);
456 
457 	/* Mark the packet as transmitted, and free the SKB ourselves */
458 	dev_kfree_skb_any(skb);
459 
460 	/* Work backwards until we hit the original insert pointer value */
461 	while (tx_queue->insert_count != tx_queue->write_count) {
462 		unsigned int pkts_compl = 0, bytes_compl = 0;
463 		--tx_queue->insert_count;
464 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
465 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
466 	}
467 
468 	/* Free the fragment we were mid-way through pushing */
469 	if (unmap_len) {
470 		if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
471 			dma_unmap_single(dma_dev, unmap_addr, unmap_len,
472 					 DMA_TO_DEVICE);
473 		else
474 			dma_unmap_page(dma_dev, unmap_addr, unmap_len,
475 				       DMA_TO_DEVICE);
476 	}
477 
478 	return NETDEV_TX_OK;
479 }
480 
481 /* Remove packets from the TX queue
482  *
483  * This removes packets from the TX queue, up to and including the
484  * specified index.
485  */
486 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
487 				unsigned int index,
488 				unsigned int *pkts_compl,
489 				unsigned int *bytes_compl)
490 {
491 	struct efx_nic *efx = tx_queue->efx;
492 	unsigned int stop_index, read_ptr;
493 
494 	stop_index = (index + 1) & tx_queue->ptr_mask;
495 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
496 
497 	while (read_ptr != stop_index) {
498 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
499 
500 		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
501 		    unlikely(buffer->len == 0)) {
502 			netif_err(efx, tx_err, efx->net_dev,
503 				  "TX queue %d spurious TX completion id %x\n",
504 				  tx_queue->queue, read_ptr);
505 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
506 			return;
507 		}
508 
509 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
510 
511 		++tx_queue->read_count;
512 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
513 	}
514 }
515 
516 /* Initiate a packet transmission.  We use one channel per CPU
517  * (sharing when we have more CPUs than channels).  On Falcon, the TX
518  * completion events will be directed back to the CPU that transmitted
519  * the packet, which should be cache-efficient.
520  *
521  * Context: non-blocking.
522  * Note that returning anything other than NETDEV_TX_OK will cause the
523  * OS to free the skb.
524  */
525 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
526 				struct net_device *net_dev)
527 {
528 	struct efx_nic *efx = netdev_priv(net_dev);
529 	struct efx_tx_queue *tx_queue;
530 	unsigned index, type;
531 
532 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
533 
534 	/* PTP "event" packet */
535 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
536 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
537 		return efx_ptp_tx(efx, skb);
538 	}
539 
540 	index = skb_get_queue_mapping(skb);
541 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
542 	if (index >= efx->n_tx_channels) {
543 		index -= efx->n_tx_channels;
544 		type |= EFX_TXQ_TYPE_HIGHPRI;
545 	}
546 	tx_queue = efx_get_tx_queue(efx, index, type);
547 
548 	return efx_enqueue_skb(tx_queue, skb);
549 }
550 
551 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
552 {
553 	struct efx_nic *efx = tx_queue->efx;
554 
555 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
556 	tx_queue->core_txq =
557 		netdev_get_tx_queue(efx->net_dev,
558 				    tx_queue->queue / EFX_TXQ_TYPES +
559 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
560 				     efx->n_tx_channels : 0));
561 }
562 
563 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
564 {
565 	struct efx_nic *efx = netdev_priv(net_dev);
566 	struct efx_channel *channel;
567 	struct efx_tx_queue *tx_queue;
568 	unsigned tc;
569 	int rc;
570 
571 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
572 		return -EINVAL;
573 
574 	if (num_tc == net_dev->num_tc)
575 		return 0;
576 
577 	for (tc = 0; tc < num_tc; tc++) {
578 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
579 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
580 	}
581 
582 	if (num_tc > net_dev->num_tc) {
583 		/* Initialise high-priority queues as necessary */
584 		efx_for_each_channel(channel, efx) {
585 			efx_for_each_possible_channel_tx_queue(tx_queue,
586 							       channel) {
587 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
588 					continue;
589 				if (!tx_queue->buffer) {
590 					rc = efx_probe_tx_queue(tx_queue);
591 					if (rc)
592 						return rc;
593 				}
594 				if (!tx_queue->initialised)
595 					efx_init_tx_queue(tx_queue);
596 				efx_init_tx_queue_core_txq(tx_queue);
597 			}
598 		}
599 	} else {
600 		/* Reduce number of classes before number of queues */
601 		net_dev->num_tc = num_tc;
602 	}
603 
604 	rc = netif_set_real_num_tx_queues(net_dev,
605 					  max_t(int, num_tc, 1) *
606 					  efx->n_tx_channels);
607 	if (rc)
608 		return rc;
609 
610 	/* Do not destroy high-priority queues when they become
611 	 * unused.  We would have to flush them first, and it is
612 	 * fairly difficult to flush a subset of TX queues.  Leave
613 	 * it to efx_fini_channels().
