xref: /openbmc/linux/drivers/net/ethernet/sfc/tx.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/tcp.h>
10 #include <linux/ip.h>
11 #include <linux/in.h>
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
14 #include <net/ipv6.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/cache.h>
18 #include "net_driver.h"
19 #include "efx.h"
20 #include "io.h"
21 #include "nic.h"
22 #include "tx.h"
23 #include "tx_common.h"
24 #include "workarounds.h"
25 #include "ef10_regs.h"
26 
27 #ifdef EFX_USE_PIO
28 
29 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
30 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
31 
32 #endif /* EFX_USE_PIO */
33 
34 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
35 					 struct efx_tx_buffer *buffer)
36 {
37 	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
38 	struct efx_buffer *page_buf =
39 		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
40 	unsigned int offset =
41 		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
42 
43 	if (unlikely(!page_buf->addr) &&
44 	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
45 				 GFP_ATOMIC))
46 		return NULL;
47 	buffer->dma_addr = page_buf->dma_addr + offset;
48 	buffer->unmap_len = 0;
49 	return (u8 *)page_buf->addr + offset;
50 }
51 
52 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
53 				   struct efx_tx_buffer *buffer, size_t len)
54 {
55 	if (len > EFX_TX_CB_SIZE)
56 		return NULL;
57 	return efx_tx_get_copy_buffer(tx_queue, buffer);
58 }
59 
60 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
61 {
62 	/* We need to consider all queues that the net core sees as one */
63 	struct efx_nic *efx = txq1->efx;
64 	struct efx_tx_queue *txq2;
65 	unsigned int fill_level;
66 
67 	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
68 	if (likely(fill_level < efx->txq_stop_thresh))
69 		return;
70 
71 	/* We used the stale old_read_count above, which gives us a
72 	 * pessimistic estimate of the fill level (which may even
73 	 * validly be >= efx->txq_entries).  Now try again using
74 	 * read_count (more likely to be a cache miss).
75 	 *
76 	 * If we read read_count and then conditionally stop the
77 	 * queue, it is possible for the completion path to race with
78 	 * us and complete all outstanding descriptors in the middle,
79 	 * after which there will be no more completions to wake it.
80 	 * Therefore we stop the queue first, then read read_count
81 	 * (with a memory barrier to ensure the ordering), then
82 	 * restart the queue if the fill level turns out to be low
83 	 * enough.
84 	 */
85 	netif_tx_stop_queue(txq1->core_txq);
86 	smp_mb();
87 	efx_for_each_channel_tx_queue(txq2, txq1->channel)
88 		txq2->old_read_count = READ_ONCE(txq2->read_count);
89 
90 	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
91 	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
92 	if (likely(fill_level < efx->txq_stop_thresh)) {
93 		smp_mb();
94 		if (likely(!efx->loopback_selftest))
95 			netif_tx_start_queue(txq1->core_txq);
96 	}
97 }
98 
99 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
100 				struct sk_buff *skb)
101 {
102 	unsigned int copy_len = skb->len;
103 	struct efx_tx_buffer *buffer;
104 	u8 *copy_buffer;
105 	int rc;
106 
107 	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
108 
109 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
110 
111 	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
112 	if (unlikely(!copy_buffer))
113 		return -ENOMEM;
114 
115 	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
116 	EFX_WARN_ON_PARANOID(rc);
117 	buffer->len = copy_len;
118 
119 	buffer->skb = skb;
120 	buffer->flags = EFX_TX_BUF_SKB;
121 
122 	++tx_queue->insert_count;
123 	return rc;
124 }
125 
126 #ifdef EFX_USE_PIO
127 
128 struct efx_short_copy_buffer {
129 	int used;
130 	u8 buf[L1_CACHE_BYTES];
131 };
132 
133 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
134  * Advances piobuf pointer. Leaves additional data in the copy buffer.
