xref: /openbmc/linux/drivers/net/ethernet/sfc/tx.c (revision 110e6f26)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27 
28 #ifdef EFX_USE_PIO
29 
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33 
34 #endif /* EFX_USE_PIO */
35 
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38 {
39 	return tx_queue->insert_count & tx_queue->ptr_mask;
40 }
41 
42 static inline struct efx_tx_buffer *
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44 {
45 	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46 }
47 
48 static inline struct efx_tx_buffer *
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50 {
51 	struct efx_tx_buffer *buffer =
52 		__efx_tx_queue_get_insert_buffer(tx_queue);
53 
54 	EFX_BUG_ON_PARANOID(buffer->len);
55 	EFX_BUG_ON_PARANOID(buffer->flags);
56 	EFX_BUG_ON_PARANOID(buffer->unmap_len);
57 
58 	return buffer;
59 }
60 
61 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62 			       struct efx_tx_buffer *buffer,
63 			       unsigned int *pkts_compl,
64 			       unsigned int *bytes_compl)
65 {
66 	if (buffer->unmap_len) {
67 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71 					 DMA_TO_DEVICE);
72 		else
73 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74 				       DMA_TO_DEVICE);
75 		buffer->unmap_len = 0;
76 	}
77 
78 	if (buffer->flags & EFX_TX_BUF_SKB) {
79 		(*pkts_compl)++;
80 		(*bytes_compl) += buffer->skb->len;
81 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
82 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83 			   "TX queue %d transmission id %x complete\n",
84 			   tx_queue->queue, tx_queue->read_count);
85 	} else if (buffer->flags & EFX_TX_BUF_HEAP) {
86 		kfree(buffer->heap_buf);
87 	}
88 
89 	buffer->len = 0;
90 	buffer->flags = 0;
91 }
92 
93 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94 			       struct sk_buff *skb);
95 
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98 {
99 	/* Depending on the NIC revision, we can use descriptor
100 	 * lengths up to 8K or 8K-1.  However, since PCI Express
101 	 * devices must split read requests at 4K boundaries, there is
102 	 * little benefit from using descriptors that cross those
103 	 * boundaries and we keep things simple by not doing so.
104 	 */
105 	unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106 
107 	/* Work around hardware bug for unaligned buffers. */
108 	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109 		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110 
111 	return len;
112 }
113 
114 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115 {
116 	/* Header and payload descriptor for each output segment, plus
117 	 * one for every input fragment boundary within a segment
118 	 */
119 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120 
121 	/* Possibly one more per segment for the alignment workaround,
122 	 * or for option descriptors
123 	 */
124 	if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125 		max_descs += EFX_TSO_MAX_SEGS;
126 
127 	/* Possibly more for PCIe page boundaries within input fragments */
128 	if (PAGE_SIZE > EFX_PAGE_SIZE)
129 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131 
132 	return max_descs;
133 }
134 
135 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
136 {
137 	/* We need to consider both queues that the net core sees as one */
138 	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
139 	struct efx_nic *efx = txq1->efx;
140 	unsigned int fill_level;
141 
142 	fill_level = max(txq1->insert_count - txq1->old_read_count,
143 			 txq2->insert_count - txq2->old_read_count);
144 	if (likely(fill_level < efx->txq_stop_thresh))
145 		return;
146 
147 	/* We used the stale old_read_count above, which gives us a
148 	 * pessimistic estimate of the fill level (which may even
149 	 * validly be >= efx->txq_entries).  Now try again using
150 	 * read_count (more likely to be a cache miss).
151 	 *
152 	 * If we read read_count and then conditionally stop the
153 	 * queue, it is possible for the completion path to race with
154 	 * us and complete all outstanding descriptors in the middle,
155 	 * after which there will be no more completions to wake it.
156 	 * Therefore we stop the queue first, then read read_count
157 	 * (with a memory barrier to ensure the ordering), then
158 	 * restart the queue if the fill level turns out to be low
159 	 * enough.
160 	 */
161 	netif_tx_stop_queue(txq1->core_txq);
162 	smp_mb();
163 	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
164 	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
165 
166 	fill_level = max(txq1->insert_count - txq1->old_read_count,
167 			 txq2->insert_count - txq2->old_read_count);
168 	EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
169 	if (likely(fill_level < efx->txq_stop_thresh)) {
170 		smp_mb();
171 		if (likely(!efx->loopback_selftest))
172 			netif_tx_start_queue(txq1->core_txq);
173 	}
174 }
175 
176 #ifdef EFX_USE_PIO
177 
178 struct efx_short_copy_buffer {
179 	int used;
180 	u8 buf[L1_CACHE_BYTES];
181 };
182 
183 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
184  * Advances piobuf pointer. Leaves additional data in the copy buffer.
185  */
186 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
187 				    u8 *data, int len,
188 				    struct efx_short_copy_buffer *copy_buf)
189 {
190 	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
191 
192 	__iowrite64_copy(*piobuf, data, block_len >> 3);
193 	*piobuf += block_len;
194 	len -= block_len;
195 
196 	if (len) {
197 		data += block_len;
198 		BUG_ON(copy_buf->used);
199 		BUG_ON(len > sizeof(copy_buf->buf));
200 		memcpy(copy_buf->buf, data, len);
201 		copy_buf->used = len;
202 	}
203 }
204 
205 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
206  * Advances piobuf pointer. Leaves additional data in the copy buffer.