614 	 */
615 
616 	net_dev->num_tc = num_tc;
617 	return 0;
618 }
619 
620 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
621 {
622 	unsigned fill_level;
623 	struct efx_nic *efx = tx_queue->efx;
624 	struct efx_tx_queue *txq2;
625 	unsigned int pkts_compl = 0, bytes_compl = 0;
626 
627 	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
628 
629 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
630 	netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
631 
632 	if (pkts_compl > 1)
633 		++tx_queue->merge_events;
634 
635 	/* See if we need to restart the netif queue.  This memory
636 	 * barrier ensures that we write read_count (inside
637 	 * efx_dequeue_buffers()) before reading the queue status.
638 	 */
639 	smp_mb();
640 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
641 	    likely(efx->port_enabled) &&
642 	    likely(netif_device_present(efx->net_dev))) {
643 		txq2 = efx_tx_queue_partner(tx_queue);
644 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
645 				 txq2->insert_count - txq2->read_count);
646 		if (fill_level <= efx->txq_wake_thresh)
647 			netif_tx_wake_queue(tx_queue->core_txq);
648 	}
649 
650 	/* Check whether the hardware queue is now empty */
651 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
652 		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
653 		if (tx_queue->read_count == tx_queue->old_write_count) {
654 			smp_mb();
655 			tx_queue->empty_read_count =
656 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
657 		}
658 	}
659 }
660 
661 /* Size of page-based TSO header buffers.  Larger blocks must be
662  * allocated from the heap.
663  */
664 #define TSOH_STD_SIZE	128
665 #define TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
666 
667 /* At most half the descriptors in the queue at any time will refer to
668  * a TSO header buffer, since they must always be followed by a
669  * payload descriptor referring to an skb.
670  */
671 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
672 {
673 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
674 }
675 
676 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
677 {
678 	struct efx_nic *efx = tx_queue->efx;
679 	unsigned int entries;
680 	int rc;
681 
682 	/* Create the smallest power-of-two aligned ring */
683 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
684 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
685 	tx_queue->ptr_mask = entries - 1;
686 
687 	netif_dbg(efx, probe, efx->net_dev,
688 		  "creating TX queue %d size %#x mask %#x\n",
689 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
690 
691 	/* Allocate software ring */
692 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
693 				   GFP_KERNEL);
694 	if (!tx_queue->buffer)
695 		return -ENOMEM;
696 
697 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
698 		tx_queue->tsoh_page =
699 			kcalloc(efx_tsoh_page_count(tx_queue),
700 				sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
701 		if (!tx_queue->tsoh_page) {
702 			rc = -ENOMEM;
703 			goto fail1;
704 		}
705 	}
706 
707 	/* Allocate hardware ring */
708 	rc = efx_nic_probe_tx(tx_queue);
709 	if (rc)
710 		goto fail2;
711 
712 	return 0;
713 
714 fail2:
715 	kfree(tx_queue->tsoh_page);
716 	tx_queue->tsoh_page = NULL;
717 fail1:
718 	kfree(tx_queue->buffer);
719 	tx_queue->buffer = NULL;
720 	return rc;
721 }
722 
723 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
724 {
725 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
726 		  "initialising TX queue %d\n", tx_queue->queue);
727 
728 	tx_queue->insert_count = 0;
729 	tx_queue->write_count = 0;
