1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2008-2013 Solarflare Communications Inc. 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/moduleparam.h> 9 #include <linux/atomic.h> 10 #include "net_driver.h" 11 #include "nic.h" 12 #include "io.h" 13 #include "farch_regs.h" 14 #include "mcdi_pcol.h" 15 16 /************************************************************************** 17 * 18 * Management-Controller-to-Driver Interface 19 * 20 ************************************************************************** 21 */ 22 23 #define MCDI_RPC_TIMEOUT (10 * HZ) 24 25 /* A reboot/assertion causes the MCDI status word to be set after the 26 * command word is set or a REBOOT event is sent. If we notice a reboot 27 * via these mechanisms then wait 250ms for the status word to be set. 28 */ 29 #define MCDI_STATUS_DELAY_US 100 30 #define MCDI_STATUS_DELAY_COUNT 2500 31 #define MCDI_STATUS_SLEEP_MS \ 32 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 33 34 #define SEQ_MASK \ 35 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 36 37 struct efx_mcdi_async_param { 38 struct list_head list; 39 unsigned int cmd; 40 size_t inlen; 41 size_t outlen; 42 bool quiet; 43 efx_mcdi_async_completer *complete; 44 unsigned long cookie; 45 /* followed by request/response buffer */ 46 }; 47 48 static void efx_mcdi_timeout_async(struct timer_list *t); 49 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 50 bool *was_attached_out); 51 static bool efx_mcdi_poll_once(struct efx_nic *efx); 52 static void efx_mcdi_abandon(struct efx_nic *efx); 53 54 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING 55 static bool efx_siena_mcdi_logging_default; 56 module_param_named(mcdi_logging_default, efx_siena_mcdi_logging_default, 57 bool, 0644); 58 MODULE_PARM_DESC(mcdi_logging_default, 59 "Enable MCDI logging on newly-probed functions"); 60 #endif 61 62 int efx_siena_mcdi_init(struct efx_nic *efx) 63 { 64 struct efx_mcdi_iface *mcdi; 65 bool already_attached; 66 int rc = -ENOMEM; 67 68 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 69 if (!efx->mcdi) 70 goto fail; 71 72 mcdi = efx_mcdi(efx); 73 mcdi->efx = efx; 74 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING 75 /* consuming code assumes buffer is page-sized */ 76 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); 77 if (!mcdi->logging_buffer) 78 goto fail1; 79 mcdi->logging_enabled = efx_siena_mcdi_logging_default; 80 #endif 81 init_waitqueue_head(&mcdi->wq); 82 init_waitqueue_head(&mcdi->proxy_rx_wq); 83 spin_lock_init(&mcdi->iface_lock); 84 mcdi->state = MCDI_STATE_QUIESCENT; 85 mcdi->mode = MCDI_MODE_POLL; 86 spin_lock_init(&mcdi->async_lock); 87 INIT_LIST_HEAD(&mcdi->async_list); 88 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0); 89 90 (void)efx_siena_mcdi_poll_reboot(efx); 91 mcdi->new_epoch = true; 92 93 /* Recover from a failed assertion before probing */ 94 rc = efx_siena_mcdi_handle_assertion(efx); 95 if (rc) 96 goto fail2; 97 98 /* Let the MC (and BMC, if this is a LOM) know that the driver 99 * is loaded. We should do this before we reset the NIC. 100 */ 101 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 102 if (rc) { 103 netif_err(efx, probe, efx->net_dev, 104 "Unable to register driver with MCPU\n"); 105 goto fail2; 106 } 107 if (already_attached) 108 /* Not a fatal error */ 109 netif_err(efx, probe, efx->net_dev, 110 "Host already registered with MCPU\n"); 111 112 if (efx->mcdi->fn_flags & 113 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 114 efx->primary = efx; 115 116 return 0; 117 fail2: 118 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING 119 free_page((unsigned long)mcdi->logging_buffer); 120 fail1: 121 #endif 122 kfree(efx->mcdi); 123 efx->mcdi = NULL; 124 fail: 125 return rc; 126 } 127 128 void efx_siena_mcdi_detach(struct efx_nic *efx) 129 { 130 if (!efx->mcdi) 131 return; 132 133 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 134 135 /* Relinquish the device (back to the BMC, if this is a LOM) */ 136 efx_mcdi_drv_attach(efx, false, NULL); 137 } 138 139 void efx_siena_mcdi_fini(struct efx_nic *efx) 140 { 141 if (!efx->mcdi) 142 return; 143 144 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING 145 free_page((unsigned long)efx->mcdi->iface.logging_buffer); 146 #endif 147 148 kfree(efx->mcdi); 149 } 150 151 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 152 const efx_dword_t *inbuf, size_t inlen) 153 { 154 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 155 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING 156 char *buf = mcdi->logging_buffer; /* page-sized */ 157 #endif 158 efx_dword_t hdr[2]; 159 size_t hdr_len; 160 u32 xflags, seqno; 161 162 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 163 164 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 165 spin_lock_bh(&mcdi->iface_lock); 166 ++mcdi->seqno; 167 seqno = mcdi->seqno & SEQ_MASK; 168 spin_unlock_bh(&mcdi->iface_lock); 169 170 xflags = 0; 171 if (mcdi->mode == MCDI_MODE_EVENTS) 172 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 173 174 if (efx->type->mcdi_max_ver == 1) { 175 /* MCDI v1 */ 176 EFX_POPULATE_DWORD_7(hdr[0], 177 MCDI_HEADER_RESPONSE, 0, 178 MCDI_HEADER_RESYNC, 1, 179 MCDI_HEADER_CODE, cmd, 180 MCDI_HEADER_DATALEN, inlen, 181 MCDI_HEADER_SEQ, seqno, 182 MCDI_HEADER_XFLAGS, xflags, 183 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 184 hdr_len = 4; 185 } else { 186 /* MCDI v2 */ 187 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 188 EFX_POPULATE_DWORD_7(hdr[0], 189 MCDI_HEADER_RESPONSE, 0, 190 MCDI_HEADER_RESYNC, 1, 191 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 192 MCDI_HEADER_DATALEN, 0, 193 MCDI_HEADER_SEQ, seqno, 194 MCDI_HEADER_XFLAGS, xflags, 195 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 196 EFX_POPULATE_DWORD_2(hdr[1], 197 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 198 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 199 hdr_len = 8; 200 } 201 202 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING 203 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 204 int bytes = 0; 205 int i; 206 /* Lengths should always be a whole number of dwords, so scream 207 * if they're not. 208 */ 209 WARN_ON_ONCE(hdr_len % 4); 210 WARN_ON_ONCE(inlen % 4); 211 212 /* We own the logging buffer, as only one MCDI can be in 213 * progress on a NIC at any one time. So no need for locking. 214 */ 215 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) 216 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 217 " %08x", 218 le32_to_cpu(hdr[i].u32[0])); 219 220 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) 221 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 222 " %08x", 223 le32_to_cpu(inbuf[i].u32[0])); 224 225 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); 226 } 227 #endif 228 229 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 230 231 mcdi->new_epoch = false; 232 } 233 234 static int efx_mcdi_errno(unsigned int mcdi_err) 235 { 236 switch (mcdi_err) { 237 case 0: 238 return 0; 239 #define TRANSLATE_ERROR(name) \ 240 case MC_CMD_ERR_ ## name: \ 241 return -name; 242 TRANSLATE_ERROR(EPERM); 243 TRANSLATE_ERROR(ENOENT); 244 TRANSLATE_ERROR(EINTR); 245 TRANSLATE_ERROR(EAGAIN); 246 TRANSLATE_ERROR(EACCES); 247 TRANSLATE_ERROR(EBUSY); 248 TRANSLATE_ERROR(EINVAL); 249 TRANSLATE_ERROR(EDEADLK); 250 TRANSLATE_ERROR(ENOSYS); 251 TRANSLATE_ERROR(ETIME); 252 TRANSLATE_ERROR(EALREADY); 253 TRANSLATE_ERROR(ENOSPC); 254 #undef TRANSLATE_ERROR 255 case MC_CMD_ERR_ENOTSUP: 256 return -EOPNOTSUPP; 257 case MC_CMD_ERR_ALLOC_FAIL: 258 return -ENOBUFS; 259 case MC_CMD_ERR_MAC_EXIST: 260 return -EADDRINUSE; 261 default: 262 return -EPROTO; 263 } 264 } 265 266 static void efx_mcdi_read_response_header(struct efx_nic *efx) 267 { 268 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 269 unsigned int respseq, respcmd, error; 270 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING 271 char *buf = mcdi->logging_buffer; /* page-sized */ 272 #endif 273 efx_dword_t hdr; 274 275 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 276 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 277 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 278 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 279 280 if (respcmd != MC_CMD_V2_EXTN) { 281 mcdi->resp_hdr_len = 4; 282 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 283 } else { 284 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 285 mcdi->resp_hdr_len = 8; 286 mcdi->resp_data_len = 287 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 288 } 289 290 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING 291 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 292 size_t hdr_len, data_len; 293 int bytes = 0; 294 int i; 295 296 WARN_ON_ONCE(mcdi->resp_hdr_len % 4); 297 hdr_len = mcdi->resp_hdr_len / 4; 298 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded 299 * to dword size, and the MCDI buffer is always dword size 300 */ 301 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); 302 303 /* We own the logging buffer, as only one MCDI can be in 304 * progress on a NIC at any one time. So no need for locking. 