207  */
208 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
209 				       u8 *data, int len,
210 				       struct efx_short_copy_buffer *copy_buf)
211 {
212 	if (copy_buf->used) {
213 		/* if the copy buffer is partially full, fill it up and write */
214 		int copy_to_buf =
215 			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
216 
217 		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
218 		copy_buf->used += copy_to_buf;
219 
220 		/* if we didn't fill it up then we're done for now */
221 		if (copy_buf->used < sizeof(copy_buf->buf))
222 			return;
223 
224 		__iowrite64_copy(*piobuf, copy_buf->buf,
225 				 sizeof(copy_buf->buf) >> 3);
226 		*piobuf += sizeof(copy_buf->buf);
227 		data += copy_to_buf;
228 		len -= copy_to_buf;
229 		copy_buf->used = 0;
230 	}
231 
232 	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
233 }
234 
235 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
236 				  struct efx_short_copy_buffer *copy_buf)
237 {
238 	/* if there's anything in it, write the whole buffer, including junk */
239 	if (copy_buf->used)
240 		__iowrite64_copy(piobuf, copy_buf->buf,
241 				 sizeof(copy_buf->buf) >> 3);
242 }
243 
244 /* Traverse skb structure and copy fragments in to PIO buffer.
245  * Advances piobuf pointer.
246  */
247 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
248 				     u8 __iomem **piobuf,
249 				     struct efx_short_copy_buffer *copy_buf)
250 {
251 	int i;
252 
253 	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
254 				copy_buf);
255 
256 	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
257 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
258 		u8 *vaddr;
259 
260 		vaddr = kmap_atomic(skb_frag_page(f));
261 
262 		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
263 					   skb_frag_size(f), copy_buf);
264 		kunmap_atomic(vaddr);
265 	}
266 
267 	EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
268 }
269 
270 static struct efx_tx_buffer *
271 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
272 {
273 	struct efx_tx_buffer *buffer =
274 		efx_tx_queue_get_insert_buffer(tx_queue);
275 	u8 __iomem *piobuf = tx_queue->piobuf;
276 
277 	/* Copy to PIO buffer. Ensure the writes are padded to the end
278 	 * of a cache line, as this is required for write-combining to be
279 	 * effective on at least x86.
280 	 */
281 
282 	if (skb_shinfo(skb)->nr_frags) {
283 		/* The size of the copy buffer will ensure all writes
284 		 * are the size of a cache line.
285 		 */
286 		struct efx_short_copy_buffer copy_buf;
287 
288 		copy_buf.used = 0;
289 
290 		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
291 					 &piobuf, &copy_buf);
292 		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
293 	} else {
294 		/* Pad the write to the size of a cache line.
295 		 * We can do this because we know the skb_shared_info sruct is
296 		 * after the source, and the destination buffer is big enough.
297 		 */
298 		BUILD_BUG_ON(L1_CACHE_BYTES >
299 			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
300 		__iowrite64_copy(tx_queue->piobuf, skb->data,
301 				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
302 	}
303 
304 	EFX_POPULATE_QWORD_5(buffer->option,
305 			     ESF_DZ_TX_DESC_IS_OPT, 1,
306 			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
307 			     ESF_DZ_TX_PIO_CONT, 0,
308 			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
309 			     ESF_DZ_TX_PIO_BUF_ADDR,
310 			     tx_queue->piobuf_offset);
311 	++tx_queue->pio_packets;
312 	++tx_queue->insert_count;
313 	return buffer;
314 }
315 #endif /* EFX_USE_PIO */
316 
317 /*
318  * Add a socket buffer to a TX queue
319  *
320  * This maps all fragments of a socket buffer for DMA and adds them to
321  * the TX queue.  The queue's insert pointer will be incremented by
322  * the number of fragments in the socket buffer.
323  *
324  * If any DMA mapping fails, any mapped fragments will be unmapped,
325  * the queue's insert pointer will be restored to its original value.
326  *
327  * This function is split out from efx_hard_start_xmit to allow the
328  * loopback test to direct packets via specific TX queues.
329  *
330  * Returns NETDEV_TX_OK.
331  * You must hold netif_tx_lock() to call this function.
332  */
333 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
334 {
335 	struct efx_nic *efx = tx_queue->efx;
336 	struct device *dma_dev = &efx->pci_dev->dev;
337 	struct efx_tx_buffer *buffer;
338 	unsigned int old_insert_count = tx_queue->insert_count;
339 	skb_frag_t *fragment;
340 	unsigned int len, unmap_len = 0;
341 	dma_addr_t dma_addr, unmap_addr = 0;
342 	unsigned int dma_len;
343 	unsigned short dma_flags;
344 	int i = 0;
345 
346 	if (skb_shinfo(skb)->gso_size)
347 		return efx_enqueue_skb_tso(tx_queue, skb);
348 
349 	/* Get size of the initial fragment */
350 	len = skb_headlen(skb);
351 
352 	/* Pad if necessary */
353 	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
354 		EFX_BUG_ON_PARANOID(skb->data_len);
355 		len = 32 + 1;
356 		if (skb_pad(skb, len - skb->len))
357 			return NETDEV_TX_OK;
358 	}
359 
360 	/* Consider using PIO for short packets */
361 #ifdef EFX_USE_PIO
362 	if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
363 	    efx_nic_may_tx_pio(tx_queue)) {
364 		buffer = efx_enqueue_skb_pio(tx_queue, skb);
365 		dma_flags = EFX_TX_BUF_OPTION;
366 		goto finish_packet;
367 	}
368 #endif
369 
370 	/* Map for DMA.  Use dma_map_single rather than dma_map_page
371 	 * since this is more efficient on machines with sparse
372 	 * memory.
