xref: /openbmc/linux/drivers/net/ethernet/sfc/siena/efx.c (revision b003fb5c9df8a8923bf46e0c00cc54edcfb0fbe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/filter.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/notifier.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/in.h>
18 #include <linux/ethtool.h>
19 #include <linux/topology.h>
20 #include <linux/gfp.h>
21 #include <linux/aer.h>
22 #include <linux/interrupt.h>
23 #include "net_driver.h"
24 #include <net/gre.h>
25 #include <net/udp_tunnel.h>
26 #include "efx.h"
27 #include "efx_common.h"
28 #include "efx_channels.h"
29 #include "rx_common.h"
30 #include "tx_common.h"
31 #include "nic.h"
32 #include "io.h"
33 #include "selftest.h"
34 #include "sriov.h"
35 #ifdef CONFIG_SFC_SIENA_SRIOV
36 #include "siena_sriov.h"
37 #endif
38 
39 #include "mcdi_port_common.h"
40 #include "mcdi_pcol.h"
41 #include "workarounds.h"
42 
43 /**************************************************************************
44  *
45  * Configurable values
46  *
47  *************************************************************************/
48 
49 module_param_named(interrupt_mode, efx_siena_interrupt_mode, uint, 0444);
50 MODULE_PARM_DESC(interrupt_mode,
51 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
52 
53 module_param_named(rss_cpus, efx_siena_rss_cpus, uint, 0444);
54 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
55 
56 /*
57  * Use separate channels for TX and RX events
58  *
59  * Set this to 1 to use separate channels for TX and RX. It allows us
60  * to control interrupt affinity separately for TX and RX.
61  *
62  * This is only used in MSI-X interrupt mode
63  */
64 bool efx_siena_separate_tx_channels;
65 module_param_named(efx_separate_tx_channels, efx_siena_separate_tx_channels,
66 		   bool, 0444);
67 MODULE_PARM_DESC(efx_separate_tx_channels,
68 		 "Use separate channels for TX and RX");
69 
70 /* Initial interrupt moderation settings.  They can be modified after
71  * module load with ethtool.
72  *
73  * The default for RX should strike a balance between increasing the
74  * round-trip latency and reducing overhead.
75  */
76 static unsigned int rx_irq_mod_usec = 60;
77 
78 /* Initial interrupt moderation settings.  They can be modified after
79  * module load with ethtool.
80  *
81  * This default is chosen to ensure that a 10G link does not go idle
82  * while a TX queue is stopped after it has become full.  A queue is
83  * restarted when it drops below half full.  The time this takes (assuming
84  * worst case 3 descriptors per packet and 1024 descriptors) is
85  *   512 / 3 * 1.2 = 205 usec.
86  */
87 static unsigned int tx_irq_mod_usec = 150;
88 
89 static bool phy_flash_cfg;
90 module_param(phy_flash_cfg, bool, 0644);
91 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
92 
93 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
94 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
95 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
96 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
97 module_param(debug, uint, 0);
98 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
99 
100 /**************************************************************************
101  *
102  * Utility functions and prototypes
103  *
104  *************************************************************************/
105 
106 static void efx_remove_port(struct efx_nic *efx);
107 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
108 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
109 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
110 			u32 flags);
111 
112 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
113 	do {						\
114 		if ((efx->state == STATE_READY) ||	\
115 		    (efx->state == STATE_RECOVERY) ||	\
116 		    (efx->state == STATE_DISABLED))	\
117 			ASSERT_RTNL();			\
118 	} while (0)
119 
120 /**************************************************************************
121  *
122  * Port handling
123  *
124  **************************************************************************/
125 
126 static void efx_fini_port(struct efx_nic *efx);
127 
128 static int efx_probe_port(struct efx_nic *efx)
129 {
130 	int rc;
131 
132 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