135  */
136 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
137 				    u8 *data, int len,
138 				    struct efx_short_copy_buffer *copy_buf)
139 {
140 	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
141 
142 	__iowrite64_copy(*piobuf, data, block_len >> 3);
143 	*piobuf += block_len;
144 	len -= block_len;
145 
146 	if (len) {
147 		data += block_len;
148 		BUG_ON(copy_buf->used);
149 		BUG_ON(len > sizeof(copy_buf->buf));
150 		memcpy(copy_buf->buf, data, len);
151 		copy_buf->used = len;
152 	}
153 }
154 
155 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
156  * Advances piobuf pointer. Leaves additional data in the copy buffer.
157  */
158 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
159 				       u8 *data, int len,
160 				       struct efx_short_copy_buffer *copy_buf)
161 {
162 	if (copy_buf->used) {
163 		/* if the copy buffer is partially full, fill it up and write */
164 		int copy_to_buf =
165 			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
166 
167 		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
168 		copy_buf->used += copy_to_buf;
169 
170 		/* if we didn't fill it up then we're done for now */
171 		if (copy_buf->used < sizeof(copy_buf->buf))
172 			return;
173 
174 		__iowrite64_copy(*piobuf, copy_buf->buf,
175 				 sizeof(copy_buf->buf) >> 3);
176 		*piobuf += sizeof(copy_buf->buf);
177 		data += copy_to_buf;
178 		len -= copy_to_buf;
179 		copy_buf->used = 0;
180 	}
181 
182 	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
183 }
184 
185 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
186 				  struct efx_short_copy_buffer *copy_buf)
187 {
188 	/* if there's anything in it, write the whole buffer, including junk */
189 	if (copy_buf->used)
190 		__iowrite64_copy(piobuf, copy_buf->buf,
191 				 sizeof(copy_buf->buf) >> 3);
192 }
193 
194 /* Traverse skb structure and copy fragments in to PIO buffer.
195  * Advances piobuf pointer.
196  */
197 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
198 				     u8 __iomem **piobuf,
199 				     struct efx_short_copy_buffer *copy_buf)
200 {
201 	int i;
202 
203 	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
204 				copy_buf);
205 
206 	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
207 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
208 		u8 *vaddr;
209 
210 		vaddr = kmap_atomic(skb_frag_page(f));
211 
212 		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
213 					   skb_frag_size(f), copy_buf);
214 		kunmap_atomic(vaddr);
215 	}
216 
217 	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
218 }
219 
220 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
221 			       struct sk_buff *skb)
222 {
223 	struct efx_tx_buffer *buffer =
224 		efx_tx_queue_get_insert_buffer(tx_queue);
225 	u8 __iomem *piobuf = tx_queue->piobuf;
226 
227 	/* Copy to PIO buffer. Ensure the writes are padded to the end
228 	 * of a cache line, as this is required for write-combining to be
229 	 * effective on at least x86.
230 	 */
231 
232 	if (skb_shinfo(skb)->nr_frags) {
233 		/* The size of the copy buffer will ensure all writes
234 		 * are the size of a cache line.
235 		 */
236 		struct efx_short_copy_buffer copy_buf;
237 
238 		copy_buf.used = 0;
239 
240 		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
241 					 &piobuf, &copy_buf);
242 		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
243 	} else {
244 		/* Pad the write to the size of a cache line.
245 		 * We can do this because we know the skb_shared_info struct is
246 		 * after the source, and the destination buffer is big enough.
247 		 */
248 		BUILD_BUG_ON(L1_CACHE_BYTES >
249 			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
250 		__iowrite64_copy(tx_queue->piobuf, skb->data,
251 				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
252 	}
253 
254 	buffer->skb = skb;
255 	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
256 
257 	EFX_POPULATE_QWORD_5(buffer->option,
258 			     ESF_DZ_TX_DESC_IS_OPT, 1,
259 			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
260 			     ESF_DZ_TX_PIO_CONT, 0,
261 			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
262 			     ESF_DZ_TX_PIO_BUF_ADDR,
263 			     tx_queue->piobuf_offset);
264 	++tx_queue->insert_count;
265 	return 0;
266 }
267 
268 /* Decide whether we can use TX PIO, ie. write packet data directly into
269  * a buffer on the device.  This can reduce latency at the expense of
270  * throughput, so we only do this if both hardware and software TX rings
271  * are empty, including all queues for the channel.  This also ensures that
272  * only one packet at a time can be using the PIO buffer. If the xmit_more
273  * flag is set then we don't use this - there'll be another packet along
274  * shortly and we want to hold off the doorbell.
