xref: /openbmc/linux/drivers/net/ethernet/sfc/siena/io.h (revision 3ddc8b84)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  */
7 
8 #ifndef EFX_IO_H
9 #define EFX_IO_H
10 
11 #include <linux/io.h>
12 #include <linux/spinlock.h>
13 
14 /**************************************************************************
15  *
16  * NIC register I/O
17  *
18  **************************************************************************
19  *
20  * Notes on locking strategy for the Falcon architecture:
21  *
22  * Many CSRs are very wide and cannot be read or written atomically.
23  * Writes from the host are buffered by the Bus Interface Unit (BIU)
24  * up to 128 bits.  Whenever the host writes part of such a register,
25  * the BIU collects the written value and does not write to the
26  * underlying register until all 4 dwords have been written.  A
27  * similar buffering scheme applies to host access to the NIC's 64-bit
28  * SRAM.
29  *
30  * Writes to different CSRs and 64-bit SRAM words must be serialised,
31  * since interleaved access can result in lost writes.  We use
32  * efx_nic::biu_lock for this.
33  *
34  * We also serialise reads from 128-bit CSRs and SRAM with the same
35  * spinlock.  This may not be necessary, but it doesn't really matter
36  * as there are no such reads on the fast path.
37  *
38  * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
39  * 128-bit but are special-cased in the BIU to avoid the need for
40  * locking in the host:
41  *
42  * - They are write-only.
43  * - The semantics of writing to these registers are such that
44  *   replacing the low 96 bits with zero does not affect functionality.
45  * - If the host writes to the last dword address of such a register
46  *   (i.e. the high 32 bits) the underlying register will always be
47  *   written.  If the collector and the current write together do not
48  *   provide values for all 128 bits of the register, the low 96 bits
49  *   will be written as zero.
50  * - If the host writes to the address of any other part of such a
51  *   register while the collector already holds values for some other
52  *   register, the write is discarded and the collector maintains its
53  *   current state.
54  *
55  * The EF10 architecture exposes very few registers to the host and
56  * most of them are only 32 bits wide.  The only exceptions are the MC
57  * doorbell register pair, which has its own latching, and
58  * TX_DESC_UPD, which works in a similar way to the Falcon
59  * architecture.
60  */
61 
62 #if BITS_PER_LONG == 64
63 #define EFX_USE_QWORD_IO 1
64 #endif
65 
66 /* Hardware issue requires that only 64-bit naturally aligned writes
67  * are seen by hardware. Its not strictly necessary to restrict to
68  * x86_64 arch, but done for safety since unusual write combining behaviour
69  * can break PIO.
70  */
71 #ifdef CONFIG_X86_64
72 /* PIO is a win only if write-combining is possible */
73 #ifdef ioremap_wc
74 #define EFX_USE_PIO 1
75 #endif
76 #endif
77 
78 static inline u32 efx_reg(struct efx_nic *efx, unsigned int reg)
79 {
80 	return efx->reg_base + reg;
81 }
82 
83 #ifdef EFX_USE_QWORD_IO
84 static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
85 				  unsigned int reg)
86 {
87 	__raw_writeq((__force u64)value, efx->membase + reg);
88 }
89 static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
90 {
91 	return (__force __le64)__raw_readq(efx->membase + reg);
92 }
93 #endif
94 
95 static inline void _efx_writed(struct efx_nic *efx, __le32 value,
96 				  unsigned int reg)
97 {
98 	__raw_writel((__force u32)value, efx->membase + reg);
99 }
100 static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
101 {
102 	return (__force __le32)__raw_readl(efx->membase + reg);
103 }
104 
105 /* Write a normal 128-bit CSR, locking as appropriate. */
106 static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
107 			      unsigned int reg)
108 {
109 	unsigned long flags __attribute__ ((unused));
110 
111 	netif_vdbg(efx, hw, efx->net_dev,
112 		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
113 		   EFX_OWORD_VAL(*value));
114 
115 	spin_lock_irqsave(&efx->biu_lock, flags);
116 #ifdef EFX_USE_QWORD_IO
117 	_efx_writeq(efx, value->u64[0], reg + 0);
118 	_efx_writeq(efx, value->u64[1], reg + 8);
119 #else
120 	_efx_writed(efx, value->u32[0], reg + 0);
121 	_efx_writed(efx, value->u32[1], reg + 4);
122 	_efx_writed(efx, value->u32[2], reg + 8);
123 	_efx_writed(efx, value->u32[3], reg + 12);
124 #endif
125 	spin_unlock_irqrestore(&efx->biu_lock, flags);
126 }
127 
128 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
129 static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
130 				   const efx_qword_t *value, unsigned int index)
131 {
132 	unsigned int addr = index * sizeof(*value);
133 	unsigned long flags __attribute__ ((unused));
134 
135 	netif_vdbg(efx, hw, efx->net_dev,
136 		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
137 		   addr, EFX_QWORD_VAL(*value));
138 
139 	spin_lock_irqsave(&efx->biu_lock, flags);
140 #ifdef EFX_USE_QWORD_IO
141 	__raw_writeq((__force u64)value->u64[0], membase + addr);
142 #else
143 	__raw_writel((__force u32)value->u32[0], membase + addr);
144 	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
145 #endif
146 	spin_unlock_irqrestore(&efx->biu_lock, flags);
147 }
148 
149 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
150 static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
