xref: /openbmc/linux/drivers/net/ethernet/sfc/siena/tx.c (revision da1d9caf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/tcp.h>
10 #include <linux/ip.h>
11 #include <linux/in.h>
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
14 #include <net/ipv6.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/cache.h>
18 #include "net_driver.h"
19 #include "efx.h"
20 #include "io.h"
21 #include "nic.h"
22 #include "tx.h"
23 #include "tx_common.h"
24 #include "workarounds.h"
25 
26 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
27 					 struct efx_tx_buffer *buffer)
28 {
29 	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
30 	struct efx_buffer *page_buf =
31 		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
32 	unsigned int offset =
33 		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
34 
35 	if (unlikely(!page_buf->addr) &&
36 	    efx_siena_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
37 				   GFP_ATOMIC))
38 		return NULL;
39 	buffer->dma_addr = page_buf->dma_addr + offset;
40 	buffer->unmap_len = 0;
41 	return (u8 *)page_buf->addr + offset;
42 }
43 
44 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
45 {
46 	/* We need to consider all queues that the net core sees as one */
47 	struct efx_nic *efx = txq1->efx;
48 	struct efx_tx_queue *txq2;
49 	unsigned int fill_level;
50 
51 	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
52 	if (likely(fill_level < efx->txq_stop_thresh))
53 		return;
54 
55 	/* We used the stale old_read_count above, which gives us a
56 	 * pessimistic estimate of the fill level (which may even
57 	 * validly be >= efx->txq_entries).  Now try again using
58 	 * read_count (more likely to be a cache miss).
59 	 *
60 	 * If we read read_count and then conditionally stop the
61 	 * queue, it is possible for the completion path to race with
62 	 * us and complete all outstanding descriptors in the middle,
63 	 * after which there will be no more completions to wake it.
64 	 * Therefore we stop the queue first, then read read_count
65 	 * (with a memory barrier to ensure the ordering), then
66 	 * restart the queue if the fill level turns out to be low
67 	 * enough.
68 	 */
69 	netif_tx_stop_queue(txq1->core_txq);
70 	smp_mb();
71 	efx_for_each_channel_tx_queue(txq2, txq1->channel)
72 		txq2->old_read_count = READ_ONCE(txq2->read_count);
73 
74 	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
75 	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
76 	if (likely(fill_level < efx->txq_stop_thresh)) {
77 		smp_mb();
78 		if (likely(!efx->loopback_selftest))
79 			netif_tx_start_queue(txq1->core_txq);
80 	}
81 }
82 
83 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
84 				struct sk_buff *skb)
85 {
86 	unsigned int copy_len = skb->len;
87 	struct efx_tx_buffer *buffer;
88 	u8 *copy_buffer;
89 	int rc;
90 
91 	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
92 
93 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
94 
95 	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
96 	if (unlikely(!copy_buffer))
97 		return -ENOMEM;
98 
99 	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
100 	EFX_WARN_ON_PARANOID(rc);
101 	buffer->len = copy_len;
102 
103 	buffer->skb = skb;
104 	buffer->flags = EFX_TX_BUF_SKB;
105 
106 	++tx_queue->insert_count;
107 	return rc;
108 }
109 
110 /* Send any pending traffic for a channel. xmit_more is shared across all
111  * queues for a channel, so we must check all of them.
112  */
113 static void efx_tx_send_pending(struct efx_channel *channel)
114 {
115 	struct efx_tx_queue *q;
116 
117 	efx_for_each_channel_tx_queue(q, channel) {
118 		if (q->xmit_pending)
119 			efx_nic_push_buffers(q);
120 	}
121 }
122 
123 /*
124  * Add a socket buffer to a TX queue
125  *
126  * This maps all fragments of a socket buffer for DMA and adds them to
127  * the TX queue.  The queue's insert pointer will be incremented by
128  * the number of fragments in the socket buffer.
129  *
130  * If any DMA mapping fails, any mapped fragments will be unmapped,
131  * the queue's insert pointer will be restored to its original value.
132  *
133  * This function is split out from efx_siena_hard_start_xmit to allow the
134  * loopback test to direct packets via specific TX queues.
135  *
136  * Returns NETDEV_TX_OK.
137  * You must hold netif_tx_lock() to call this function.