275  */
276 static bool efx_tx_may_pio(struct efx_tx_queue *tx_queue)
277 {
278 	struct efx_channel *channel = tx_queue->channel;
279 
280 	if (!tx_queue->piobuf)
281 		return false;
282 
283 	EFX_WARN_ON_ONCE_PARANOID(!channel->efx->type->option_descriptors);
284 
285 	efx_for_each_channel_tx_queue(tx_queue, channel)
286 		if (!efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count))
287 			return false;
288 
289 	return true;
290 }
291 #endif /* EFX_USE_PIO */
292 
293 /* Send any pending traffic for a channel. xmit_more is shared across all
294  * queues for a channel, so we must check all of them.
295  */
296 static void efx_tx_send_pending(struct efx_channel *channel)
297 {
298 	struct efx_tx_queue *q;
299 
300 	efx_for_each_channel_tx_queue(q, channel) {
301 		if (q->xmit_pending)
302 			efx_nic_push_buffers(q);
303 	}
304 }
305 
306 /*
307  * Add a socket buffer to a TX queue
308  *
309  * This maps all fragments of a socket buffer for DMA and adds them to
310  * the TX queue.  The queue's insert pointer will be incremented by
311  * the number of fragments in the socket buffer.
312  *
313  * If any DMA mapping fails, any mapped fragments will be unmapped,
314  * the queue's insert pointer will be restored to its original value.
315  *
316  * This function is split out from efx_hard_start_xmit to allow the
317  * loopback test to direct packets via specific TX queues.
318  *
319  * Returns NETDEV_TX_OK.
320  * You must hold netif_tx_lock() to call this function.
321  */
322 netdev_tx_t __efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
323 {
324 	unsigned int old_insert_count = tx_queue->insert_count;
325 	bool xmit_more = netdev_xmit_more();
326 	bool data_mapped = false;
327 	unsigned int segments;
328 	unsigned int skb_len;
329 	int rc;
330 
331 	skb_len = skb->len;
332 	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
333 	if (segments == 1)
334 		segments = 0; /* Don't use TSO for a single segment. */
335 
336 	/* Handle TSO first - it's *possible* (although unlikely) that we might
337 	 * be passed a packet to segment that's smaller than the copybreak/PIO
338 	 * size limit.
339 	 */
340 	if (segments) {
341 		EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
342 		rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
343 		if (rc == -EINVAL) {
344 			rc = efx_tx_tso_fallback(tx_queue, skb);
345 			tx_queue->tso_fallbacks++;
346 			if (rc == 0)
347 				return 0;
348 		}
349 		if (rc)
350 			goto err;
351 #ifdef EFX_USE_PIO
352 	} else if (skb_len <= efx_piobuf_size && !xmit_more &&
353 		   efx_tx_may_pio(tx_queue)) {
354 		/* Use PIO for short packets with an empty queue. */
355 		if (efx_enqueue_skb_pio(tx_queue, skb))
356 			goto err;
357 		tx_queue->pio_packets++;
358 		data_mapped = true;
359 #endif
360 	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
361 		/* Pad short packets or coalesce short fragmented packets. */
362 		if (efx_enqueue_skb_copy(tx_queue, skb))
363 			goto err;
364 		tx_queue->cb_packets++;
365 		data_mapped = true;
366 	}
367 
368 	/* Map for DMA and create descriptors if we haven't done so already. */
369 	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
370 		goto err;
371 
372 	efx_tx_maybe_stop_queue(tx_queue);
373 
374 	tx_queue->xmit_pending = true;
375 
376 	/* Pass off to hardware */
377 	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
378 		efx_tx_send_pending(tx_queue->channel);
379 
380 	if (segments) {
381 		tx_queue->tso_bursts++;
382 		tx_queue->tso_packets += segments;
383 		tx_queue->tx_packets  += segments;
384 	} else {
385 		tx_queue->tx_packets++;
386 	}
387 
388 	return NETDEV_TX_OK;
389 
390 
391 err:
392 	efx_enqueue_unwind(tx_queue, old_insert_count);
393 	dev_kfree_skb_any(skb);
394 
395 	/* If we're not expecting another transmit and we had something to push
396 	 * on this queue or a partner queue then we need to push here to get the
397 	 * previous packets out.