305 */ 306 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { 307 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); 308 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 309 " %08x", le32_to_cpu(hdr.u32[0])); 310 } 311 312 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { 313 efx->type->mcdi_read_response(efx, &hdr, 314 mcdi->resp_hdr_len + (i * 4), 4); 315 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 316 " %08x", le32_to_cpu(hdr.u32[0])); 317 } 318 319 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); 320 } 321 #endif 322 323 mcdi->resprc_raw = 0; 324 if (error && mcdi->resp_data_len == 0) { 325 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 326 mcdi->resprc = -EIO; 327 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 328 netif_err(efx, hw, efx->net_dev, 329 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 330 respseq, mcdi->seqno); 331 mcdi->resprc = -EIO; 332 } else if (error) { 333 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 334 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0); 335 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw); 336 } else { 337 mcdi->resprc = 0; 338 } 339 } 340 341 static bool efx_mcdi_poll_once(struct efx_nic *efx) 342 { 343 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 344 345 rmb(); 346 if (!efx->type->mcdi_poll_response(efx)) 347 return false; 348 349 spin_lock_bh(&mcdi->iface_lock); 350 efx_mcdi_read_response_header(efx); 351 spin_unlock_bh(&mcdi->iface_lock); 352 353 return true; 354 } 355 356 static int efx_mcdi_poll(struct efx_nic *efx) 357 { 358 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 359 unsigned long time, finish; 360 unsigned int spins; 361 int rc; 362 363 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 364 rc = efx_siena_mcdi_poll_reboot(efx); 365 if (rc) { 366 spin_lock_bh(&mcdi->iface_lock); 367 mcdi->resprc = rc; 368 mcdi->resp_hdr_len = 0; 369 mcdi->resp_data_len = 0; 370 spin_unlock_bh(&mcdi->iface_lock); 371 return 0; 372 } 373 374 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 375 * because generally mcdi responses are fast. After that, back off 376 * and poll once a jiffy (approximately) 377 */ 378 spins = USER_TICK_USEC; 379 finish = jiffies + MCDI_RPC_TIMEOUT; 380 381 while (1) { 382 if (spins != 0) { 383 --spins; 384 udelay(1); 385 } else { 386 schedule_timeout_uninterruptible(1); 387 } 388 389 time = jiffies; 390 391 if (efx_mcdi_poll_once(efx)) 392 break; 393 394 if (time_after(time, finish)) 395 return -ETIMEDOUT; 396 } 397 398 /* Return rc=0 like wait_event_timeout() */ 399 return 0; 400 } 401 402 /* Test and clear MC-rebooted flag for this port/function; reset 403 * software state as necessary. 404 */ 405 int efx_siena_mcdi_poll_reboot(struct efx_nic *efx) 406 { 407 if (!efx->mcdi) 408 return 0; 409 410 return efx->type->mcdi_poll_reboot(efx); 411 } 412 413 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 414 { 415 return cmpxchg(&mcdi->state, 416 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 417 MCDI_STATE_QUIESCENT; 418 } 419 420 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 421 { 422 /* Wait until the interface becomes QUIESCENT and we win the race 423 * to mark it RUNNING_SYNC. 424 */ 425 wait_event(mcdi->wq, 426 cmpxchg(&mcdi->state, 427 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 428 MCDI_STATE_QUIESCENT); 429 } 430 431 static int efx_mcdi_await_completion(struct efx_nic *efx) 432 { 433 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 434 435 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 436 MCDI_RPC_TIMEOUT) == 0) 437 return -ETIMEDOUT; 438 439 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 440 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 441 * completed the request first, then we'll just end up completing the 442 * request again, which is safe. 443 * 444 * We need an smp_rmb() to synchronise with efx_siena_mcdi_mode_poll(), which 445 * wait_event_timeout() implicitly provides. 446 */ 447 if (mcdi->mode == MCDI_MODE_POLL) 448 return efx_mcdi_poll(efx); 449 450 return 0; 451 } 452 453 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 454 * requester. Return whether this was done. Does not take any locks. 455 */ 456 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 457 { 458 if (cmpxchg(&mcdi->state, 459 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 460 MCDI_STATE_RUNNING_SYNC) { 461 wake_up(&mcdi->wq); 462 return true; 463 } 464 465 return false; 466 } 467 468 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 469 { 470 if (mcdi->mode == MCDI_MODE_EVENTS) { 471 struct efx_mcdi_async_param *async; 472 struct efx_nic *efx = mcdi->efx; 473 474 /* Process the asynchronous request queue */ 475 spin_lock_bh(&mcdi->async_lock); 476 async = list_first_entry_or_null( 477 &mcdi->async_list, struct efx_mcdi_async_param, list); 478 if (async) { 479 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 480 efx_mcdi_send_request(efx, async->cmd, 481 (const efx_dword_t *)(async + 1), 482 async->inlen); 483 mod_timer(&mcdi->async_timer, 484 jiffies + MCDI_RPC_TIMEOUT); 485 } 486 spin_unlock_bh(&mcdi->async_lock); 487 488 if (async) 489 return; 490 } 491 492 mcdi->state = MCDI_STATE_QUIESCENT; 493 wake_up(&mcdi->wq); 494 } 495 496 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 497 * asynchronous completion function, and release the interface. 498 * Return whether this was done. Must be called in bh-disabled 499 * context. Will take iface_lock and async_lock. 500 */ 501 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 502 { 503 struct efx_nic *efx = mcdi->efx; 504 struct efx_mcdi_async_param *async; 505 size_t hdr_len, data_len, err_len; 506 efx_dword_t *outbuf; 507 MCDI_DECLARE_BUF_ERR(errbuf); 508 int rc; 509 510 if (cmpxchg(&mcdi->state, 511 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 512 MCDI_STATE_RUNNING_ASYNC) 513 return false; 514 515 spin_lock(&mcdi->iface_lock); 516 if (timeout) { 517 /* Ensure that if the completion event arrives later, 518 * the seqno check in efx_mcdi_ev_cpl() will fail 519 */ 520 ++mcdi->seqno; 521 ++mcdi->credits; 522 rc = -ETIMEDOUT; 523 hdr_len = 0; 524 data_len = 0; 525 } else { 526 rc = mcdi->resprc; 527 hdr_len = mcdi->resp_hdr_len; 528 data_len = mcdi->resp_data_len; 529 } 530 spin_unlock(&mcdi->iface_lock); 531 532 /* Stop the timer. In case the timer function is running, we 533 * must wait for it to return so that there is no possibility 534 * of it aborting the next request. 535 */ 536 if (!timeout) 537 del_timer_sync(&mcdi->async_timer); 538 539 spin_lock(&mcdi->async_lock); 540 async = list_first_entry(&mcdi->async_list, 541 struct efx_mcdi_async_param, list); 542 list_del(&async->list); 543 spin_unlock(&mcdi->async_lock); 544 545 outbuf = (efx_dword_t *)(async + 1); 546 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 547 min(async->outlen, data_len)); 548 if (!timeout && rc && !async->quiet) { 549 err_len = min(sizeof(errbuf), data_len); 550 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 551 sizeof(errbuf)); 552 efx_siena_mcdi_display_error(efx, async->cmd, async->inlen, 553 errbuf, err_len, rc); 554 } 555 556 if (async->complete) 557 async->complete(efx, async->cookie, rc, outbuf, 558 min(async->outlen, data_len)); 559 kfree(async); 560 561 efx_mcdi_release(mcdi); 562 563 return true; 564 } 565 566 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 567 unsigned int datalen, unsigned int mcdi_err) 568 { 569 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 570 bool wake = false; 571 572 spin_lock(&mcdi->iface_lock); 573 574 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 575 if (mcdi->credits) 576 /* The request has been cancelled */ 577 --mcdi->credits; 578 else 579 netif_err(efx, hw, efx->net_dev, 580 "MC response mismatch tx seq 0x%x rx " 581 "seq 0x%x\n", seqno, mcdi->seqno); 582 } else { 583 if (efx->type->mcdi_max_ver >= 2) { 584 /* MCDI v2 responses don't fit in an event */ 585 efx_mcdi_read_response_header(efx); 586 } else { 587 mcdi->resprc = efx_mcdi_errno(mcdi_err); 588 mcdi->resp_hdr_len = 4; 589 mcdi->resp_data_len = datalen; 590 } 591 592 wake = true; 593 } 594 595 spin_unlock(&mcdi->iface_lock); 596 597 if (wake) { 598 if (!efx_mcdi_complete_async(mcdi, false)) 599 (void) efx_mcdi_complete_sync(mcdi); 600 601 /* If the interface isn't RUNNING_ASYNC or 602 * RUNNING_SYNC then we've received a duplicate 603 * completion after we've already transitioned back to 604 * QUIESCENT. [A subsequent invocation would increment 605 * seqno, so would have failed the seqno check]. 