730 	tx_queue->old_write_count = 0;
731 	tx_queue->read_count = 0;
732 	tx_queue->old_read_count = 0;
733 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
734 
735 	/* Set up TX descriptor ring */
736 	efx_nic_init_tx(tx_queue);
737 
738 	tx_queue->initialised = true;
739 }
740 
741 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
742 {
743 	struct efx_tx_buffer *buffer;
744 
745 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
746 		  "shutting down TX queue %d\n", tx_queue->queue);
747 
748 	if (!tx_queue->buffer)
749 		return;
750 
751 	/* Free any buffers left in the ring */
752 	while (tx_queue->read_count != tx_queue->write_count) {
753 		unsigned int pkts_compl = 0, bytes_compl = 0;
754 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
755 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
756 
757 		++tx_queue->read_count;
758 	}
759 	netdev_tx_reset_queue(tx_queue->core_txq);
760 }
761 
762 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
763 {
764 	int i;
765 
766 	if (!tx_queue->buffer)
767 		return;
768 
769 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
770 		  "destroying TX queue %d\n", tx_queue->queue);
771 	efx_nic_remove_tx(tx_queue);
772 
773 	if (tx_queue->tsoh_page) {
774 		for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
775 			efx_nic_free_buffer(tx_queue->efx,
776 					    &tx_queue->tsoh_page[i]);
777 		kfree(tx_queue->tsoh_page);
778 		tx_queue->tsoh_page = NULL;
779 	}
780 
781 	kfree(tx_queue->buffer);
782 	tx_queue->buffer = NULL;
783 }
784 
785 
786 /* Efx TCP segmentation acceleration.
787  *
788  * Why?  Because by doing it here in the driver we can go significantly
789  * faster than the GSO.
790  *
791  * Requires TX checksum offload support.
792  */
793 
794 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
795 
796 /**
797  * struct tso_state - TSO state for an SKB
798  * @out_len: Remaining length in current segment
799  * @seqnum: Current sequence number
800  * @ipv4_id: Current IPv4 ID, host endian
801  * @packet_space: Remaining space in current packet
802  * @dma_addr: DMA address of current position
803  * @in_len: Remaining length in current SKB fragment
804  * @unmap_len: Length of SKB fragment
805  * @unmap_addr: DMA address of SKB fragment
806  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
807  * @protocol: Network protocol (after any VLAN header)
808  * @ip_off: Offset of IP header
809  * @tcp_off: Offset of TCP header
810  * @header_len: Number of bytes of header
811  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
812  * @header_dma_addr: Header DMA address, when using option descriptors
813  * @header_unmap_len: Header DMA mapped length, or 0 if not using option
814  *	descriptors
815  *
816  * The state used during segmentation.  It is put into this data structure
817  * just to make it easy to pass into inline functions.
818  */
819 struct tso_state {
820 	/* Output position */
821 	unsigned out_len;
822 	unsigned seqnum;
823 	u16 ipv4_id;
824 	unsigned packet_space;
825 
826 	/* Input position */
827 	dma_addr_t dma_addr;
828 	unsigned in_len;
829 	unsigned unmap_len;
830 	dma_addr_t unmap_addr;
831 	unsigned short dma_flags;
832 
833 	__be16 protocol;
834 	unsigned int ip_off;
835 	unsigned int tcp_off;
836 	unsigned header_len;
837 	unsigned int ip_base_len;
838 	dma_addr_t header_dma_addr;
839 	unsigned int header_unmap_len;
840 };
841 
842 
843 /*
844  * Verify that our various assumptions about sk_buffs and the conditions
845  * under which TSO will be attempted hold true.  Return the protocol number.