133 
134 	if (phy_flash_cfg)
135 		efx->phy_mode = PHY_MODE_SPECIAL;
136 
137 	/* Connect up MAC/PHY operations table */
138 	rc = efx->type->probe_port(efx);
139 	if (rc)
140 		return rc;
141 
142 	/* Initialise MAC address to permanent address */
143 	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
144 
145 	return 0;
146 }
147 
148 static int efx_init_port(struct efx_nic *efx)
149 {
150 	int rc;
151 
152 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
153 
154 	mutex_lock(&efx->mac_lock);
155 
156 	efx->port_initialized = true;
157 
158 	/* Ensure the PHY advertises the correct flow control settings */
159 	rc = efx_siena_mcdi_port_reconfigure(efx);
160 	if (rc && rc != -EPERM)
161 		goto fail;
162 
163 	mutex_unlock(&efx->mac_lock);
164 	return 0;
165 
166 fail:
167 	mutex_unlock(&efx->mac_lock);
168 	return rc;
169 }
170 
171 static void efx_fini_port(struct efx_nic *efx)
172 {
173 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
174 
175 	if (!efx->port_initialized)
176 		return;
177 
178 	efx->port_initialized = false;
179 
180 	efx->link_state.up = false;
181 	efx_siena_link_status_changed(efx);
182 }
183 
184 static void efx_remove_port(struct efx_nic *efx)
185 {
186 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
187 
188 	efx->type->remove_port(efx);
189 }
190 
191 /**************************************************************************
192  *
193  * NIC handling
194  *
195  **************************************************************************/
196 
197 static LIST_HEAD(efx_primary_list);
198 static LIST_HEAD(efx_unassociated_list);
199 
200 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
201 {
202 	return left->type == right->type &&
203 		left->vpd_sn && right->vpd_sn &&
204 		!strcmp(left->vpd_sn, right->vpd_sn);
205 }
206 
207 static void efx_associate(struct efx_nic *efx)
208 {
209 	struct efx_nic *other, *next;
210 
211 	if (efx->primary == efx) {
212 		/* Adding primary function; look for secondaries */
213 
214 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
215 		list_add_tail(&efx->node, &efx_primary_list);
216 
217 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
218 					 node) {
219 			if (efx_same_controller(efx, other)) {
220 				list_del(&other->node);
221 				netif_dbg(other, probe, other->net_dev,
222 					  "moving to secondary list of %s %s\n",
223 					  pci_name(efx->pci_dev),
224 					  efx->net_dev->name);
225 				list_add_tail(&other->node,
226 					      &efx->secondary_list);
227 				other->primary = efx;
228 			}
229 		}
230 	} else {
231 		/* Adding secondary function; look for primary */
232 
233 		list_for_each_entry(other, &efx_primary_list, node) {
234 			if (efx_same_controller(efx, other)) {
235 				netif_dbg(efx, probe, efx->net_dev,
236 					  "adding to secondary list of %s %s\n",
237 					  pci_name(other->pci_dev),
238 					  other->net_dev->name);
239 				list_add_tail(&efx->node,
240 					      &other->secondary_list);
241 				efx->primary = other;
242 				return;
243 			}
244 		}
245 
246 		netif_dbg(efx, probe, efx->net_dev,
247 			  "adding to unassociated list\n");
248 		list_add_tail(&efx->node, &efx_unassociated_list);
249 	}
250 }
251 
252 static void efx_dissociate(struct efx_nic *efx)
253 {
254 	struct efx_nic *other, *next;
255 
256 	list_del(&efx->node);
257 	efx->primary = NULL;
258 
259 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
260 		list_del(&other->node);
261 		netif_dbg(other, probe, other->net_dev,
262 			  "moving to unassociated list\n");
263 		list_add_tail(&other->node, &efx_unassociated_list);
264 		other->primary = NULL;
265 	}
266 }
267 
268 static int efx_probe_nic(struct efx_nic *efx)
269 {
270 	int rc;
271 
272 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
273 
274 	/* Carry out hardware-type specific initialisation */
275 	rc = efx->type->probe(efx);
276 	if (rc)
277 		return rc;
278 
279 	do {
280 		if (!efx->max_channels || !efx->max_tx_channels) {
281 			netif_err(efx, drv, efx->net_dev,
282 				  "Insufficient resources to allocate"
283 				  " any channels\n");
284 			rc = -ENOSPC;
285 			goto fail1;
286 		}
287 
288 		/* Determine the number of channels and queues by trying
289 		 * to hook in MSI-X interrupts.