606 */ 607 } 608 } 609 610 static void efx_mcdi_timeout_async(struct timer_list *t) 611 { 612 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer); 613 614 efx_mcdi_complete_async(mcdi, true); 615 } 616 617 static int 618 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 619 { 620 if (efx->type->mcdi_max_ver < 0 || 621 (efx->type->mcdi_max_ver < 2 && 622 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 623 return -EINVAL; 624 625 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 626 (efx->type->mcdi_max_ver < 2 && 627 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 628 return -EMSGSIZE; 629 630 return 0; 631 } 632 633 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx, 634 size_t hdr_len, size_t data_len, 635 u32 *proxy_handle) 636 { 637 MCDI_DECLARE_BUF_ERR(testbuf); 638 const size_t buflen = sizeof(testbuf); 639 640 if (!proxy_handle || data_len < buflen) 641 return false; 642 643 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen); 644 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) { 645 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE); 646 return true; 647 } 648 649 return false; 650 } 651 652 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd, 653 size_t inlen, 654 efx_dword_t *outbuf, size_t outlen, 655 size_t *outlen_actual, bool quiet, 656 u32 *proxy_handle, int *raw_rc) 657 { 658 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 659 MCDI_DECLARE_BUF_ERR(errbuf); 660 int rc; 661 662 if (mcdi->mode == MCDI_MODE_POLL) 663 rc = efx_mcdi_poll(efx); 664 else 665 rc = efx_mcdi_await_completion(efx); 666 667 if (rc != 0) { 668 netif_err(efx, hw, efx->net_dev, 669 "MC command 0x%x inlen %d mode %d timed out\n", 670 cmd, (int)inlen, mcdi->mode); 671 672 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 673 netif_err(efx, hw, efx->net_dev, 674 "MCDI request was completed without an event\n"); 675 rc = 0; 676 } 677 678 efx_mcdi_abandon(efx); 679 680 /* Close the race with efx_mcdi_ev_cpl() executing just too late 681 * and completing a request we've just cancelled, by ensuring 682 * that the seqno check therein fails. 683 */ 684 spin_lock_bh(&mcdi->iface_lock); 685 ++mcdi->seqno; 686 ++mcdi->credits; 687 spin_unlock_bh(&mcdi->iface_lock); 688 } 689 690 if (proxy_handle) 691 *proxy_handle = 0; 692 693 if (rc != 0) { 694 if (outlen_actual) 695 *outlen_actual = 0; 696 } else { 697 size_t hdr_len, data_len, err_len; 698 699 /* At the very least we need a memory barrier here to ensure 700 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 701 * a spurious efx_mcdi_ev_cpl() running concurrently by 702 * acquiring the iface_lock. */ 703 spin_lock_bh(&mcdi->iface_lock); 704 rc = mcdi->resprc; 705 if (raw_rc) 706 *raw_rc = mcdi->resprc_raw; 707 hdr_len = mcdi->resp_hdr_len; 708 data_len = mcdi->resp_data_len; 709 err_len = min(sizeof(errbuf), data_len); 710 spin_unlock_bh(&mcdi->iface_lock); 711 712 BUG_ON(rc > 0); 713 714 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 715 min(outlen, data_len)); 716 if (outlen_actual) 717 *outlen_actual = data_len; 718 719 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 720 721 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 722 /* Don't reset if MC_CMD_REBOOT returns EIO */ 723 } else if (rc == -EIO || rc == -EINTR) { 724 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n"); 725 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n", 726 cmd, -rc); 727 if (efx->type->mcdi_reboot_detected) 728 efx->type->mcdi_reboot_detected(efx); 729 efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 730 } else if (proxy_handle && (rc == -EPROTO) && 731 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len, 732 proxy_handle)) { 733 mcdi->proxy_rx_status = 0; 734 mcdi->proxy_rx_handle = 0; 735 mcdi->state = MCDI_STATE_PROXY_WAIT; 736 } else if (rc && !quiet) { 737 efx_siena_mcdi_display_error(efx, cmd, inlen, errbuf, 738 err_len, rc); 739 } 740 741 if (rc == -EIO || rc == -EINTR) { 742 msleep(MCDI_STATUS_SLEEP_MS); 743 efx_siena_mcdi_poll_reboot(efx); 744 mcdi->new_epoch = true; 745 } 746 } 747 748 if (!proxy_handle || !*proxy_handle) 749 efx_mcdi_release(mcdi); 750 return rc; 751 } 752 753 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi) 754 { 755 if (mcdi->state == MCDI_STATE_PROXY_WAIT) { 756 /* Interrupt the proxy wait. */ 757 mcdi->proxy_rx_status = -EINTR; 758 wake_up(&mcdi->proxy_rx_wq); 759 } 760 } 761 762 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx, 763 u32 handle, int status) 764 { 765 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 766 767 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT); 768 769 mcdi->proxy_rx_status = efx_mcdi_errno(status); 770 /* Ensure the status is written before we update the handle, since the 771 * latter is used to check if we've finished. 772 */ 773 wmb(); 774 mcdi->proxy_rx_handle = handle; 775 wake_up(&mcdi->proxy_rx_wq); 776 } 777 778 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet) 779 { 780 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 781 int rc; 782 783 /* Wait for a proxy event, or timeout. */ 784 rc = wait_event_timeout(mcdi->proxy_rx_wq, 785 mcdi->proxy_rx_handle != 0 || 786 mcdi->proxy_rx_status == -EINTR, 787 MCDI_RPC_TIMEOUT); 788 789 if (rc <= 0) { 790 netif_dbg(efx, hw, efx->net_dev, 791 "MCDI proxy timeout %d\n", handle); 792 return -ETIMEDOUT; 793 } else if (mcdi->proxy_rx_handle != handle) { 794 netif_warn(efx, hw, efx->net_dev, 795 "MCDI proxy unexpected handle %d (expected %d)\n", 796 mcdi->proxy_rx_handle, handle); 797 return -EINVAL; 798 } 799 800 return mcdi->proxy_rx_status; 801 } 802 803 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd, 804 const efx_dword_t *inbuf, size_t inlen, 805 efx_dword_t *outbuf, size_t outlen, 806 size_t *outlen_actual, bool quiet, int *raw_rc) 807 { 808 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */ 809 int rc; 810 811 if (inbuf && inlen && (inbuf == outbuf)) { 812 /* The input buffer can't be aliased with the output. */ 813 WARN_ON(1); 814 return -EINVAL; 815 } 816 817 rc = efx_siena_mcdi_rpc_start(efx, cmd, inbuf, inlen); 818 if (rc) 819 return rc; 820 821 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 822 outlen_actual, quiet, &proxy_handle, raw_rc); 823 824 if (proxy_handle) { 825 /* Handle proxy authorisation. This allows approval of MCDI 826 * operations to be delegated to the admin function, allowing 827 * fine control over (eg) multicast subscriptions. 828 */ 829 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 830 831 netif_dbg(efx, hw, efx->net_dev, 832 "MCDI waiting for proxy auth %d\n", 833 proxy_handle); 834 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet); 835 836 if (rc == 0) { 837 netif_dbg(efx, hw, efx->net_dev, 838 "MCDI proxy retry %d\n", proxy_handle); 839 840 /* We now retry the original request. */ 841 mcdi->state = MCDI_STATE_RUNNING_SYNC; 842 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 843 844 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, 845 outbuf, outlen, outlen_actual, 846 quiet, NULL, raw_rc); 847 } else { 848 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 849 "MC command 0x%x failed after proxy auth rc=%d\n", 850 cmd, rc); 851 852 if (rc == -EINTR || rc == -EIO) 853 efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 854 efx_mcdi_release(mcdi); 855 } 856 } 857 858 return rc; 859 } 860 861 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd, 862 const efx_dword_t *inbuf, size_t inlen, 863 efx_dword_t *outbuf, size_t outlen, 864 size_t *outlen_actual, bool quiet) 865 { 866 int raw_rc = 0; 867 int rc; 868 869 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 870 outbuf, outlen, outlen_actual, true, &raw_rc); 871 872 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 873 efx->type->is_vf) { 874 /* If the EVB port isn't available within a VF this may 875 * mean the PF is still bringing the switch up. We should 876 * retry our request shortly. 