846  */
847 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
848 {
849 	__be16 protocol = skb->protocol;
850 
851 	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
852 			    protocol);
853 	if (protocol == htons(ETH_P_8021Q)) {
854 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
855 		protocol = veh->h_vlan_encapsulated_proto;
856 	}
857 
858 	if (protocol == htons(ETH_P_IP)) {
859 		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
860 	} else {
861 		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
862 		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
863 	}
864 	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
865 			     + (tcp_hdr(skb)->doff << 2u)) >
866 			    skb_headlen(skb));
867 
868 	return protocol;
869 }
870 
871 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
872 			       struct efx_tx_buffer *buffer, unsigned int len)
873 {
874 	u8 *result;
875 
876 	EFX_BUG_ON_PARANOID(buffer->len);
877 	EFX_BUG_ON_PARANOID(buffer->flags);
878 	EFX_BUG_ON_PARANOID(buffer->unmap_len);
879 
880 	if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
881 		unsigned index =
882 			(tx_queue->insert_count & tx_queue->ptr_mask) / 2;
883 		struct efx_buffer *page_buf =
884 			&tx_queue->tsoh_page[index / TSOH_PER_PAGE];
885 		unsigned offset =
886 			TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
887 
888 		if (unlikely(!page_buf->addr) &&
889 		    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
890 					 GFP_ATOMIC))
891 			return NULL;
892 
893 		result = (u8 *)page_buf->addr + offset;
894 		buffer->dma_addr = page_buf->dma_addr + offset;
895 		buffer->flags = EFX_TX_BUF_CONT;
896 	} else {
897 		tx_queue->tso_long_headers++;
898 
899 		buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
900 		if (unlikely(!buffer->heap_buf))
901 			return NULL;
902 		result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
903 		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
904 	}
905 
906 	buffer->len = len;
907 
908 	return result;
909 }
910 
911 /**
912  * efx_tx_queue_insert - push descriptors onto the TX queue
913  * @tx_queue:		Efx TX queue
914  * @dma_addr:		DMA address of fragment
915  * @len:		Length of fragment
916  * @final_buffer:	The final buffer inserted into the queue
917  *
918  * Push descriptors onto the TX queue.
919  */
920 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
921 				dma_addr_t dma_addr, unsigned len,
922 				struct efx_tx_buffer **final_buffer)
923 {
924 	struct efx_tx_buffer *buffer;
925 	struct efx_nic *efx = tx_queue->efx;
926 	unsigned dma_len;
927 
928 	EFX_BUG_ON_PARANOID(len <= 0);
929 
930 	while (1) {
931 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
932 		++tx_queue->insert_count;
933 
934 		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
935 				    tx_queue->read_count >=
936 				    efx->txq_entries);
937 
938 		buffer->dma_addr = dma_addr;
939 
940 		dma_len = efx_max_tx_len(efx, dma_addr);
941 
942 		/* If there is enough space to send then do so */
943 		if (dma_len >= len)
944 			break;
945 
946 		buffer->len = dma_len;
947 		buffer->flags = EFX_TX_BUF_CONT;
948 		dma_addr += dma_len;
949 		len -= dma_len;
950 	}
951 
952 	EFX_BUG_ON_PARANOID(!len);
953 	buffer->len = len;
954 	*final_buffer = buffer;
955 }
956 
957 
958 /*
959  * Put a TSO header into the TX queue.
960  *
961  * This is special-cased because we know that it is small enough to fit in
962  * a single fragment, and we know it doesn't cross a page boundary.  It
963  * also allows us to not worry about end-of-packet etc.
964  */
965 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
966 			      struct efx_tx_buffer *buffer, u8 *header)
967 {
968 	if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
969 		buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
970 						  header, buffer->len,
971 						  DMA_TO_DEVICE);
972 		if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
973 					       buffer->dma_addr))) {
974 			kfree(buffer->heap_buf);
975 			buffer->len = 0;
976 			buffer->flags = 0;
977 			return -ENOMEM;
978 		}
979 		buffer->unmap_len = buffer->len;
980 		buffer->dma_offset = 0;
981 		buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
982 	}
983 
984 	++tx_queue->insert_count;
985 	return 0;
986 }
987 
988 
989 /* Remove buffers put into a tx_queue.  None of the buffers must have
990  * an skb attached.