290 		 */
291 		rc = efx_siena_probe_interrupts(efx);
292 		if (rc)
293 			goto fail1;
294 
295 		rc = efx_siena_set_channels(efx);
296 		if (rc)
297 			goto fail1;
298 
299 		/* dimension_resources can fail with EAGAIN */
300 		rc = efx->type->dimension_resources(efx);
301 		if (rc != 0 && rc != -EAGAIN)
302 			goto fail2;
303 
304 		if (rc == -EAGAIN)
305 			/* try again with new max_channels */
306 			efx_siena_remove_interrupts(efx);
307 
308 	} while (rc == -EAGAIN);
309 
310 	if (efx->n_channels > 1)
311 		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
312 				    sizeof(efx->rss_context.rx_hash_key));
313 	efx_siena_set_default_rx_indir_table(efx, &efx->rss_context);
314 
315 	/* Initialise the interrupt moderation settings */
316 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
317 	efx_siena_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec,
318 				      true, true);
319 
320 	return 0;
321 
322 fail2:
323 	efx_siena_remove_interrupts(efx);
324 fail1:
325 	efx->type->remove(efx);
326 	return rc;
327 }
328 
329 static void efx_remove_nic(struct efx_nic *efx)
330 {
331 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
332 
333 	efx_siena_remove_interrupts(efx);
334 	efx->type->remove(efx);
335 }
336 
337 /**************************************************************************
338  *
339  * NIC startup/shutdown
340  *
341  *************************************************************************/
342 
343 static int efx_probe_all(struct efx_nic *efx)
344 {
345 	int rc;
346 
347 	rc = efx_probe_nic(efx);
348 	if (rc) {
349 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
350 		goto fail1;
351 	}
352 
353 	rc = efx_probe_port(efx);
354 	if (rc) {
355 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
356 		goto fail2;
357 	}
358 
359 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
360 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
361 		rc = -EINVAL;
362 		goto fail3;
363 	}
364 
365 #ifdef CONFIG_SFC_SIENA_SRIOV
366 	rc = efx->type->vswitching_probe(efx);
367 	if (rc) /* not fatal; the PF will still work fine */
368 		netif_warn(efx, probe, efx->net_dev,
369 			   "failed to setup vswitching rc=%d;"
370 			   " VFs may not function\n", rc);
371 #endif
372 
373 	rc = efx_siena_probe_filters(efx);
374 	if (rc) {
375 		netif_err(efx, probe, efx->net_dev,
376 			  "failed to create filter tables\n");
377 		goto fail4;
378 	}
379 
380 	rc = efx_siena_probe_channels(efx);
381 	if (rc)
382 		goto fail5;
383 
384 	return 0;
385 
386  fail5:
387 	efx_siena_remove_filters(efx);
388  fail4:
389 #ifdef CONFIG_SFC_SIENA_SRIOV
390 	efx->type->vswitching_remove(efx);
391 #endif
392  fail3:
393 	efx_remove_port(efx);
394  fail2:
395 	efx_remove_nic(efx);
396  fail1:
397 	return rc;
398 }
399 
400 static void efx_remove_all(struct efx_nic *efx)
401 {
402 	rtnl_lock();
403 	efx_xdp_setup_prog(efx, NULL);
404 	rtnl_unlock();
405 
406 	efx_siena_remove_channels(efx);
407 	efx_siena_remove_filters(efx);
408 #ifdef CONFIG_SFC_SIENA_SRIOV
409 	efx->type->vswitching_remove(efx);
410 #endif
411 	efx_remove_port(efx);
412 	efx_remove_nic(efx);
413 }
414 
415 /**************************************************************************
416  *
417  * Interrupt moderation
418  *
419  **************************************************************************/
420 unsigned int efx_siena_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
421 {
422 	if (usecs == 0)
423 		return 0;
424 	if (usecs * 1000 < efx->timer_quantum_ns)
425 		return 1; /* never round down to 0 */
426 	return usecs * 1000 / efx->timer_quantum_ns;
427 }
428 
429 /* Set interrupt moderation parameters */
430 int efx_siena_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
431 				  unsigned int rx_usecs, bool rx_adaptive,
432 				  bool rx_may_override_tx)
433 {
434 	struct efx_channel *channel;
435 	unsigned int timer_max_us;
436 
437 	EFX_ASSERT_RESET_SERIALISED(efx);
438 
439 	timer_max_us = efx->timer_max_ns / 1000;
440 
441 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
442 		return -EINVAL;
443 
444 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
445 	    !rx_may_override_tx) {
446 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
447 			  "RX and TX IRQ moderation must be equal\n");
448 		return -EINVAL;
449 	}
450 
451 	efx->irq_rx_adaptive = rx_adaptive;
452 	efx->irq_rx_moderation_us = rx_usecs;
453 	efx_for_each_channel(channel, efx) {
454 		if (efx_channel_has_rx_queue(channel))
455 			channel->irq_moderation_us = rx_usecs;
456 		else if (efx_channel_has_tx_queues(channel))
457 			channel->irq_moderation_us = tx_usecs;
458 		else if (efx_channel_is_xdp_tx(channel))
459 			channel->irq_moderation_us = tx_usecs;
460 	}
461 
462 	return 0;
463 }
464 
465 void efx_siena_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
466 				  unsigned int *rx_usecs, bool *rx_adaptive)
467 {
468 	*rx_adaptive = efx->irq_rx_adaptive;
469 	*rx_usecs = efx->irq_rx_moderation_us;
470 
471 	/* If channels are shared between RX and TX, so is IRQ
472 	 * moderation.  Otherwise, IRQ moderation is the same for all
473 	 * TX channels and is not adaptive.