373 	 */
374 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
375 	dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
376 
377 	/* Process all fragments */
378 	while (1) {
379 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
380 			goto dma_err;
381 
382 		/* Store fields for marking in the per-fragment final
383 		 * descriptor */
384 		unmap_len = len;
385 		unmap_addr = dma_addr;
386 
387 		/* Add to TX queue, splitting across DMA boundaries */
388 		do {
389 			buffer = efx_tx_queue_get_insert_buffer(tx_queue);
390 
391 			dma_len = efx_max_tx_len(efx, dma_addr);
392 			if (likely(dma_len >= len))
393 				dma_len = len;
394 
395 			/* Fill out per descriptor fields */
396 			buffer->len = dma_len;
397 			buffer->dma_addr = dma_addr;
398 			buffer->flags = EFX_TX_BUF_CONT;
399 			len -= dma_len;
400 			dma_addr += dma_len;
401 			++tx_queue->insert_count;
402 		} while (len);
403 
404 		/* Transfer ownership of the unmapping to the final buffer */
405 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
406 		buffer->unmap_len = unmap_len;
407 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
408 		unmap_len = 0;
409 
410 		/* Get address and size of next fragment */
411 		if (i >= skb_shinfo(skb)->nr_frags)
412 			break;
413 		fragment = &skb_shinfo(skb)->frags[i];
414 		len = skb_frag_size(fragment);
415 		i++;
416 		/* Map for DMA */
417 		dma_flags = 0;
418 		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
419 					    DMA_TO_DEVICE);
420 	}
421 
422 	/* Transfer ownership of the skb to the final buffer */
423 #ifdef EFX_USE_PIO
424 finish_packet:
425 #endif
426 	buffer->skb = skb;
427 	buffer->flags = EFX_TX_BUF_SKB | dma_flags;
428 
429 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
430 
431 	efx_tx_maybe_stop_queue(tx_queue);
432 
433 	/* Pass off to hardware */
434 	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
435 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
436 
437 		/* There could be packets left on the partner queue if those
438 		 * SKBs had skb->xmit_more set. If we do not push those they
439 		 * could be left for a long time and cause a netdev watchdog.
440 		 */
441 		if (txq2->xmit_more_available)
442 			efx_nic_push_buffers(txq2);
443 
444 		efx_nic_push_buffers(tx_queue);
445 	} else {
446 		tx_queue->xmit_more_available = skb->xmit_more;
447 	}
448 
449 	tx_queue->tx_packets++;
450 
451 	return NETDEV_TX_OK;
452 
453  dma_err:
454 	netif_err(efx, tx_err, efx->net_dev,
455 		  " TX queue %d could not map skb with %d bytes %d "
456 		  "fragments for DMA\n", tx_queue->queue, skb->len,
457 		  skb_shinfo(skb)->nr_frags + 1);
458 
459 	/* Mark the packet as transmitted, and free the SKB ourselves */
460 	dev_kfree_skb_any(skb);
461 
462 	/* Work backwards until we hit the original insert pointer value */
463 	while (tx_queue->insert_count != old_insert_count) {
464 		unsigned int pkts_compl = 0, bytes_compl = 0;
465 		--tx_queue->insert_count;
466 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
467 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
468 	}
469 
470 	/* Free the fragment we were mid-way through pushing */
471 	if (unmap_len) {
472 		if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
473 			dma_unmap_single(dma_dev, unmap_addr, unmap_len,
474 					 DMA_TO_DEVICE);
475 		else
476 			dma_unmap_page(dma_dev, unmap_addr, unmap_len,
477 				       DMA_TO_DEVICE);
478 	}
479 
480 	return NETDEV_TX_OK;
481 }
482 
483 /* Remove packets from the TX queue
484  *
485  * This removes packets from the TX queue, up to and including the
486  * specified index.
487  */
488 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
489 				unsigned int index,
490 				unsigned int *pkts_compl,
491 				unsigned int *bytes_compl)
492 {
493 	struct efx_nic *efx = tx_queue->efx;
494 	unsigned int stop_index, read_ptr;
495 
496 	stop_index = (index + 1) & tx_queue->ptr_mask;
497 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
498 
499 	while (read_ptr != stop_index) {
500 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
501 
502 		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
503 		    unlikely(buffer->len == 0)) {
504 			netif_err(efx, tx_err, efx->net_dev,
505 				  "TX queue %d spurious TX completion id %x\n",
506 				  tx_queue->queue, read_ptr);
507 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
508 			return;
509 		}
510 
511 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
512 
513 		++tx_queue->read_count;
514 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
515 	}
516 }
517 
518 /* Initiate a packet transmission.  We use one channel per CPU
519  * (sharing when we have more CPUs than channels).  On Falcon, the TX
520  * completion events will be directed back to the CPU that transmitted
521  * the packet, which should be cache-efficient.
522  *
523  * Context: non-blocking.
524  * Note that returning anything other than NETDEV_TX_OK will cause the
525  * OS to free the skb.