991  */
992 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
993 {
994 	struct efx_tx_buffer *buffer;
995 
996 	/* Work backwards until we hit the original insert pointer value */
997 	while (tx_queue->insert_count != tx_queue->write_count) {
998 		--tx_queue->insert_count;
999 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1000 		efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1001 	}
1002 }
1003 
1004 
1005 /* Parse the SKB header and initialise state. */
1006 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1007 		     const struct sk_buff *skb)
1008 {
1009 	bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1010 	struct device *dma_dev = &efx->pci_dev->dev;
1011 	unsigned int header_len, in_len;
1012 	dma_addr_t dma_addr;
1013 
1014 	st->ip_off = skb_network_header(skb) - skb->data;
1015 	st->tcp_off = skb_transport_header(skb) - skb->data;
1016 	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1017 	in_len = skb_headlen(skb) - header_len;
1018 	st->header_len = header_len;
1019 	st->in_len = in_len;
1020 	if (st->protocol == htons(ETH_P_IP)) {
1021 		st->ip_base_len = st->header_len - st->ip_off;
1022 		st->ipv4_id = ntohs(ip_hdr(skb)->id);
1023 	} else {
1024 		st->ip_base_len = st->header_len - st->tcp_off;
1025 		st->ipv4_id = 0;
1026 	}
1027 	st->seqnum = ntohl(tcp_hdr(skb)->seq);
1028 
1029 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1030 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1031 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1032 
1033 	st->out_len = skb->len - header_len;
1034 
1035 	if (!use_opt_desc) {
1036 		st->header_unmap_len = 0;
1037 
1038 		if (likely(in_len == 0)) {
1039 			st->dma_flags = 0;
1040 			st->unmap_len = 0;
1041 			return 0;
1042 		}
1043 
1044 		dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1045 					  in_len, DMA_TO_DEVICE);
1046 		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1047 		st->dma_addr = dma_addr;
1048 		st->unmap_addr = dma_addr;
1049 		st->unmap_len = in_len;
1050 	} else {
1051 		dma_addr = dma_map_single(dma_dev, skb->data,
1052 					  skb_headlen(skb), DMA_TO_DEVICE);
1053 		st->header_dma_addr = dma_addr;
1054 		st->header_unmap_len = skb_headlen(skb);
1055 		st->dma_flags = 0;
1056 		st->dma_addr = dma_addr + header_len;
1057 		st->unmap_len = 0;
1058 	}
1059 
1060 	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1061 }
1062 
1063 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1064 			    skb_frag_t *frag)
1065 {
1066 	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1067 					  skb_frag_size(frag), DMA_TO_DEVICE);
1068 	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1069 		st->dma_flags = 0;
1070 		st->unmap_len = skb_frag_size(frag);
1071 		st->in_len = skb_frag_size(frag);
1072 		st->dma_addr = st->unmap_addr;
1073 		return 0;
1074 	}
1075 	return -ENOMEM;
1076 }
1077 
1078 
1079 /**
1080  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1081  * @tx_queue:		Efx TX queue
1082  * @skb:		Socket buffer
1083  * @st:			TSO state
1084  *
1085  * Form descriptors for the current fragment, until we reach the end
1086  * of fragment or end-of-packet.