877 */ 878 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT; 879 unsigned int delay_us = 10000; 880 881 netif_dbg(efx, hw, efx->net_dev, 882 "%s: NO_EVB_PORT; will retry request\n", 883 __func__); 884 885 do { 886 usleep_range(delay_us, delay_us + 10000); 887 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 888 outbuf, outlen, outlen_actual, 889 true, &raw_rc); 890 if (delay_us < 100000) 891 delay_us <<= 1; 892 } while ((rc == -EPROTO) && 893 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 894 time_before(jiffies, abort_time)); 895 } 896 897 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO)) 898 efx_siena_mcdi_display_error(efx, cmd, inlen, 899 outbuf, outlen, rc); 900 901 return rc; 902 } 903 904 /** 905 * efx_siena_mcdi_rpc - Issue an MCDI command and wait for completion 906 * @efx: NIC through which to issue the command 907 * @cmd: Command type number 908 * @inbuf: Command parameters 909 * @inlen: Length of command parameters, in bytes. Must be a multiple 910 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1. 911 * @outbuf: Response buffer. May be %NULL if @outlen is 0. 912 * @outlen: Length of response buffer, in bytes. If the actual 913 * response is longer than @outlen & ~3, it will be truncated 914 * to that length. 915 * @outlen_actual: Pointer through which to return the actual response 916 * length. May be %NULL if this is not needed. 917 * 918 * This function may sleep and therefore must be called in an appropriate 919 * context. 920 * 921 * Return: A negative error code, or zero if successful. The error 922 * code may come from the MCDI response or may indicate a failure 923 * to communicate with the MC. In the former case, the response 924 * will still be copied to @outbuf and *@outlen_actual will be 925 * set accordingly. In the latter case, *@outlen_actual will be 926 * set to zero. 927 */ 928 int efx_siena_mcdi_rpc(struct efx_nic *efx, unsigned int cmd, 929 const efx_dword_t *inbuf, size_t inlen, 930 efx_dword_t *outbuf, size_t outlen, 931 size_t *outlen_actual) 932 { 933 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 934 outlen_actual, false); 935 } 936 937 /* Normally, on receiving an error code in the MCDI response, 938 * efx_siena_mcdi_rpc will log an error message containing (among other 939 * things) the raw error code, by means of efx_siena_mcdi_display_error. 940 * This _quiet version suppresses that; if the caller wishes to log 941 * the error conditionally on the return code, it should call this 942 * function and is then responsible for calling efx_siena_mcdi_display_error 943 * as needed. 944 */ 945 int efx_siena_mcdi_rpc_quiet(struct efx_nic *efx, unsigned int cmd, 946 const efx_dword_t *inbuf, size_t inlen, 947 efx_dword_t *outbuf, size_t outlen, 948 size_t *outlen_actual) 949 { 950 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 951 outlen_actual, true); 952 } 953 954 int efx_siena_mcdi_rpc_start(struct efx_nic *efx, unsigned int cmd, 955 const efx_dword_t *inbuf, size_t inlen) 956 { 957 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 958 int rc; 959 960 rc = efx_mcdi_check_supported(efx, cmd, inlen); 961 if (rc) 962 return rc; 963 964 if (efx->mc_bist_for_other_fn) 965 return -ENETDOWN; 966 967 if (mcdi->mode == MCDI_MODE_FAIL) 968 return -ENETDOWN; 969 970 efx_mcdi_acquire_sync(mcdi); 971 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 972 return 0; 973 } 974 975 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 976 const efx_dword_t *inbuf, size_t inlen, 977 size_t outlen, 978 efx_mcdi_async_completer *complete, 979 unsigned long cookie, bool quiet) 980 { 981 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 982 struct efx_mcdi_async_param *async; 983 int rc; 984 985 rc = efx_mcdi_check_supported(efx, cmd, inlen); 986 if (rc) 987 return rc; 988 989 if (efx->mc_bist_for_other_fn) 990 return -ENETDOWN; 991 992 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 993 GFP_ATOMIC); 994 if (!async) 995 return -ENOMEM; 996 997 async->cmd = cmd; 998 async->inlen = inlen; 999 async->outlen = outlen; 1000 async->quiet = quiet; 1001 async->complete = complete; 1002 async->cookie = cookie; 1003 memcpy(async + 1, inbuf, inlen); 1004 1005 spin_lock_bh(&mcdi->async_lock); 1006 1007 if (mcdi->mode == MCDI_MODE_EVENTS) { 1008 list_add_tail(&async->list, &mcdi->async_list); 1009 1010 /* If this is at the front of the queue, try to start it 1011 * immediately 1012 */ 1013 if (mcdi->async_list.next == &async->list && 1014 efx_mcdi_acquire_async(mcdi)) { 1015 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 1016 mod_timer(&mcdi->async_timer, 1017 jiffies + MCDI_RPC_TIMEOUT); 1018 } 1019 } else { 1020 kfree(async); 1021 rc = -ENETDOWN; 1022 } 1023 1024 spin_unlock_bh(&mcdi->async_lock); 1025 1026 return rc; 1027 } 1028 1029 /** 1030 * efx_siena_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 1031 * @efx: NIC through which to issue the command 1032 * @cmd: Command type number 1033 * @inbuf: Command parameters 1034 * @inlen: Length of command parameters, in bytes 1035 * @outlen: Length to allocate for response buffer, in bytes 1036 * @complete: Function to be called on completion or cancellation. 1037 * @cookie: Arbitrary value to be passed to @complete. 1038 * 1039 * This function does not sleep and therefore may be called in atomic 1040 * context. It will fail if event queues are disabled or if MCDI 1041 * event completions have been disabled due to an error. 1042 * 1043 * If it succeeds, the @complete function will be called exactly once 1044 * in atomic context, when one of the following occurs: 1045 * (a) the completion event is received (in NAPI context) 1046 * (b) event queues are disabled (in the process that disables them) 1047 * (c) the request times-out (in timer context) 1048 */ 1049 int 1050 efx_siena_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 1051 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 1052 efx_mcdi_async_completer *complete, 1053 unsigned long cookie) 1054 { 1055 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1056 cookie, false); 1057 } 1058 1059 int efx_siena_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, 1060 const efx_dword_t *inbuf, size_t inlen, 1061 size_t outlen, 1062 efx_mcdi_async_completer *complete, 1063 unsigned long cookie) 1064 { 1065 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1066 cookie, true); 1067 } 1068 1069 int efx_siena_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd, 1070 size_t inlen, efx_dword_t *outbuf, size_t outlen, 1071 size_t *outlen_actual) 1072 { 1073 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1074 outlen_actual, false, NULL, NULL); 1075 } 1076 1077 int efx_siena_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned int cmd, 1078 size_t inlen, efx_dword_t *outbuf, 1079 size_t outlen, size_t *outlen_actual) 1080 { 1081 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1082 outlen_actual, true, NULL, NULL); 1083 } 1084 1085 void efx_siena_mcdi_display_error(struct efx_nic *efx, unsigned int cmd, 1086 size_t inlen, efx_dword_t *outbuf, 1087 size_t outlen, int rc) 1088 { 1089 int code = 0, err_arg = 0; 1090 1091 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 1092 code = MCDI_DWORD(outbuf, ERR_CODE); 1093 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 1094 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 1095 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 1096 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n", 1097 cmd, inlen, rc, code, err_arg); 1098 } 1099 1100 /* Switch to polled MCDI completions. This can be called in various 1101 * error conditions with various locks held, so it must be lockless. 1102 * Caller is responsible for flushing asynchronous requests later. 1103 */ 1104 void efx_siena_mcdi_mode_poll(struct efx_nic *efx) 1105 { 1106 struct efx_mcdi_iface *mcdi; 1107 1108 if (!efx->mcdi) 1109 return; 1110 1111 mcdi = efx_mcdi(efx); 1112 /* If already in polling mode, nothing to do. 1113 * If in fail-fast state, don't switch to polled completion. 1114 * FLR recovery will do that later. 1115 */ 1116 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) 1117 return; 1118 1119 /* We can switch from event completion to polled completion, because 1120 * mcdi requests are always completed in shared memory. We do this by 1121 * switching the mode to POLL'd then completing the request. 1122 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 1123 * 1124 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 1125 * which efx_mcdi_complete_sync() provides for us. 1126 */ 1127 mcdi->mode = MCDI_MODE_POLL; 1128 1129 efx_mcdi_complete_sync(mcdi); 1130 } 1131 1132 /* Flush any running or queued asynchronous requests, after event processing 1133 * is stopped 1134 */ 1135 void efx_siena_mcdi_flush_async(struct efx_nic *efx) 1136 { 1137 struct efx_mcdi_async_param *async, *next; 1138 struct efx_mcdi_iface *mcdi; 1139 1140 if (!efx->mcdi) 1141 return; 1142 1143 mcdi = efx_mcdi(efx); 1144 1145 /* We must be in poll or fail mode so no more requests can be queued */ 1146 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); 1147 1148 del_timer_sync(&mcdi->async_timer); 1149 1150 /* If a request is still running, make sure we give the MC 1151 * time to complete it so that the response won't overwrite our 1152 * next request. 