526  */
527 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
528 				struct net_device *net_dev)
529 {
530 	struct efx_nic *efx = netdev_priv(net_dev);
531 	struct efx_tx_queue *tx_queue;
532 	unsigned index, type;
533 
534 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
535 
536 	/* PTP "event" packet */
537 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
538 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
539 		return efx_ptp_tx(efx, skb);
540 	}
541 
542 	index = skb_get_queue_mapping(skb);
543 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
544 	if (index >= efx->n_tx_channels) {
545 		index -= efx->n_tx_channels;
546 		type |= EFX_TXQ_TYPE_HIGHPRI;
547 	}
548 	tx_queue = efx_get_tx_queue(efx, index, type);
549 
550 	return efx_enqueue_skb(tx_queue, skb);
551 }
552 
553 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
554 {
555 	struct efx_nic *efx = tx_queue->efx;
556 
557 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
558 	tx_queue->core_txq =
559 		netdev_get_tx_queue(efx->net_dev,
560 				    tx_queue->queue / EFX_TXQ_TYPES +
561 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
562 				     efx->n_tx_channels : 0));
563 }
564 
565 int efx_setup_tc(struct net_device *net_dev, u32 handle, __be16 proto,
566 		 struct tc_to_netdev *ntc)
567 {
568 	struct efx_nic *efx = netdev_priv(net_dev);
569 	struct efx_channel *channel;
570 	struct efx_tx_queue *tx_queue;
571 	unsigned tc, num_tc;
572 	int rc;
573 
574 	if (ntc->type != TC_SETUP_MQPRIO)
575 		return -EINVAL;
576 
577 	num_tc = ntc->tc;
578 
579 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
580 		return -EINVAL;
581 
582 	if (num_tc == net_dev->num_tc)
583 		return 0;
584 
585 	for (tc = 0; tc < num_tc; tc++) {
586 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
587 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
588 	}
589 
590 	if (num_tc > net_dev->num_tc) {
591 		/* Initialise high-priority queues as necessary */
592 		efx_for_each_channel(channel, efx) {
593 			efx_for_each_possible_channel_tx_queue(tx_queue,
594 							       channel) {
595 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
596 					continue;
597 				if (!tx_queue->buffer) {
598 					rc = efx_probe_tx_queue(tx_queue);
599 					if (rc)
600 						return rc;
601 				}
602 				if (!tx_queue->initialised)
603 					efx_init_tx_queue(tx_queue);
604 				efx_init_tx_queue_core_txq(tx_queue);
605 			}
606 		}
607 	} else {
608 		/* Reduce number of classes before number of queues */
609 		net_dev->num_tc = num_tc;
610 	}
611 
612 	rc = netif_set_real_num_tx_queues(net_dev,
613 					  max_t(int, num_tc, 1) *
614 					  efx->n_tx_channels);
615 	if (rc)
616 		return rc;
617 
618 	/* Do not destroy high-priority queues when they become
619 	 * unused.  We would have to flush them first, and it is
620 	 * fairly difficult to flush a subset of TX queues.  Leave
621 	 * it to efx_fini_channels().
622 	 */
623 
624 	net_dev->num_tc = num_tc;
625 	return 0;
626 }
627 
628 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
629 {
630 	unsigned fill_level;
631 	struct efx_nic *efx = tx_queue->efx;
632 	struct efx_tx_queue *txq2;
633 	unsigned int pkts_compl = 0, bytes_compl = 0;
634 
635 	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
636 
637 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
638 	tx_queue->pkts_compl += pkts_compl;
639 	tx_queue->bytes_compl += bytes_compl;
640 
641 	if (pkts_compl > 1)
642 		++tx_queue->merge_events;
643 
644 	/* See if we need to restart the netif queue.  This memory
645 	 * barrier ensures that we write read_count (inside
646 	 * efx_dequeue_buffers()) before reading the queue status.
647 	 */
648 	smp_mb();
649 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
650 	    likely(efx->port_enabled) &&
651 	    likely(netif_device_present(efx->net_dev))) {
652 		txq2 = efx_tx_queue_partner(tx_queue);
653 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
654 				 txq2->insert_count - txq2->read_count);
655 		if (fill_level <= efx->txq_wake_thresh)
656 			netif_tx_wake_queue(tx_queue->core_txq);
657 	}
658 
659 	/* Check whether the hardware queue is now empty */
660 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
661 		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
662 		if (tx_queue->read_count == tx_queue->old_write_count) {
663 			smp_mb();
664 			tx_queue->empty_read_count =
665 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
666 		}
667 	}
668 }
669 
670 /* Size of page-based TSO header buffers.  Larger blocks must be
671  * allocated from the heap.
672  */
673 #define TSOH_STD_SIZE	128
674 #define TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
675 
676 /* At most half the descriptors in the queue at any time will refer to
677  * a TSO header buffer, since they must always be followed by a
678  * payload descriptor referring to an skb.