1087  */
1088 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1089 					  const struct sk_buff *skb,
1090 					  struct tso_state *st)
1091 {
1092 	struct efx_tx_buffer *buffer;
1093 	int n;
1094 
1095 	if (st->in_len == 0)
1096 		return;
1097 	if (st->packet_space == 0)
1098 		return;
1099 
1100 	EFX_BUG_ON_PARANOID(st->in_len <= 0);
1101 	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1102 
1103 	n = min(st->in_len, st->packet_space);
1104 
1105 	st->packet_space -= n;
1106 	st->out_len -= n;
1107 	st->in_len -= n;
1108 
1109 	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1110 
1111 	if (st->out_len == 0) {
1112 		/* Transfer ownership of the skb */
1113 		buffer->skb = skb;
1114 		buffer->flags = EFX_TX_BUF_SKB;
1115 	} else if (st->packet_space != 0) {
1116 		buffer->flags = EFX_TX_BUF_CONT;
1117 	}
1118 
1119 	if (st->in_len == 0) {
1120 		/* Transfer ownership of the DMA mapping */
1121 		buffer->unmap_len = st->unmap_len;
1122 		buffer->dma_offset = buffer->unmap_len - buffer->len;
1123 		buffer->flags |= st->dma_flags;
1124 		st->unmap_len = 0;
1125 	}
1126 
1127 	st->dma_addr += n;
1128 }
1129 
1130 
1131 /**
1132  * tso_start_new_packet - generate a new header and prepare for the new packet
1133  * @tx_queue:		Efx TX queue
1134  * @skb:		Socket buffer
1135  * @st:			TSO state
1136  *
1137  * Generate a new header and prepare for the new packet.  Return 0 on
1138  * success, or -%ENOMEM if failed to alloc header.
1139  */
1140 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1141 				const struct sk_buff *skb,
1142 				struct tso_state *st)
1143 {
1144 	struct efx_tx_buffer *buffer =
1145 		efx_tx_queue_get_insert_buffer(tx_queue);
1146 	bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1147 	u8 tcp_flags_clear;
1148 
1149 	if (!is_last) {
1150 		st->packet_space = skb_shinfo(skb)->gso_size;
1151 		tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1152 	} else {
1153 		st->packet_space = st->out_len;
1154 		tcp_flags_clear = 0x00;
1155 	}
1156 
1157 	if (!st->header_unmap_len) {
1158 		/* Allocate and insert a DMA-mapped header buffer. */
1159 		struct tcphdr *tsoh_th;
1160 		unsigned ip_length;
1161 		u8 *header;
1162 		int rc;
1163 
1164 		header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1165 		if (!header)
1166 			return -ENOMEM;
1167 
1168 		tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1169 
1170 		/* Copy and update the headers. */
1171 		memcpy(header, skb->data, st->header_len);
1172 
1173 		tsoh_th->seq = htonl(st->seqnum);
1174 		((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1175 
1176 		ip_length = st->ip_base_len + st->packet_space;
1177 
1178 		if (st->protocol == htons(ETH_P_IP)) {
1179 			struct iphdr *tsoh_iph =
1180 				(struct iphdr *)(header + st->ip_off);
1181 
1182 			tsoh_iph->tot_len = htons(ip_length);
1183 			tsoh_iph->id = htons(st->ipv4_id);
1184 		} else {
1185 			struct ipv6hdr *tsoh_iph =
1186 				(struct ipv6hdr *)(header + st->ip_off);
1187 
1188 			tsoh_iph->payload_len = htons(ip_length);
1189 		}
1190 
1191 		rc = efx_tso_put_header(tx_queue, buffer, header);
1192 		if (unlikely(rc))
1193 			return rc;
1194 	} else {
1195 		/* Send the original headers with a TSO option descriptor
1196 		 * in front
1197 		 */
1198 		u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1199 
1200 		buffer->flags = EFX_TX_BUF_OPTION;
1201 		buffer->len = 0;
1202 		buffer->unmap_len = 0;
1203 		EFX_POPULATE_QWORD_5(buffer->option,
1204 				     ESF_DZ_TX_DESC_IS_OPT, 1,
1205 				     ESF_DZ_TX_OPTION_TYPE,
1206 				     ESE_DZ_TX_OPTION_DESC_TSO,
1207 				     ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1208 				     ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1209 				     ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1210 		++tx_queue->insert_count;
1211 
1212 		/* We mapped the headers in tso_start().  Unmap them
1213 		 * when the last segment is completed.