1153 */ 1154 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 1155 efx_mcdi_poll(efx); 1156 mcdi->state = MCDI_STATE_QUIESCENT; 1157 } 1158 1159 /* Nothing else will access the async list now, so it is safe 1160 * to walk it without holding async_lock. If we hold it while 1161 * calling a completer then lockdep may warn that we have 1162 * acquired locks in the wrong order. 1163 */ 1164 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 1165 if (async->complete) 1166 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 1167 list_del(&async->list); 1168 kfree(async); 1169 } 1170 } 1171 1172 void efx_siena_mcdi_mode_event(struct efx_nic *efx) 1173 { 1174 struct efx_mcdi_iface *mcdi; 1175 1176 if (!efx->mcdi) 1177 return; 1178 1179 mcdi = efx_mcdi(efx); 1180 /* If already in event completion mode, nothing to do. 1181 * If in fail-fast state, don't switch to event completion. FLR 1182 * recovery will do that later. 1183 */ 1184 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) 1185 return; 1186 1187 /* We can't switch from polled to event completion in the middle of a 1188 * request, because the completion method is specified in the request. 1189 * So acquire the interface to serialise the requestors. We don't need 1190 * to acquire the iface_lock to change the mode here, but we do need a 1191 * write memory barrier ensure that efx_siena_mcdi_rpc() sees it, which 1192 * efx_mcdi_acquire() provides. 1193 */ 1194 efx_mcdi_acquire_sync(mcdi); 1195 mcdi->mode = MCDI_MODE_EVENTS; 1196 efx_mcdi_release(mcdi); 1197 } 1198 1199 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 1200 { 1201 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1202 1203 /* If there is an outstanding MCDI request, it has been terminated 1204 * either by a BADASSERT or REBOOT event. If the mcdi interface is 1205 * in polled mode, then do nothing because the MC reboot handler will 1206 * set the header correctly. However, if the mcdi interface is waiting 1207 * for a CMDDONE event it won't receive it [and since all MCDI events 1208 * are sent to the same queue, we can't be racing with 1209 * efx_mcdi_ev_cpl()] 1210 * 1211 * If there is an outstanding asynchronous request, we can't 1212 * complete it now (efx_mcdi_complete() would deadlock). The 1213 * reset process will take care of this. 1214 * 1215 * There's a race here with efx_mcdi_send_request(), because 1216 * we might receive a REBOOT event *before* the request has 1217 * been copied out. In polled mode (during startup) this is 1218 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 1219 * event mode, this condition is just an edge-case of 1220 * receiving a REBOOT event after posting the MCDI 1221 * request. Did the mc reboot before or after the copyout? The 1222 * best we can do always is just return failure. 1223 * 1224 * If there is an outstanding proxy response expected it is not going 1225 * to arrive. We should thus abort it. 1226 */ 1227 spin_lock(&mcdi->iface_lock); 1228 efx_mcdi_proxy_abort(mcdi); 1229 1230 if (efx_mcdi_complete_sync(mcdi)) { 1231 if (mcdi->mode == MCDI_MODE_EVENTS) { 1232 mcdi->resprc = rc; 1233 mcdi->resp_hdr_len = 0; 1234 mcdi->resp_data_len = 0; 1235 ++mcdi->credits; 1236 } 1237 } else { 1238 int count; 1239 1240 /* Consume the status word since efx_siena_mcdi_rpc_finish() won't */ 1241 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 1242 rc = efx_siena_mcdi_poll_reboot(efx); 1243 if (rc) 1244 break; 1245 udelay(MCDI_STATUS_DELAY_US); 1246 } 1247 1248 /* On EF10, a CODE_MC_REBOOT event can be received without the 1249 * reboot detection in efx_siena_mcdi_poll_reboot() being triggered. 1250 * If zero was returned from the final call to 1251 * efx_siena_mcdi_poll_reboot(), the MC reboot wasn't noticed but the 1252 * MC has definitely rebooted so prepare for the reset. 1253 */ 1254 if (!rc && efx->type->mcdi_reboot_detected) 1255 efx->type->mcdi_reboot_detected(efx); 1256 1257 mcdi->new_epoch = true; 1258 1259 /* Nobody was waiting for an MCDI request, so trigger a reset */ 1260 efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 1261 } 1262 1263 spin_unlock(&mcdi->iface_lock); 1264 } 1265 1266 /* The MC is going down in to BIST mode. set the BIST flag to block 1267 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset 1268 * (which doesn't actually execute a reset, it waits for the controlling 1269 * function to reset it). 1270 */ 1271 static void efx_mcdi_ev_bist(struct efx_nic *efx) 1272 { 1273 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1274 1275 spin_lock(&mcdi->iface_lock); 1276 efx->mc_bist_for_other_fn = true; 1277 efx_mcdi_proxy_abort(mcdi); 1278 1279 if (efx_mcdi_complete_sync(mcdi)) { 1280 if (mcdi->mode == MCDI_MODE_EVENTS) { 1281 mcdi->resprc = -EIO; 1282 mcdi->resp_hdr_len = 0; 1283 mcdi->resp_data_len = 0; 1284 ++mcdi->credits; 1285 } 1286 } 1287 mcdi->new_epoch = true; 1288 efx_siena_schedule_reset(efx, RESET_TYPE_MC_BIST); 1289 spin_unlock(&mcdi->iface_lock); 1290 } 1291 1292 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try 1293 * to recover. 1294 */ 1295 static void efx_mcdi_abandon(struct efx_nic *efx) 1296 { 1297 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1298 1299 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) 1300 return; /* it had already been done */ 1301 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); 1302 efx_siena_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); 1303 } 1304 1305 static void efx_handle_drain_event(struct efx_nic *efx) 1306 { 1307 if (atomic_dec_and_test(&efx->active_queues)) 1308 wake_up(&efx->flush_wq); 1309 1310 WARN_ON(atomic_read(&efx->active_queues) < 0); 1311 } 1312 1313 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */ 1314 void efx_siena_mcdi_process_event(struct efx_channel *channel, 1315 efx_qword_t *event) 1316 { 1317 struct efx_nic *efx = channel->efx; 1318 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 1319 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 1320 1321 switch (code) { 1322 case MCDI_EVENT_CODE_BADSSERT: 1323 netif_err(efx, hw, efx->net_dev, 1324 "MC watchdog or assertion failure at 0x%x\n", data); 1325 efx_mcdi_ev_death(efx, -EINTR); 1326 break; 1327 1328 case MCDI_EVENT_CODE_PMNOTICE: 1329 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 1330 break; 1331 1332 case MCDI_EVENT_CODE_CMDDONE: 1333 efx_mcdi_ev_cpl(efx, 1334 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 1335 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 1336 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 1337 break; 1338 1339 case MCDI_EVENT_CODE_LINKCHANGE: 1340 efx_siena_mcdi_process_link_change(efx, event); 1341 break; 1342 case MCDI_EVENT_CODE_SENSOREVT: 1343 efx_sensor_event(efx, event); 1344 break; 1345 case MCDI_EVENT_CODE_SCHEDERR: 1346 netif_dbg(efx, hw, efx->net_dev, 1347 "MC Scheduler alert (0x%x)\n", data); 1348 break; 1349 case MCDI_EVENT_CODE_REBOOT: 1350 case MCDI_EVENT_CODE_MC_REBOOT: 1351 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1352 efx_mcdi_ev_death(efx, -EIO); 1353 break; 1354 case MCDI_EVENT_CODE_MC_BIST: 1355 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1356 efx_mcdi_ev_bist(efx); 1357 break; 1358 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1359 /* MAC stats are gather lazily. We can ignore this. */ 1360 break; 1361 case MCDI_EVENT_CODE_FLR: 1362 if (efx->type->sriov_flr) 1363 efx->type->sriov_flr(efx, 1364 MCDI_EVENT_FIELD(*event, FLR_VF)); 1365 break; 1366 case MCDI_EVENT_CODE_PTP_RX: 1367 case MCDI_EVENT_CODE_PTP_FAULT: 1368 case MCDI_EVENT_CODE_PTP_PPS: 1369 efx_siena_ptp_event(efx, event); 1370 break; 1371 case MCDI_EVENT_CODE_PTP_TIME: 1372 efx_siena_time_sync_event(channel, event); 1373 break; 1374 case MCDI_EVENT_CODE_TX_FLUSH: 1375 case MCDI_EVENT_CODE_RX_FLUSH: 1376 /* Two flush events will be sent: one to the same event 1377 * queue as completions, and one to event queue 0. 1378 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1379 * flag will be set, and we should ignore the event 1380 * because we want to wait for all completions. 