679  */
680 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
681 {
682 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
683 }
684 
685 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
686 {
687 	struct efx_nic *efx = tx_queue->efx;
688 	unsigned int entries;
689 	int rc;
690 
691 	/* Create the smallest power-of-two aligned ring */
692 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
693 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
694 	tx_queue->ptr_mask = entries - 1;
695 
696 	netif_dbg(efx, probe, efx->net_dev,
697 		  "creating TX queue %d size %#x mask %#x\n",
698 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
699 
700 	/* Allocate software ring */
701 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
702 				   GFP_KERNEL);
703 	if (!tx_queue->buffer)
704 		return -ENOMEM;
705 
706 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
707 		tx_queue->tsoh_page =
708 			kcalloc(efx_tsoh_page_count(tx_queue),
709 				sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
710 		if (!tx_queue->tsoh_page) {
711 			rc = -ENOMEM;
712 			goto fail1;
713 		}
714 	}
715 
716 	/* Allocate hardware ring */
717 	rc = efx_nic_probe_tx(tx_queue);
718 	if (rc)
719 		goto fail2;
720 
721 	return 0;
722 
723 fail2:
724 	kfree(tx_queue->tsoh_page);
725 	tx_queue->tsoh_page = NULL;
726 fail1:
727 	kfree(tx_queue->buffer);
728 	tx_queue->buffer = NULL;
729 	return rc;
730 }
731 
732 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
733 {
734 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
735 		  "initialising TX queue %d\n", tx_queue->queue);
736 
737 	tx_queue->insert_count = 0;
738 	tx_queue->write_count = 0;
739 	tx_queue->old_write_count = 0;
740 	tx_queue->read_count = 0;
741 	tx_queue->old_read_count = 0;
742 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
743 	tx_queue->xmit_more_available = false;
744 
745 	/* Set up TX descriptor ring */
746 	efx_nic_init_tx(tx_queue);
747 
748 	tx_queue->initialised = true;
749 }
750 
751 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
752 {
753 	struct efx_tx_buffer *buffer;
754 
755 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
756 		  "shutting down TX queue %d\n", tx_queue->queue);
757 
758 	if (!tx_queue->buffer)
759 		return;
760 
761 	/* Free any buffers left in the ring */
762 	while (tx_queue->read_count != tx_queue->write_count) {
763 		unsigned int pkts_compl = 0, bytes_compl = 0;
764 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
765 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
766 
767 		++tx_queue->read_count;
768 	}
769 	tx_queue->xmit_more_available = false;
770 	netdev_tx_reset_queue(tx_queue->core_txq);
771 }
772 
773 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
774 {
775 	int i;
776 
777 	if (!tx_queue->buffer)
778 		return;
779 
780 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
781 		  "destroying TX queue %d\n", tx_queue->queue);
782 	efx_nic_remove_tx(tx_queue);
783 
784 	if (tx_queue->tsoh_page) {
785 		for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
786 			efx_nic_free_buffer(tx_queue->efx,
787 					    &tx_queue->tsoh_page[i]);
788 		kfree(tx_queue->tsoh_page);
789 		tx_queue->tsoh_page = NULL;
790 	}
791 
792 	kfree(tx_queue->buffer);
793 	tx_queue->buffer = NULL;
794 }
795 
796 
797 /* Efx TCP segmentation acceleration.
798  *
799  * Why?  Because by doing it here in the driver we can go significantly
800  * faster than the GSO.
801  *
802  * Requires TX checksum offload support.
803  */
804 
805 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
806 
807 /**
808  * struct tso_state - TSO state for an SKB
809  * @out_len: Remaining length in current segment
810  * @seqnum: Current sequence number
811  * @ipv4_id: Current IPv4 ID, host endian
812  * @packet_space: Remaining space in current packet
813  * @dma_addr: DMA address of current position
814  * @in_len: Remaining length in current SKB fragment
815  * @unmap_len: Length of SKB fragment
816  * @unmap_addr: DMA address of SKB fragment
817  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
818  * @protocol: Network protocol (after any VLAN header)
819  * @ip_off: Offset of IP header
820  * @tcp_off: Offset of TCP header
821  * @header_len: Number of bytes of header
822  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
823  * @header_dma_addr: Header DMA address, when using option descriptors
824  * @header_unmap_len: Header DMA mapped length, or 0 if not using option
825  *	descriptors
826  *
827  * The state used during segmentation.  It is put into this data structure
828  * just to make it easy to pass into inline functions.
829  */
830 struct tso_state {
831 	/* Output position */
832 	unsigned out_len;
833 	unsigned seqnum;
834 	u16 ipv4_id;
835 	unsigned packet_space;
836 
837 	/* Input position */
838 	dma_addr_t dma_addr;
839 	unsigned in_len;
840 	unsigned unmap_len;
841 	dma_addr_t unmap_addr;
842 	unsigned short dma_flags;
843 
844 	__be16 protocol;
845 	unsigned int ip_off;
846 	unsigned int tcp_off;
847 	unsigned header_len;
848 	unsigned int ip_base_len;
849 	dma_addr_t header_dma_addr;
850 	unsigned int header_unmap_len;
851 };
852 
853 
854 /*
855  * Verify that our various assumptions about sk_buffs and the conditions
856  * under which TSO will be attempted hold true.  Return the protocol number.