1214 		 */
1215 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1216 		buffer->dma_addr = st->header_dma_addr;
1217 		buffer->len = st->header_len;
1218 		if (is_last) {
1219 			buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1220 			buffer->unmap_len = st->header_unmap_len;
1221 			buffer->dma_offset = 0;
1222 			/* Ensure we only unmap them once in case of a
1223 			 * later DMA mapping error and rollback
1224 			 */
1225 			st->header_unmap_len = 0;
1226 		} else {
1227 			buffer->flags = EFX_TX_BUF_CONT;
1228 			buffer->unmap_len = 0;
1229 		}
1230 		++tx_queue->insert_count;
1231 	}
1232 
1233 	st->seqnum += skb_shinfo(skb)->gso_size;
1234 
1235 	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
1236 	++st->ipv4_id;
1237 
1238 	++tx_queue->tso_packets;
1239 
1240 	++tx_queue->tx_packets;
1241 
1242 	return 0;
1243 }
1244 
1245 
1246 /**
1247  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1248  * @tx_queue:		Efx TX queue
1249  * @skb:		Socket buffer
1250  *
1251  * Context: You must hold netif_tx_lock() to call this function.
1252  *
1253  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1254  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1255  * %NETDEV_TX_OK.
1256  */
1257 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1258 			       struct sk_buff *skb)
1259 {
1260 	struct efx_nic *efx = tx_queue->efx;
1261 	int frag_i, rc;
1262 	struct tso_state state;
1263 
1264 	/* Find the packet protocol and sanity-check it */
1265 	state.protocol = efx_tso_check_protocol(skb);
1266 
1267 	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1268 
1269 	rc = tso_start(&state, efx, skb);
1270 	if (rc)
1271 		goto mem_err;
1272 
1273 	if (likely(state.in_len == 0)) {
1274 		/* Grab the first payload fragment. */
1275 		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1276 		frag_i = 0;
1277 		rc = tso_get_fragment(&state, efx,
1278 				      skb_shinfo(skb)->frags + frag_i);
1279 		if (rc)
1280 			goto mem_err;
1281 	} else {
1282 		/* Payload starts in the header area. */
1283 		frag_i = -1;
1284 	}
1285 
1286 	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1287 		goto mem_err;
1288 
1289 	while (1) {
1290 		tso_fill_packet_with_fragment(tx_queue, skb, &state);
1291 
1292 		/* Move onto the next fragment? */
1293 		if (state.in_len == 0) {
1294 			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1295 				/* End of payload reached. */
1296 				break;
1297 			rc = tso_get_fragment(&state, efx,
1298 					      skb_shinfo(skb)->frags + frag_i);
1299 			if (rc)
1300 				goto mem_err;
1301 		}
1302 
1303 		/* Start at new packet? */
1304 		if (state.packet_space == 0 &&
1305 		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1306 			goto mem_err;
1307 	}
1308 
1309 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1310 
1311 	/* Pass off to hardware */
1312 	efx_nic_push_buffers(tx_queue);
1313 
1314 	efx_tx_maybe_stop_queue(tx_queue);
1315 
1316 	tx_queue->tso_bursts++;
1317 	return NETDEV_TX_OK;
1318 
1319  mem_err:
1320 	netif_err(efx, tx_err, efx->net_dev,
1321 		  "Out of memory for TSO headers, or DMA mapping error\n");
1322 	dev_kfree_skb_any(skb);
1323 
1324 	/* Free the DMA mapping we were in the process of writing out */
1325 	if (state.unmap_len) {
1326 		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1327 			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1328 					 state.unmap_len, DMA_TO_DEVICE);
1329 		else
1330 			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1331 				       state.unmap_len, DMA_TO_DEVICE);
1332 	}
1333 
1334 	/* Free the header DMA mapping, if using option descriptors */
1335 	if (state.header_unmap_len)
1336 		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1337 				 state.header_unmap_len, DMA_TO_DEVICE);
1338 
1339 	efx_enqueue_unwind(tx_queue);
1340 	return NETDEV_TX_OK;
1341 }
1342