1381 */ 1382 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1383 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1384 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1385 efx_handle_drain_event(efx); 1386 break; 1387 case MCDI_EVENT_CODE_TX_ERR: 1388 case MCDI_EVENT_CODE_RX_ERR: 1389 netif_err(efx, hw, efx->net_dev, 1390 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1391 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1392 EFX_QWORD_VAL(*event)); 1393 efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1394 break; 1395 case MCDI_EVENT_CODE_PROXY_RESPONSE: 1396 efx_mcdi_ev_proxy_response(efx, 1397 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE), 1398 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC)); 1399 break; 1400 default: 1401 netif_err(efx, hw, efx->net_dev, 1402 "Unknown MCDI event " EFX_QWORD_FMT "\n", 1403 EFX_QWORD_VAL(*event)); 1404 } 1405 } 1406 1407 /************************************************************************** 1408 * 1409 * Specific request functions 1410 * 1411 ************************************************************************** 1412 */ 1413 1414 void efx_siena_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1415 { 1416 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); 1417 size_t outlength; 1418 const __le16 *ver_words; 1419 size_t offset; 1420 int rc; 1421 1422 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1423 rc = efx_siena_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1424 outbuf, sizeof(outbuf), &outlength); 1425 if (rc) 1426 goto fail; 1427 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1428 rc = -EIO; 1429 goto fail; 1430 } 1431 1432 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1433 offset = scnprintf(buf, len, "%u.%u.%u.%u", 1434 le16_to_cpu(ver_words[0]), 1435 le16_to_cpu(ver_words[1]), 1436 le16_to_cpu(ver_words[2]), 1437 le16_to_cpu(ver_words[3])); 1438 1439 if (efx->type->print_additional_fwver) 1440 offset += efx->type->print_additional_fwver(efx, buf + offset, 1441 len - offset); 1442 1443 /* It's theoretically possible for the string to exceed 31 1444 * characters, though in practice the first three version 1445 * components are short enough that this doesn't happen. 1446 */ 1447 if (WARN_ON(offset >= len)) 1448 buf[0] = 0; 1449 1450 return; 1451 1452 fail: 1453 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1454 buf[0] = 0; 1455 } 1456 1457 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1458 bool *was_attached) 1459 { 1460 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1461 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1462 size_t outlen; 1463 int rc; 1464 1465 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1466 driver_operating ? 1 : 0); 1467 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1468 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1469 1470 rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, 1471 sizeof(inbuf), outbuf, sizeof(outbuf), 1472 &outlen); 1473 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID 1474 * specified will fail with EPERM, and we have to tell the MC we don't 1475 * care what firmware we get. 1476 */ 1477 if (rc == -EPERM) { 1478 netif_dbg(efx, probe, efx->net_dev, 1479 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n"); 1480 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, 1481 MC_CMD_FW_DONT_CARE); 1482 rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, 1483 sizeof(inbuf), outbuf, 1484 sizeof(outbuf), &outlen); 1485 } 1486 if (rc) { 1487 efx_siena_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, 1488 sizeof(inbuf), outbuf, outlen, rc); 1489 goto fail; 1490 } 1491 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1492 rc = -EIO; 1493 goto fail; 1494 } 1495 1496 if (driver_operating) { 1497 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1498 efx->mcdi->fn_flags = 1499 MCDI_DWORD(outbuf, 1500 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1501 } else { 1502 /* Synthesise flags for Siena */ 1503 efx->mcdi->fn_flags = 1504 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1505 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1506 (efx_port_num(efx) == 0) << 1507 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1508 } 1509 } 1510 1511 /* We currently assume we have control of the external link 1512 * and are completely trusted by firmware. Abort probing 1513 * if that's not true for this function. 1514 */ 1515 1516 if (was_attached != NULL) 1517 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1518 return 0; 1519 1520 fail: 1521 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1522 return rc; 1523 } 1524 1525 int efx_siena_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1526 u16 *fw_subtype_list, u32 *capabilities) 1527 { 1528 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1529 size_t outlen, i; 1530 int port_num = efx_port_num(efx); 1531 int rc; 1532 1533 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1534 /* we need __aligned(2) for ether_addr_copy */ 1535 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); 1536 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); 1537 1538 rc = efx_siena_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1539 outbuf, sizeof(outbuf), &outlen); 1540 if (rc) 1541 goto fail; 1542 1543 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1544 rc = -EIO; 1545 goto fail; 1546 } 1547 1548 if (mac_address) 1549 ether_addr_copy(mac_address, 1550 port_num ? 1551 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1552 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); 1553 if (fw_subtype_list) { 1554 for (i = 0; 1555 i < MCDI_VAR_ARRAY_LEN(outlen, 1556 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1557 i++) 1558 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1559 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1560 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1561 fw_subtype_list[i] = 0; 1562 } 1563 if (capabilities) { 1564 if (port_num) 1565 *capabilities = MCDI_DWORD(outbuf, 1566 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1567 else 1568 *capabilities = MCDI_DWORD(outbuf, 1569 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1570 } 1571 1572 return 0; 1573 1574 fail: 1575 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1576 __func__, rc, (int)outlen); 1577 1578 return rc; 1579 } 1580 1581 int efx_siena_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, 1582 u32 dest_evq) 1583 { 1584 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1585 u32 dest = 0; 1586 int rc; 1587 1588 if (uart) 1589 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1590 if (evq) 1591 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1592 1593 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1594 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1595 1596 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1597 1598 rc = efx_siena_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1599 NULL, 0, NULL); 1600 return rc; 1601 } 1602 1603 int efx_siena_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1604 { 1605 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1606 size_t outlen; 1607 int rc; 1608 1609 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1610 1611 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1612 outbuf, sizeof(outbuf), &outlen); 1613 if (rc) 1614 goto fail; 1615 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1616 rc = -EIO; 1617 goto fail; 1618 } 1619 1620 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1621 return 0; 1622 1623 fail: 1624 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1625 __func__, rc); 1626 return rc; 1627 } 1628 1629 int efx_siena_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1630 size_t *size_out, size_t *erase_size_out, 1631 bool *protected_out) 1632 { 1633 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1634 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1635 size_t outlen; 1636 int rc; 1637 1638 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1639 1640 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1641 outbuf, sizeof(outbuf), &outlen); 1642 if (rc) 1643 goto fail; 1644 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1645 rc = -EIO; 1646 goto fail; 1647 } 1648 1649 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1650 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1651 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1652 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1653 return 0; 1654 1655 fail: 1656 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1657 return rc; 1658 } 1659 1660 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1661 { 1662 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1663 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1664 int rc; 1665 1666 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1667 1668 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1669 outbuf, sizeof(outbuf), NULL); 1670 if (rc) 1671 return rc; 1672 1673 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1674 case MC_CMD_NVRAM_TEST_PASS: 1675 case MC_CMD_NVRAM_TEST_NOTSUPP: 1676 return 0; 1677 default: 1678 return -EIO; 1679 } 1680 } 1681 1682 int efx_siena_mcdi_nvram_test_all(struct efx_nic *efx) 1683 { 1684 u32 nvram_types; 1685 unsigned int type; 1686 int rc; 1687 1688 rc = efx_siena_mcdi_nvram_types(efx, &nvram_types); 1689 if (rc) 1690 goto fail1; 1691 1692 type = 0; 1693 while (nvram_types != 0) { 1694 if (nvram_types & 1) { 1695 rc = efx_mcdi_nvram_test(efx, type); 1696 if (rc) 1697 goto fail2; 1698 } 1699 type++; 1700 nvram_types >>= 1; 1701 } 1702 1703 return 0; 1704 1705 fail2: 1706 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1707 __func__, type); 1708 fail1: 1709 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1710 return rc; 1711 } 1712 1713 /* Returns 1 if an assertion was read, 0 if no assertion had fired, 1714 * negative on error. 