857  */
858 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
859 {
860 	__be16 protocol = skb->protocol;
861 
862 	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
863 			    protocol);
864 	if (protocol == htons(ETH_P_8021Q)) {
865 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
866 		protocol = veh->h_vlan_encapsulated_proto;
867 	}
868 
869 	if (protocol == htons(ETH_P_IP)) {
870 		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
871 	} else {
872 		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
873 		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
874 	}
875 	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
876 			     + (tcp_hdr(skb)->doff << 2u)) >
877 			    skb_headlen(skb));
878 
879 	return protocol;
880 }
881 
882 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
883 			       struct efx_tx_buffer *buffer, unsigned int len)
884 {
885 	u8 *result;
886 
887 	EFX_BUG_ON_PARANOID(buffer->len);
888 	EFX_BUG_ON_PARANOID(buffer->flags);
889 	EFX_BUG_ON_PARANOID(buffer->unmap_len);
890 
891 	if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
892 		unsigned index =
893 			(tx_queue->insert_count & tx_queue->ptr_mask) / 2;
894 		struct efx_buffer *page_buf =
895 			&tx_queue->tsoh_page[index / TSOH_PER_PAGE];
896 		unsigned offset =
897 			TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
898 
899 		if (unlikely(!page_buf->addr) &&
900 		    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
901 					 GFP_ATOMIC))
902 			return NULL;
903 
904 		result = (u8 *)page_buf->addr + offset;
905 		buffer->dma_addr = page_buf->dma_addr + offset;
906 		buffer->flags = EFX_TX_BUF_CONT;
907 	} else {
908 		tx_queue->tso_long_headers++;
909 
910 		buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
911 		if (unlikely(!buffer->heap_buf))
912 			return NULL;
913 		result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
914 		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
915 	}
916 
917 	buffer->len = len;
918 
919 	return result;
920 }
921 
922 /**
923  * efx_tx_queue_insert - push descriptors onto the TX queue
924  * @tx_queue:		Efx TX queue
925  * @dma_addr:		DMA address of fragment
926  * @len:		Length of fragment
927  * @final_buffer:	The final buffer inserted into the queue
928  *
929  * Push descriptors onto the TX queue.
930  */
931 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
932 				dma_addr_t dma_addr, unsigned len,
933 				struct efx_tx_buffer **final_buffer)
934 {
935 	struct efx_tx_buffer *buffer;
936 	struct efx_nic *efx = tx_queue->efx;
937 	unsigned dma_len;
938 
939 	EFX_BUG_ON_PARANOID(len <= 0);
940 
941 	while (1) {
942 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
943 		++tx_queue->insert_count;
944 
945 		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
946 				    tx_queue->read_count >=
947 				    efx->txq_entries);
948 
949 		buffer->dma_addr = dma_addr;
950 
951 		dma_len = efx_max_tx_len(efx, dma_addr);
952 
953 		/* If there is enough space to send then do so */
954 		if (dma_len >= len)
955 			break;
956 
957 		buffer->len = dma_len;
958 		buffer->flags = EFX_TX_BUF_CONT;
959 		dma_addr += dma_len;
960 		len -= dma_len;
961 	}
962 
963 	EFX_BUG_ON_PARANOID(!len);
964 	buffer->len = len;
965 	*final_buffer = buffer;
966 }
967 
968 
969 /*
970  * Put a TSO header into the TX queue.
971  *
972  * This is special-cased because we know that it is small enough to fit in
973  * a single fragment, and we know it doesn't cross a page boundary.  It
974  * also allows us to not worry about end-of-packet etc.
975  */
976 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
977 			      struct efx_tx_buffer *buffer, u8 *header)
978 {
979 	if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
980 		buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
981 						  header, buffer->len,
982 						  DMA_TO_DEVICE);
983 		if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
984 					       buffer->dma_addr))) {
985 			kfree(buffer->heap_buf);
986 			buffer->len = 0;
987 			buffer->flags = 0;
988 			return -ENOMEM;
989 		}
990 		buffer->unmap_len = buffer->len;
991 		buffer->dma_offset = 0;
992 		buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
993 	}
994 
995 	++tx_queue->insert_count;
996 	return 0;
997 }
998 
999 
1000 /* Remove buffers put into a tx_queue.  None of the buffers must have
1001  * an skb attached.
1002  */
1003 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
1004 			       unsigned int insert_count)
1005 {
1006 	struct efx_tx_buffer *buffer;
1007 
1008 	/* Work backwards until we hit the original insert pointer value */
1009 	while (tx_queue->insert_count != insert_count) {
1010 		--tx_queue->insert_count;
1011 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1012 		efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1013 	}
1014 }
1015 
1016 
1017 /* Parse the SKB header and initialise state. */
1018 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1019 		     struct efx_tx_queue *tx_queue,
1020 		     const struct sk_buff *skb)
1021 {
1022 	struct device *dma_dev = &efx->pci_dev->dev;
1023 	unsigned int header_len, in_len;
1024 	bool use_opt_desc = false;
1025 	dma_addr_t dma_addr;
1026 
1027 	if (tx_queue->tso_version == 1)
1028 		use_opt_desc = true;
1029 
1030 	st->ip_off = skb_network_header(skb) - skb->data;
1031 	st->tcp_off = skb_transport_header(skb) - skb->data;
1032 	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1033 	in_len = skb_headlen(skb) - header_len;
1034 	st->header_len = header_len;
1035 	st->in_len = in_len;
1036 	if (st->protocol == htons(ETH_P_IP)) {
1037 		st->ip_base_len = st->header_len - st->ip_off;
1038 		st->ipv4_id = ntohs(ip_hdr(skb)->id);
1039 	} else {
1040 		st->ip_base_len = st->header_len - st->tcp_off;
1041 		st->ipv4_id = 0;