138  */
139 netdev_tx_t __efx_siena_enqueue_skb(struct efx_tx_queue *tx_queue,
140 				    struct sk_buff *skb)
141 {
142 	unsigned int old_insert_count = tx_queue->insert_count;
143 	bool xmit_more = netdev_xmit_more();
144 	bool data_mapped = false;
145 	unsigned int segments;
146 	unsigned int skb_len;
147 	int rc;
148 
149 	skb_len = skb->len;
150 	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
151 	if (segments == 1)
152 		segments = 0; /* Don't use TSO for a single segment. */
153 
154 	/* Handle TSO first - it's *possible* (although unlikely) that we might
155 	 * be passed a packet to segment that's smaller than the copybreak/PIO
156 	 * size limit.
157 	 */
158 	if (segments) {
159 		rc = efx_siena_tx_tso_fallback(tx_queue, skb);
160 		tx_queue->tso_fallbacks++;
161 		if (rc == 0)
162 			return 0;
163 		goto err;
164 	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
165 		/* Pad short packets or coalesce short fragmented packets. */
166 		if (efx_enqueue_skb_copy(tx_queue, skb))
167 			goto err;
168 		tx_queue->cb_packets++;
169 		data_mapped = true;
170 	}
171 
172 	/* Map for DMA and create descriptors if we haven't done so already. */
173 	if (!data_mapped && (efx_siena_tx_map_data(tx_queue, skb, segments)))
174 		goto err;
175 
176 	efx_tx_maybe_stop_queue(tx_queue);
177 
178 	tx_queue->xmit_pending = true;
179 
180 	/* Pass off to hardware */
181 	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
182 		efx_tx_send_pending(tx_queue->channel);
183 
184 	tx_queue->tx_packets++;
185 	return NETDEV_TX_OK;
186 
187 
188 err:
189 	efx_siena_enqueue_unwind(tx_queue, old_insert_count);
190 	dev_kfree_skb_any(skb);
191 
192 	/* If we're not expecting another transmit and we had something to push
193 	 * on this queue or a partner queue then we need to push here to get the
194 	 * previous packets out.
195 	 */
196 	if (!xmit_more)
197 		efx_tx_send_pending(tx_queue->channel);
198 
199 	return NETDEV_TX_OK;
200 }
201 
202 /* Transmit a packet from an XDP buffer
203  *
204  * Returns number of packets sent on success, error code otherwise.
205  * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
206  * (for XDP redirect).
207  */
208 int efx_siena_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
209 			     bool flush)
210 {
211 	struct efx_tx_buffer *tx_buffer;
212 	struct efx_tx_queue *tx_queue;
213 	struct xdp_frame *xdpf;
214 	dma_addr_t dma_addr;
215 	unsigned int len;
216 	int space;
217 	int cpu;
218 	int i = 0;
219 
220 	if (unlikely(n && !xdpfs))
221 		return -EINVAL;
222 	if (unlikely(!n))
223 		return 0;
224 
225 	cpu = raw_smp_processor_id();
226 	if (unlikely(cpu >= efx->xdp_tx_queue_count))
227 		return -EINVAL;
228 
229 	tx_queue = efx->xdp_tx_queues[cpu];
230 	if (unlikely(!tx_queue))
231 		return -EINVAL;
232 
233 	if (!tx_queue->initialised)
234 		return -EINVAL;
235 
236 	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
237 		HARD_TX_LOCK(efx->net_dev, tx_queue->core_txq, cpu);
238 
239 	/* If we're borrowing net stack queues we have to handle stop-restart
240 	 * or we might block the queue and it will be considered as frozen
241 	 */
242 	if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
243 		if (netif_tx_queue_stopped(tx_queue->core_txq))
244 			goto unlock;
245 		efx_tx_maybe_stop_queue(tx_queue);
246 	}
247 
248 	/* Check for available space. We should never need multiple
249 	 * descriptors per frame.