1715 */ 1716 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1717 { 1718 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1719 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1720 unsigned int flags, index; 1721 const char *reason; 1722 size_t outlen; 1723 int retry; 1724 int rc; 1725 1726 /* Attempt to read any stored assertion state before we reboot 1727 * the mcfw out of the assertion handler. Retry twice, once 1728 * because a boot-time assertion might cause this command to fail 1729 * with EINTR. And once again because GET_ASSERTS can race with 1730 * MC_CMD_REBOOT running on the other port. */ 1731 retry = 2; 1732 do { 1733 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1734 rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1735 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1736 outbuf, sizeof(outbuf), &outlen); 1737 if (rc == -EPERM) 1738 return 0; 1739 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1740 1741 if (rc) { 1742 efx_siena_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1743 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1744 outlen, rc); 1745 return rc; 1746 } 1747 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1748 return -EIO; 1749 1750 /* Print out any recorded assertion state */ 1751 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1752 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1753 return 0; 1754 1755 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1756 ? "system-level assertion" 1757 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1758 ? "thread-level assertion" 1759 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1760 ? "watchdog reset" 1761 : "unknown assertion"; 1762 netif_err(efx, hw, efx->net_dev, 1763 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1764 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1765 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1766 1767 /* Print out the registers */ 1768 for (index = 0; 1769 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1770 index++) 1771 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1772 1 + index, 1773 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1774 index)); 1775 1776 return 1; 1777 } 1778 1779 static int efx_mcdi_exit_assertion(struct efx_nic *efx) 1780 { 1781 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1782 int rc; 1783 1784 /* If the MC is running debug firmware, it might now be 1785 * waiting for a debugger to attach, but we just want it to 1786 * reboot. We set a flag that makes the command a no-op if it 1787 * has already done so. 1788 * The MCDI will thus return either 0 or -EIO. 1789 */ 1790 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1791 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1792 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1793 rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, 1794 MC_CMD_REBOOT_IN_LEN, NULL, 0, NULL); 1795 if (rc == -EIO) 1796 rc = 0; 1797 if (rc) 1798 efx_siena_mcdi_display_error(efx, MC_CMD_REBOOT, 1799 MC_CMD_REBOOT_IN_LEN, NULL, 0, rc); 1800 return rc; 1801 } 1802 1803 int efx_siena_mcdi_handle_assertion(struct efx_nic *efx) 1804 { 1805 int rc; 1806 1807 rc = efx_mcdi_read_assertion(efx); 1808 if (rc <= 0) 1809 return rc; 1810 1811 return efx_mcdi_exit_assertion(efx); 1812 } 1813 1814 int efx_siena_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1815 { 1816 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1817 1818 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1819 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1820 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1821 1822 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1823 1824 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1825 1826 return efx_siena_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), 1827 NULL, 0, NULL); 1828 } 1829 1830 static int efx_mcdi_reset_func(struct efx_nic *efx) 1831 { 1832 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1833 int rc; 1834 1835 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1836 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1837 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1838 rc = efx_siena_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1839 NULL, 0, NULL); 1840 return rc; 1841 } 1842 1843 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1844 { 1845 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1846 int rc; 1847 1848 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1849 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1850 rc = efx_siena_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1851 NULL, 0, NULL); 1852 /* White is black, and up is down */ 1853 if (rc == -EIO) 1854 return 0; 1855 if (rc == 0) 1856 rc = -EIO; 1857 return rc; 1858 } 1859 1860 enum reset_type efx_siena_mcdi_map_reset_reason(enum reset_type reason) 1861 { 1862 return RESET_TYPE_RECOVER_OR_ALL; 1863 } 1864 1865 int efx_siena_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1866 { 1867 int rc; 1868 1869 /* If MCDI is down, we can't handle_assertion */ 1870 if (method == RESET_TYPE_MCDI_TIMEOUT) { 1871 rc = pci_reset_function(efx->pci_dev); 1872 if (rc) 1873 return rc; 1874 /* Re-enable polled MCDI completion */ 1875 if (efx->mcdi) { 1876 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1877 mcdi->mode = MCDI_MODE_POLL; 1878 } 1879 return 0; 1880 } 1881 1882 /* Recover from a failed assertion pre-reset */ 1883 rc = efx_siena_mcdi_handle_assertion(efx); 1884 if (rc) 1885 return rc; 1886 1887 if (method == RESET_TYPE_DATAPATH) 1888 return 0; 1889 else if (method == RESET_TYPE_WORLD) 1890 return efx_mcdi_reset_mc(efx); 1891 else 1892 return efx_mcdi_reset_func(efx); 1893 } 1894 1895 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1896 const u8 *mac, int *id_out) 1897 { 1898 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1899 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1900 size_t outlen; 1901 int rc; 1902 1903 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1904 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1905 MC_CMD_FILTER_MODE_SIMPLE); 1906 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); 1907 1908 rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, 1909 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); 1910 if (rc) 1911 goto fail; 1912 1913 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1914 rc = -EIO; 1915 goto fail; 1916 } 1917 1918 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1919 1920 return 0; 1921 1922 fail: 1923 *id_out = -1; 1924 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1925 return rc; 1926 1927 } 1928 1929 1930 int efx_siena_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, 1931 int *id_out) 1932 { 1933 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1934 } 1935 1936 1937 int efx_siena_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1938 { 1939 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); 1940 size_t outlen; 1941 int rc; 1942 1943 rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1944 outbuf, sizeof(outbuf), &outlen); 1945 if (rc) 1946 goto fail; 1947 1948 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1949 rc = -EIO; 1950 goto fail; 1951 } 1952 1953 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 1954 1955 return 0; 1956 1957 fail: 1958 *id_out = -1; 1959 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1960 return rc; 1961 } 1962 1963 1964 int efx_siena_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1965 { 1966 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 1967 int rc; 1968 1969 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1970 1971 rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, 1972 sizeof(inbuf), NULL, 0, NULL); 1973 return rc; 1974 } 1975 1976 int efx_siena_mcdi_flush_rxqs(struct efx_nic *efx) 1977 { 1978 struct efx_channel *channel; 