1042 	}
1043 	st->seqnum = ntohl(tcp_hdr(skb)->seq);
1044 
1045 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1046 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1047 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1048 
1049 	st->out_len = skb->len - header_len;
1050 
1051 	if (!use_opt_desc) {
1052 		st->header_unmap_len = 0;
1053 
1054 		if (likely(in_len == 0)) {
1055 			st->dma_flags = 0;
1056 			st->unmap_len = 0;
1057 			return 0;
1058 		}
1059 
1060 		dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1061 					  in_len, DMA_TO_DEVICE);
1062 		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1063 		st->dma_addr = dma_addr;
1064 		st->unmap_addr = dma_addr;
1065 		st->unmap_len = in_len;
1066 	} else {
1067 		dma_addr = dma_map_single(dma_dev, skb->data,
1068 					  skb_headlen(skb), DMA_TO_DEVICE);
1069 		st->header_dma_addr = dma_addr;
1070 		st->header_unmap_len = skb_headlen(skb);
1071 		st->dma_flags = 0;
1072 		st->dma_addr = dma_addr + header_len;
1073 		st->unmap_len = 0;
1074 	}
1075 
1076 	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1077 }
1078 
1079 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1080 			    skb_frag_t *frag)
1081 {
1082 	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1083 					  skb_frag_size(frag), DMA_TO_DEVICE);
1084 	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1085 		st->dma_flags = 0;
1086 		st->unmap_len = skb_frag_size(frag);
1087 		st->in_len = skb_frag_size(frag);
1088 		st->dma_addr = st->unmap_addr;
1089 		return 0;
1090 	}
1091 	return -ENOMEM;
1092 }
1093 
1094 
1095 /**
1096  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1097  * @tx_queue:		Efx TX queue
1098  * @skb:		Socket buffer
1099  * @st:			TSO state
1100  *
1101  * Form descriptors for the current fragment, until we reach the end
1102  * of fragment or end-of-packet.
1103  */
1104 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1105 					  const struct sk_buff *skb,
1106 					  struct tso_state *st)
1107 {
1108 	struct efx_tx_buffer *buffer;
1109 	int n;
1110 
1111 	if (st->in_len == 0)
1112 		return;
1113 	if (st->packet_space == 0)
1114 		return;
1115 
1116 	EFX_BUG_ON_PARANOID(st->in_len <= 0);
1117 	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1118 
1119 	n = min(st->in_len, st->packet_space);
1120 
1121 	st->packet_space -= n;
1122 	st->out_len -= n;
1123 	st->in_len -= n;
1124 
1125 	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1126 
1127 	if (st->out_len == 0) {
1128 		/* Transfer ownership of the skb */
1129 		buffer->skb = skb;
1130 		buffer->flags = EFX_TX_BUF_SKB;
1131 	} else if (st->packet_space != 0) {
1132 		buffer->flags = EFX_TX_BUF_CONT;
1133 	}
1134 
1135 	if (st->in_len == 0) {
1136 		/* Transfer ownership of the DMA mapping */
1137 		buffer->unmap_len = st->unmap_len;
1138 		buffer->dma_offset = buffer->unmap_len - buffer->len;
1139 		buffer->flags |= st->dma_flags;
1140 		st->unmap_len = 0;
1141 	}
1142 
1143 	st->dma_addr += n;
1144 }
1145 
1146 
1147 /**
1148  * tso_start_new_packet - generate a new header and prepare for the new packet
1149  * @tx_queue:		Efx TX queue
1150  * @skb:		Socket buffer
1151  * @st:			TSO state
1152  *
1153  * Generate a new header and prepare for the new packet.  Return 0 on
1154  * success, or -%ENOMEM if failed to alloc header.
1155  */
1156 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1157 				const struct sk_buff *skb,
1158 				struct tso_state *st)
1159 {
1160 	struct efx_tx_buffer *buffer =
1161 		efx_tx_queue_get_insert_buffer(tx_queue);
1162 	bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1163 	u8 tcp_flags_clear;
1164 
1165 	if (!is_last) {
1166 		st->packet_space = skb_shinfo(skb)->gso_size;
1167 		tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1168 	} else {
1169 		st->packet_space = st->out_len;
1170 		tcp_flags_clear = 0x00;
1171 	}
1172 
1173 	if (!st->header_unmap_len) {
1174 		/* Allocate and insert a DMA-mapped header buffer. */
1175 		struct tcphdr *tsoh_th;
1176 		unsigned ip_length;
1177 		u8 *header;
1178 		int rc;
1179 
1180 		header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1181 		if (!header)
1182 			return -ENOMEM;
1183 
1184 		tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1185 
1186 		/* Copy and update the headers. */
1187 		memcpy(header, skb->data, st->header_len);
1188 
1189 		tsoh_th->seq = htonl(st->seqnum);
1190 		((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1191 
1192 		ip_length = st->ip_base_len + st->packet_space;
1193 
1194 		if (st->protocol == htons(ETH_P_IP)) {
1195 			struct iphdr *tsoh_iph =
1196 				(struct iphdr *)(header + st->ip_off);
1197 
1198 			tsoh_iph->tot_len = htons(ip_length);
1199 			tsoh_iph->id = htons(st->ipv4_id);
1200 		} else {
1201 			struct ipv6hdr *tsoh_iph =
1202 				(struct ipv6hdr *)(header + st->ip_off);
1203 
1204 			tsoh_iph->payload_len = htons(ip_length);
1205 		}
1206 
1207 		rc = efx_tso_put_header(tx_queue, buffer, header);
1208 		if (unlikely(rc))
1209 			return rc;
1210 	} else {
1211 		/* Send the original headers with a TSO option descriptor
1212 		 * in front
1213 		 */
1214 		u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1215 
1216 		buffer->flags = EFX_TX_BUF_OPTION;
1217 		buffer->len = 0;
1218 		buffer->unmap_len = 0;
1219 		EFX_POPULATE_QWORD_5(buffer->option,
1220 				     ESF_DZ_TX_DESC_IS_OPT, 1,
1221 				     ESF_DZ_TX_OPTION_TYPE,
1222 				     ESE_DZ_TX_OPTION_DESC_TSO,
1223 				     ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1224 				     ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1225 				     ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1226 		++tx_queue->insert_count;
1227 
1228 		/* We mapped the headers in tso_start().  Unmap them
1229 		 * when the last segment is completed.