474 	 */
475 	if (efx->tx_channel_offset == 0) {
476 		*tx_usecs = *rx_usecs;
477 	} else {
478 		struct efx_channel *tx_channel;
479 
480 		tx_channel = efx->channel[efx->tx_channel_offset];
481 		*tx_usecs = tx_channel->irq_moderation_us;
482 	}
483 }
484 
485 /**************************************************************************
486  *
487  * ioctls
488  *
489  *************************************************************************/
490 
491 /* Net device ioctl
492  * Context: process, rtnl_lock() held.
493  */
494 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
495 {
496 	struct efx_nic *efx = netdev_priv(net_dev);
497 	struct mii_ioctl_data *data = if_mii(ifr);
498 
499 	if (cmd == SIOCSHWTSTAMP)
500 		return efx_siena_ptp_set_ts_config(efx, ifr);
501 	if (cmd == SIOCGHWTSTAMP)
502 		return efx_siena_ptp_get_ts_config(efx, ifr);
503 
504 	/* Convert phy_id from older PRTAD/DEVAD format */
505 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
506 	    (data->phy_id & 0xfc00) == 0x0400)
507 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
508 
509 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
510 }
511 
512 /**************************************************************************
513  *
514  * Kernel net device interface
515  *
516  *************************************************************************/
517 
518 /* Context: process, rtnl_lock() held. */
519 static int efx_net_open(struct net_device *net_dev)
520 {
521 	struct efx_nic *efx = netdev_priv(net_dev);
522 	int rc;
523 
524 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
525 		  raw_smp_processor_id());
526 
527 	rc = efx_check_disabled(efx);
528 	if (rc)
529 		return rc;
530 	if (efx->phy_mode & PHY_MODE_SPECIAL)
531 		return -EBUSY;
532 	if (efx_siena_mcdi_poll_reboot(efx) && efx_siena_reset(efx, RESET_TYPE_ALL))
533 		return -EIO;
534 
535 	/* Notify the kernel of the link state polled during driver load,
536 	 * before the monitor starts running */
537 	efx_siena_link_status_changed(efx);
538 
539 	efx_siena_start_all(efx);
540 	if (efx->state == STATE_DISABLED || efx->reset_pending)
541 		netif_device_detach(efx->net_dev);
542 	efx_siena_selftest_async_start(efx);
543 	return 0;
544 }
545 
546 /* Context: process, rtnl_lock() held.
547  * Note that the kernel will ignore our return code; this method
548  * should really be a void.