1979 struct efx_rx_queue *rx_queue; 1980 MCDI_DECLARE_BUF(inbuf, 1981 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); 1982 int rc, count; 1983 1984 BUILD_BUG_ON(EFX_MAX_CHANNELS > 1985 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); 1986 1987 count = 0; 1988 efx_for_each_channel(channel, efx) { 1989 efx_for_each_channel_rx_queue(rx_queue, channel) { 1990 if (rx_queue->flush_pending) { 1991 rx_queue->flush_pending = false; 1992 atomic_dec(&efx->rxq_flush_pending); 1993 MCDI_SET_ARRAY_DWORD( 1994 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, 1995 count, efx_rx_queue_index(rx_queue)); 1996 count++; 1997 } 1998 } 1999 } 2000 2001 rc = efx_siena_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, 2002 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), 2003 NULL, 0, NULL); 2004 WARN_ON(rc < 0); 2005 2006 return rc; 2007 } 2008 2009 int efx_siena_mcdi_wol_filter_reset(struct efx_nic *efx) 2010 { 2011 int rc; 2012 2013 rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, 2014 NULL, 0, NULL); 2015 return rc; 2016 } 2017 2018 #ifdef CONFIG_SFC_SIENA_MTD 2019 2020 #define EFX_MCDI_NVRAM_LEN_MAX 128 2021 2022 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 2023 { 2024 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN); 2025 int rc; 2026 2027 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 2028 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS, 2029 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT, 2030 1); 2031 2032 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 2033 2034 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, 2035 sizeof(inbuf), NULL, 0, NULL); 2036 2037 return rc; 2038 } 2039 2040 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 2041 loff_t offset, u8 *buffer, size_t length) 2042 { 2043 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN); 2044 MCDI_DECLARE_BUF(outbuf, 2045 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2046 size_t outlen; 2047 int rc; 2048 2049 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 2050 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 2051 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 2052 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE, 2053 MC_CMD_NVRAM_READ_IN_V2_DEFAULT); 2054 2055 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 2056 outbuf, sizeof(outbuf), &outlen); 2057 if (rc) 2058 return rc; 2059 2060 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 2061 return 0; 2062 } 2063 2064 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 2065 loff_t offset, const u8 *buffer, size_t length) 2066 { 2067 MCDI_DECLARE_BUF(inbuf, 2068 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2069 int rc; 2070 2071 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 2072 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 2073 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 2074 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 2075 2076 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 2077 2078 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 2079 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 2080 NULL, 0, NULL); 2081 return rc; 2082 } 2083 2084 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 2085 loff_t offset, size_t length) 2086 { 2087 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 2088 int rc; 2089 2090 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 2091 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 2092 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 2093 2094 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 2095 2096 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 2097 NULL, 0, NULL); 2098 return rc; 2099 } 2100 2101 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 2102 { 2103 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN); 2104 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN); 2105 size_t outlen; 2106 int rc, rc2; 2107 2108 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 2109 /* Always set this flag. Old firmware ignores it */ 2110 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS, 2111 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT, 2112 1); 2113 2114 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, 2115 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); 2116 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) { 2117 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE); 2118 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS) 2119 netif_err(efx, drv, efx->net_dev, 2120 "NVRAM update failed verification with code 0x%x\n", 2121 rc2); 2122 switch (rc2) { 2123 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS: 2124 break; 2125 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED: 2126 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED: 2127 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED: 2128 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED: 2129 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED: 2130 rc = -EIO; 2131 break; 2132 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT: 2133 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST: 2134 rc = -EINVAL; 2135 break; 2136 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES: 2137 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS: 2138 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH: 2139 rc = -EPERM; 2140 break; 2141 default: 2142 netif_err(efx, drv, efx->net_dev, 2143 "Unknown response to NVRAM_UPDATE_FINISH\n"); 2144 rc = -EIO; 2145 } 2146 } 2147 2148 return rc; 2149 } 2150 2151 int efx_siena_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 2152 size_t len, size_t *retlen, u8 *buffer) 2153 { 2154 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2155 struct efx_nic *efx = mtd->priv; 2156 loff_t offset = start; 2157 loff_t end = min_t(loff_t, start + len, mtd->size); 2158 size_t chunk; 2159 int rc = 0; 2160 2161 while (offset < end) { 2162 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2163 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 2164 buffer, chunk); 2165 if (rc) 2166 goto out; 2167 offset += chunk; 2168 buffer += chunk; 2169 } 2170 out: 2171 *retlen = offset - start; 2172 return rc; 2173 } 2174 2175 int efx_siena_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 2176 { 2177 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2178 struct efx_nic *efx = mtd->priv; 2179 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 2180 loff_t end = min_t(loff_t, start + len, mtd->size); 2181 size_t chunk = part->common.mtd.erasesize; 2182 int rc = 0; 2183 2184 if (!part->updating) { 2185 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2186 if (rc) 2187 goto out; 2188 part->updating = true; 2189 } 2190 2191 /* The MCDI interface can in fact do multiple erase blocks at once; 2192 * but erasing may be slow, so we make multiple calls here to avoid 2193 * tripping the MCDI RPC timeout. */ 2194 while (offset < end) { 2195 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 2196 chunk); 2197 if (rc) 2198 goto out; 2199 offset += chunk; 2200 } 2201 out: 2202 return rc; 2203 } 2204 2205 int efx_siena_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 2206 size_t len, size_t *retlen, const u8 *buffer) 2207 { 2208 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2209 struct efx_nic *efx = mtd->priv; 2210 loff_t offset = start; 2211 loff_t end = min_t(loff_t, start + len, mtd->size); 2212 size_t chunk; 2213 int rc = 0; 2214 2215 if (!part->updating) { 2216 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2217 if (rc) 2218 goto out; 2219 part->updating = true; 2220 } 2221 2222 while (offset < end) { 2223 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2224 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 2225 buffer, chunk); 2226 if (rc) 2227 goto out; 2228 offset += chunk; 2229 buffer += chunk; 2230 } 2231 out: 2232 *retlen = offset - start; 2233 return rc; 2234 } 2235 2236 int efx_siena_mcdi_mtd_sync(struct mtd_info *mtd) 2237 { 2238 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2239 struct efx_nic *efx = mtd->priv; 2240 int rc = 0; 2241 2242 if (part->updating) { 2243 part->updating = false; 2244 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 2245 } 2246 2247 return rc; 2248 } 2249 2250 void efx_siena_mcdi_mtd_rename(struct efx_mtd_partition *part) 2251 { 2252 struct efx_mcdi_mtd_partition *mcdi_part = 2253 container_of(part, struct efx_mcdi_mtd_partition, common); 2254 struct efx_nic *efx = part->mtd.priv; 2255 2256 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 2257 efx->name, part->type_name, mcdi_part->fw_subtype); 2258 } 2259 2260 #endif /* CONFIG_SFC_SIENA_MTD */ 2261