398 	 */
399 	if (!xmit_more)
400 		efx_tx_send_pending(tx_queue->channel);
401 
402 	return NETDEV_TX_OK;
403 }
404 
405 static void efx_xdp_return_frames(int n,  struct xdp_frame **xdpfs)
406 {
407 	int i;
408 
409 	for (i = 0; i < n; i++)
410 		xdp_return_frame_rx_napi(xdpfs[i]);
411 }
412 
413 /* Transmit a packet from an XDP buffer
414  *
415  * Returns number of packets sent on success, error code otherwise.
416  * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
417  * (for XDP redirect).
418  */
419 int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
420 		       bool flush)
421 {
422 	struct efx_tx_buffer *tx_buffer;
423 	struct efx_tx_queue *tx_queue;
424 	struct xdp_frame *xdpf;
425 	dma_addr_t dma_addr;
426 	unsigned int len;
427 	int space;
428 	int cpu;
429 	int i;
430 
431 	cpu = raw_smp_processor_id();
432 
433 	if (!efx->xdp_tx_queue_count ||
434 	    unlikely(cpu >= efx->xdp_tx_queue_count))
435 		return -EINVAL;
436 
437 	tx_queue = efx->xdp_tx_queues[cpu];
438 	if (unlikely(!tx_queue))
439 		return -EINVAL;
440 
441 	if (unlikely(n && !xdpfs))
442 		return -EINVAL;
443 
444 	if (!n)
445 		return 0;
446 
447 	/* Check for available space. We should never need multiple
448 	 * descriptors per frame.
449 	 */
450 	space = efx->txq_entries +
451 		tx_queue->read_count - tx_queue->insert_count;
452 
453 	for (i = 0; i < n; i++) {
454 		xdpf = xdpfs[i];
455 
456 		if (i >= space)
457 			break;
458 
459 		/* We'll want a descriptor for this tx. */
460 		prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
461 
462 		len = xdpf->len;
463 
464 		/* Map for DMA. */
465 		dma_addr = dma_map_single(&efx->pci_dev->dev,
466 					  xdpf->data, len,
467 					  DMA_TO_DEVICE);
468 		if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
469 			break;
470 
471 		/*  Create descriptor and set up for unmapping DMA. */
472 		tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
473 		tx_buffer->xdpf = xdpf;
474 		tx_buffer->flags = EFX_TX_BUF_XDP |
475 				   EFX_TX_BUF_MAP_SINGLE;
476 		tx_buffer->dma_offset = 0;
477 		tx_buffer->unmap_len = len;
478 		tx_queue->tx_packets++;
479 	}
480 
481 	/* Pass mapped frames to hardware. */
482 	if (flush && i > 0)
483 		efx_nic_push_buffers(tx_queue);
484 
485 	if (i == 0)
486 		return -EIO;
487 
488 	efx_xdp_return_frames(n - i, xdpfs + i);
489 
490 	return i;
491 }
492 
493 /* Initiate a packet transmission.  We use one channel per CPU
494  * (sharing when we have more CPUs than channels).  On Falcon, the TX
495  * completion events will be directed back to the CPU that transmitted
496  * the packet, which should be cache-efficient.