250 	 */
251 	space = efx->txq_entries +
252 		tx_queue->read_count - tx_queue->insert_count;
253 
254 	for (i = 0; i < n; i++) {
255 		xdpf = xdpfs[i];
256 
257 		if (i >= space)
258 			break;
259 
260 		/* We'll want a descriptor for this tx. */
261 		prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
262 
263 		len = xdpf->len;
264 
265 		/* Map for DMA. */
266 		dma_addr = dma_map_single(&efx->pci_dev->dev,
267 					  xdpf->data, len,
268 					  DMA_TO_DEVICE);
269 		if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
270 			break;
271 
272 		/*  Create descriptor and set up for unmapping DMA. */
273 		tx_buffer = efx_siena_tx_map_chunk(tx_queue, dma_addr, len);
274 		tx_buffer->xdpf = xdpf;
275 		tx_buffer->flags = EFX_TX_BUF_XDP |
276 				   EFX_TX_BUF_MAP_SINGLE;
277 		tx_buffer->dma_offset = 0;
278 		tx_buffer->unmap_len = len;
279 		tx_queue->tx_packets++;
280 	}
281 
282 	/* Pass mapped frames to hardware. */
283 	if (flush && i > 0)
284 		efx_nic_push_buffers(tx_queue);
285 
286 unlock:
287 	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
288 		HARD_TX_UNLOCK(efx->net_dev, tx_queue->core_txq);
289 
290 	return i == 0 ? -EIO : i;
291 }
292 
293 /* Initiate a packet transmission.  We use one channel per CPU
294  * (sharing when we have more CPUs than channels).
295  *
296  * Context: non-blocking.
297  * Should always return NETDEV_TX_OK and consume the skb.
298  */
299 netdev_tx_t efx_siena_hard_start_xmit(struct sk_buff *skb,
300 				      struct net_device *net_dev)
301 {
302 	struct efx_nic *efx = netdev_priv(net_dev);
303 	struct efx_tx_queue *tx_queue;
304 	unsigned index, type;
305 
306 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
307 
308 	index = skb_get_queue_mapping(skb);
309 	type = efx_tx_csum_type_skb(skb);
310 	if (index >= efx->n_tx_channels) {
311 		index -= efx->n_tx_channels;
312 		type |= EFX_TXQ_TYPE_HIGHPRI;
313 	}
314 
315 	/* PTP "event" packet */
316 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
317 	    ((efx_siena_ptp_use_mac_tx_timestamps(efx) && efx->ptp_data) ||
318 	     unlikely(efx_siena_ptp_is_ptp_tx(efx, skb)))) {
319 		/* There may be existing transmits on the channel that are
320 		 * waiting for this packet to trigger the doorbell write.
321 		 * We need to send the packets at this point.
322 		 */
323 		efx_tx_send_pending(efx_get_tx_channel(efx, index));
324 		return efx_siena_ptp_tx(efx, skb);
325 	}
326 
327 	tx_queue = efx_get_tx_queue(efx, index, type);
328 	if (WARN_ON_ONCE(!tx_queue)) {
329 		/* We don't have a TXQ of the right type.
330 		 * This should never happen, as we don't advertise offload
331 		 * features unless we can support them.
332 		 */
333 		dev_kfree_skb_any(skb);
334 		/* If we're not expecting another transmit and we had something to push
335 		 * on this queue or a partner queue then we need to push here to get the
336 		 * previous packets out.
337 		 */
338 		if (!netdev_xmit_more())
339 			efx_tx_send_pending(tx_queue->channel);
340 		return NETDEV_TX_OK;
341 	}
342 
343 	return __efx_siena_enqueue_skb(tx_queue, skb);
344 }
345 
346 void efx_siena_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
347 {
348 	struct efx_nic *efx = tx_queue->efx;
349 
350 	/* Must be inverse of queue lookup in efx_siena_hard_start_xmit() */
351 	tx_queue->core_txq =
352 		netdev_get_tx_queue(efx->net_dev,
353 				    tx_queue->channel->channel +
354 				    ((tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
355 				     efx->n_tx_channels : 0));
356 }
357 
358 int efx_siena_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
359 		       void *type_data)
360 {
361 	struct efx_nic *efx = netdev_priv(net_dev);
362 	struct tc_mqprio_qopt *mqprio = type_data;
363 	unsigned tc, num_tc;
364 
365 	if (type != TC_SETUP_QDISC_MQPRIO)
366 		return -EOPNOTSUPP;
367 
368 	/* Only Siena supported highpri queues */
369 	if (efx_nic_rev(efx) > EFX_REV_SIENA_A0)
370 		return -EOPNOTSUPP;
371 
372 	num_tc = mqprio->num_tc;
373 
374 	if (num_tc > EFX_MAX_TX_TC)
375 		return -EINVAL;
376 
377 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
378 
379 	if (num_tc == net_dev->num_tc)
380 		return 0;
381 
382 	for (tc = 0; tc < num_tc; tc++) {
383 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
384 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
385 	}
386 
387 	net_dev->num_tc = num_tc;
388 
389 	return netif_set_real_num_tx_queues(net_dev,
390 					    max_t(int, num_tc, 1) *
391 					    efx->n_tx_channels);
392 }
393