151 			      unsigned int reg)
152 {
153 	netif_vdbg(efx, hw, efx->net_dev,
154 		   "writing register %x with "EFX_DWORD_FMT"\n",
155 		   reg, EFX_DWORD_VAL(*value));
156 
157 	/* No lock required */
158 	_efx_writed(efx, value->u32[0], reg);
159 }
160 
161 /* Read a 128-bit CSR, locking as appropriate. */
162 static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
163 			     unsigned int reg)
164 {
165 	unsigned long flags __attribute__ ((unused));
166 
167 	spin_lock_irqsave(&efx->biu_lock, flags);
168 	value->u32[0] = _efx_readd(efx, reg + 0);
169 	value->u32[1] = _efx_readd(efx, reg + 4);
170 	value->u32[2] = _efx_readd(efx, reg + 8);
171 	value->u32[3] = _efx_readd(efx, reg + 12);
172 	spin_unlock_irqrestore(&efx->biu_lock, flags);
173 
174 	netif_vdbg(efx, hw, efx->net_dev,
175 		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
176 		   EFX_OWORD_VAL(*value));
177 }
178 
179 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
180 static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
181 				  efx_qword_t *value, unsigned int index)
182 {
183 	unsigned int addr = index * sizeof(*value);
184 	unsigned long flags __attribute__ ((unused));
185 
186 	spin_lock_irqsave(&efx->biu_lock, flags);
187 #ifdef EFX_USE_QWORD_IO
188 	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
189 #else
190 	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
191 	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
192 #endif
193 	spin_unlock_irqrestore(&efx->biu_lock, flags);
194 
195 	netif_vdbg(efx, hw, efx->net_dev,
196 		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
197 		   addr, EFX_QWORD_VAL(*value));
198 }
199 
200 /* Read a 32-bit CSR or SRAM */
201 static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
202 				unsigned int reg)
203 {
204 	value->u32[0] = _efx_readd(efx, reg);
205 	netif_vdbg(efx, hw, efx->net_dev,
206 		   "read from register %x, got "EFX_DWORD_FMT"\n",
207 		   reg, EFX_DWORD_VAL(*value));
208 }
209 
210 /* Write a 128-bit CSR forming part of a table */
211 static inline void
212 efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
213 		 unsigned int reg, unsigned int index)
214 {
215 	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
216 }
217 
218 /* Read a 128-bit CSR forming part of a table */
219 static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
220 				     unsigned int reg, unsigned int index)
221 {
222 	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
223 }
224 
225 /* default VI stride (step between per-VI registers) is 8K on EF10 and
226  * 64K on EF100
227  */
228 #define EFX_DEFAULT_VI_STRIDE		0x2000
229 #define EF100_DEFAULT_VI_STRIDE		0x10000
230 
231 /* Calculate offset to page-mapped register */
232 static inline unsigned int efx_paged_reg(struct efx_nic *efx, unsigned int page,
233 					 unsigned int reg)
234 {
235 	return page * efx->vi_stride + reg;
236 }
237 
238 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
239 static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
240 				    unsigned int reg, unsigned int page)
241 {
242 	reg = efx_paged_reg(efx, page, reg);
243 
244 	netif_vdbg(efx, hw, efx->net_dev,
245 		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
246 		   EFX_OWORD_VAL(*value));
247 
248 #ifdef EFX_USE_QWORD_IO
249 	_efx_writeq(efx, value->u64[0], reg + 0);
250 	_efx_writeq(efx, value->u64[1], reg + 8);
251 #else
252 	_efx_writed(efx, value->u32[0], reg + 0);
253 	_efx_writed(efx, value->u32[1], reg + 4);
254 	_efx_writed(efx, value->u32[2], reg + 8);
255 	_efx_writed(efx, value->u32[3], reg + 12);
256 #endif
257 }
258 #define efx_writeo_page(efx, value, reg, page)				\
259 	_efx_writeo_page(efx, value,					\
260 			 reg +						\
261 			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
262 			 page)
263 
264 /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
265  * high bits of RX_DESC_UPD or TX_DESC_UPD)
266  */
267 static inline void
268 _efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
269 		 unsigned int reg, unsigned int page)
270 {
271 	efx_writed(efx, value, efx_paged_reg(efx, page, reg));
272 }
273 #define efx_writed_page(efx, value, reg, page)				\
274 	_efx_writed_page(efx, value,					\
275 			 reg +						\
276 			 BUILD_BUG_ON_ZERO((reg) != 0x180 &&		\
277 					   (reg) != 0x200 &&		\
278 					   (reg) != 0x400 &&		\
279 					   (reg) != 0x420 &&		\
280 					   (reg) != 0x830 &&		\
281 					   (reg) != 0x83c &&		\
282 					   (reg) != 0xa18 &&		\
283 					   (reg) != 0xa1c),		\
284 			 page)
285 
286 /* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
287  * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
288  * collector register.
289  */
290 static inline void _efx_writed_page_locked(struct efx_nic *efx,
291 					   const efx_dword_t *value,
292 					   unsigned int reg,
293 					   unsigned int page)
294 {
295 	unsigned long flags __attribute__ ((unused));
296 
297 	if (page == 0) {
298 		spin_lock_irqsave(&efx->biu_lock, flags);
299 		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
300 		spin_unlock_irqrestore(&efx->biu_lock, flags);
301 	} else {
302 		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
303 	}
304 }
305 #define efx_writed_page_locked(efx, value, reg, page)			\
306 	_efx_writed_page_locked(efx, value,				\
307 				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
308 				page)
309 
310 #endif /* EFX_IO_H */
311