497  *
498  * Context: non-blocking.
499  * Note that returning anything other than NETDEV_TX_OK will cause the
500  * OS to free the skb.
501  */
502 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
503 				struct net_device *net_dev)
504 {
505 	struct efx_nic *efx = netdev_priv(net_dev);
506 	struct efx_tx_queue *tx_queue;
507 	unsigned index, type;
508 
509 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
510 
511 	index = skb_get_queue_mapping(skb);
512 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
513 	if (index >= efx->n_tx_channels) {
514 		index -= efx->n_tx_channels;
515 		type |= EFX_TXQ_TYPE_HIGHPRI;
516 	}
517 
518 	/* PTP "event" packet */
519 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
520 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
521 		/* There may be existing transmits on the channel that are
522 		 * waiting for this packet to trigger the doorbell write.
523 		 * We need to send the packets at this point.
524 		 */
525 		efx_tx_send_pending(efx_get_tx_channel(efx, index));
526 		return efx_ptp_tx(efx, skb);
527 	}
528 
529 	tx_queue = efx_get_tx_queue(efx, index, type);
530 
531 	return __efx_enqueue_skb(tx_queue, skb);
532 }
533 
534 void efx_xmit_done_single(struct efx_tx_queue *tx_queue)
535 {
536 	unsigned int pkts_compl = 0, bytes_compl = 0;
537 	unsigned int read_ptr;
538 	bool finished = false;
539 
540 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
541 
542 	while (!finished) {
543 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
544 
545 		if (!efx_tx_buffer_in_use(buffer)) {
546 			struct efx_nic *efx = tx_queue->efx;
547 
548 			netif_err(efx, hw, efx->net_dev,
549 				  "TX queue %d spurious single TX completion\n",
550 				  tx_queue->queue);
551 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
552 			return;
553 		}
554 
555 		/* Need to check the flag before dequeueing. */
556 		if (buffer->flags & EFX_TX_BUF_SKB)
557 			finished = true;
558 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
559 
560 		++tx_queue->read_count;
561 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
562 	}
563 
564 	tx_queue->pkts_compl += pkts_compl;
565 	tx_queue->bytes_compl += bytes_compl;
566 
567 	EFX_WARN_ON_PARANOID(pkts_compl != 1);
568 
569 	efx_xmit_done_check_empty(tx_queue);
570 }
571 
572 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
573 {
574 	struct efx_nic *efx = tx_queue->efx;
575 
576 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
577 	tx_queue->core_txq =
578 		netdev_get_tx_queue(efx->net_dev,
579 				    tx_queue->channel->channel +
580 				    ((tx_queue->label & EFX_TXQ_TYPE_HIGHPRI) ?
581 				     efx->n_tx_channels : 0));
582 }
583 
584 int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
585 		 void *type_data)
586 {
587 	struct efx_nic *efx = netdev_priv(net_dev);
588 	struct tc_mqprio_qopt *mqprio = type_data;
589 	unsigned tc, num_tc;
590 
591 	if (type != TC_SETUP_QDISC_MQPRIO)
592 		return -EOPNOTSUPP;
593 
594 	/* Only Siena supported highpri queues */
595 	if (efx_nic_rev(efx) > EFX_REV_SIENA_A0)
596 		return -EOPNOTSUPP;
597 
598 	num_tc = mqprio->num_tc;
599 
600 	if (num_tc > EFX_MAX_TX_TC)
601 		return -EINVAL;
602 
603 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
604 
605 	if (num_tc == net_dev->num_tc)
606 		return 0;
607 
608 	for (tc = 0; tc < num_tc; tc++) {
609 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
610 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
611 	}
612 
613 	net_dev->num_tc = num_tc;
614 
615 	return netif_set_real_num_tx_queues(net_dev,
616 					    max_t(int, num_tc, 1) *
617 					    efx->n_tx_channels);
618 }
619