1230 		 */
1231 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1232 		buffer->dma_addr = st->header_dma_addr;
1233 		buffer->len = st->header_len;
1234 		if (is_last) {
1235 			buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1236 			buffer->unmap_len = st->header_unmap_len;
1237 			buffer->dma_offset = 0;
1238 			/* Ensure we only unmap them once in case of a
1239 			 * later DMA mapping error and rollback
1240 			 */
1241 			st->header_unmap_len = 0;
1242 		} else {
1243 			buffer->flags = EFX_TX_BUF_CONT;
1244 			buffer->unmap_len = 0;
1245 		}
1246 		++tx_queue->insert_count;
1247 	}
1248 
1249 	st->seqnum += skb_shinfo(skb)->gso_size;
1250 
1251 	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
1252 	++st->ipv4_id;
1253 
1254 	++tx_queue->tso_packets;
1255 
1256 	++tx_queue->tx_packets;
1257 
1258 	return 0;
1259 }
1260 
1261 
1262 /**
1263  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1264  * @tx_queue:		Efx TX queue
1265  * @skb:		Socket buffer
1266  *
1267  * Context: You must hold netif_tx_lock() to call this function.
1268  *
1269  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1270  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1271  * %NETDEV_TX_OK.
1272  */
1273 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1274 			       struct sk_buff *skb)
1275 {
1276 	struct efx_nic *efx = tx_queue->efx;
1277 	unsigned int old_insert_count = tx_queue->insert_count;
1278 	int frag_i, rc;
1279 	struct tso_state state;
1280 
1281 	/* Find the packet protocol and sanity-check it */
1282 	state.protocol = efx_tso_check_protocol(skb);
1283 
1284 	rc = tso_start(&state, efx, tx_queue, skb);
1285 	if (rc)
1286 		goto mem_err;
1287 
1288 	if (likely(state.in_len == 0)) {
1289 		/* Grab the first payload fragment. */
1290 		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1291 		frag_i = 0;
1292 		rc = tso_get_fragment(&state, efx,
1293 				      skb_shinfo(skb)->frags + frag_i);
1294 		if (rc)
1295 			goto mem_err;
1296 	} else {
1297 		/* Payload starts in the header area. */
1298 		frag_i = -1;
1299 	}
1300 
1301 	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1302 		goto mem_err;
1303 
1304 	while (1) {
1305 		tso_fill_packet_with_fragment(tx_queue, skb, &state);
1306 
1307 		/* Move onto the next fragment? */
1308 		if (state.in_len == 0) {
1309 			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1310 				/* End of payload reached. */
1311 				break;
1312 			rc = tso_get_fragment(&state, efx,
1313 					      skb_shinfo(skb)->frags + frag_i);
1314 			if (rc)
1315 				goto mem_err;
1316 		}
1317 
1318 		/* Start at new packet? */
1319 		if (state.packet_space == 0 &&
1320 		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1321 			goto mem_err;
1322 	}
1323 
1324 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1325 
1326 	efx_tx_maybe_stop_queue(tx_queue);
1327 
1328 	/* Pass off to hardware */
1329 	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
1330 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
1331 
1332 		/* There could be packets left on the partner queue if those
1333 		 * SKBs had skb->xmit_more set. If we do not push those they
1334 		 * could be left for a long time and cause a netdev watchdog.
1335 		 */
1336 		if (txq2->xmit_more_available)
1337 			efx_nic_push_buffers(txq2);
1338 
1339 		efx_nic_push_buffers(tx_queue);
1340 	} else {
1341 		tx_queue->xmit_more_available = skb->xmit_more;
1342 	}
1343 
1344 	tx_queue->tso_bursts++;
1345 	return NETDEV_TX_OK;
1346 
1347  mem_err:
1348 	netif_err(efx, tx_err, efx->net_dev,
1349 		  "Out of memory for TSO headers, or DMA mapping error\n");
1350 	dev_kfree_skb_any(skb);
1351 
1352 	/* Free the DMA mapping we were in the process of writing out */
1353 	if (state.unmap_len) {
1354 		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1355 			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1356 					 state.unmap_len, DMA_TO_DEVICE);
1357 		else
1358 			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1359 				       state.unmap_len, DMA_TO_DEVICE);
1360 	}
1361 
1362 	/* Free the header DMA mapping, if using option descriptors */
1363 	if (state.header_unmap_len)
1364 		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1365 				 state.header_unmap_len, DMA_TO_DEVICE);
1366 
1367 	efx_enqueue_unwind(tx_queue, old_insert_count);
1368 	return NETDEV_TX_OK;
1369 }
1370