549  */
550 static int efx_net_stop(struct net_device *net_dev)
551 {
552 	struct efx_nic *efx = netdev_priv(net_dev);
553 
554 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
555 		  raw_smp_processor_id());
556 
557 	/* Stop the device and flush all the channels */
558 	efx_siena_stop_all(efx);
559 
560 	return 0;
561 }
562 
563 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
564 {
565 	struct efx_nic *efx = netdev_priv(net_dev);
566 
567 	if (efx->type->vlan_rx_add_vid)
568 		return efx->type->vlan_rx_add_vid(efx, proto, vid);
569 	else
570 		return -EOPNOTSUPP;
571 }
572 
573 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
574 {
575 	struct efx_nic *efx = netdev_priv(net_dev);
576 
577 	if (efx->type->vlan_rx_kill_vid)
578 		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
579 	else
580 		return -EOPNOTSUPP;
581 }
582 
583 static const struct net_device_ops efx_netdev_ops = {
584 	.ndo_open		= efx_net_open,
585 	.ndo_stop		= efx_net_stop,
586 	.ndo_get_stats64	= efx_siena_net_stats,
587 	.ndo_tx_timeout		= efx_siena_watchdog,
588 	.ndo_start_xmit		= efx_siena_hard_start_xmit,
589 	.ndo_validate_addr	= eth_validate_addr,
590 	.ndo_eth_ioctl		= efx_ioctl,
591 	.ndo_change_mtu		= efx_siena_change_mtu,
592 	.ndo_set_mac_address	= efx_siena_set_mac_address,
593 	.ndo_set_rx_mode	= efx_siena_set_rx_mode,
594 	.ndo_set_features	= efx_siena_set_features,
595 	.ndo_features_check	= efx_siena_features_check,
596 	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
597 	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
598 #ifdef CONFIG_SFC_SIENA_SRIOV
599 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
600 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
601 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
602 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
603 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
604 #endif
605 	.ndo_get_phys_port_id   = efx_siena_get_phys_port_id,
606 	.ndo_get_phys_port_name	= efx_siena_get_phys_port_name,
607 	.ndo_setup_tc		= efx_siena_setup_tc,
608 #ifdef CONFIG_RFS_ACCEL
609 	.ndo_rx_flow_steer	= efx_siena_filter_rfs,
610 #endif
611 	.ndo_xdp_xmit		= efx_xdp_xmit,
612 	.ndo_bpf		= efx_xdp
613 };
614 
615 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
616 {
617 	struct bpf_prog *old_prog;
618 
619 	if (efx->xdp_rxq_info_failed) {
620 		netif_err(efx, drv, efx->net_dev,
621 			  "Unable to bind XDP program due to previous failure of rxq_info\n");
622 		return -EINVAL;
623 	}
624 
625 	if (prog && efx->net_dev->mtu > efx_siena_xdp_max_mtu(efx)) {
626 		netif_err(efx, drv, efx->net_dev,
627 			  "Unable to configure XDP with MTU of %d (max: %d)\n",
628 			  efx->net_dev->mtu, efx_siena_xdp_max_mtu(efx));
629 		return -EINVAL;
630 	}
631 
632 	old_prog = rtnl_dereference(efx->xdp_prog);
633 	rcu_assign_pointer(efx->xdp_prog, prog);
634 	/* Release the reference that was originally passed by the caller. */
635 	if (old_prog)
636 		bpf_prog_put(old_prog);
637 
638 	return 0;
639 }
640 
641 /* Context: process, rtnl_lock() held. */
642 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
643 {
644 	struct efx_nic *efx = netdev_priv(dev);
645 
646 	switch (xdp->command) {
647 	case XDP_SETUP_PROG:
648 		return efx_xdp_setup_prog(efx, xdp->prog);
649 	default:
650 		return -EINVAL;
651 	}
652 }
653 
654 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
655 			u32 flags)
656 {
657 	struct efx_nic *efx = netdev_priv(dev);
658 
659 	if (!netif_running(dev))
660 		return -EINVAL;
661 
662 	return efx_siena_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
663 }
664 
665 static void efx_update_name(struct efx_nic *efx)
666 {
667 	strcpy(efx->name, efx->net_dev->name);
668 	efx_siena_mtd_rename(efx);
669 	efx_siena_set_channel_names(efx);
670 }
671 
672 static int efx_netdev_event(struct notifier_block *this,
673 			    unsigned long event, void *ptr)
674 {
675 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
676 
677 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
678 	    event == NETDEV_CHANGENAME)
679 		efx_update_name(netdev_priv(net_dev));
680 
681 	return NOTIFY_DONE;
682 }
683 
684 static struct notifier_block efx_netdev_notifier = {
685 	.notifier_call = efx_netdev_event,
686 };
687 
688 static ssize_t phy_type_show(struct device *dev,
689 			     struct device_attribute *attr, char *buf)
690 {
691 	struct efx_nic *efx = dev_get_drvdata(dev);
692 	return sprintf(buf, "%d\n", efx->phy_type);
693 }
694 static DEVICE_ATTR_RO(phy_type);
695 
696 static int efx_register_netdev(struct efx_nic *efx)
697 {
698 	struct net_device *net_dev = efx->net_dev;
699 	struct efx_channel *channel;
700 	int rc;
701 
702 	net_dev->watchdog_timeo = 5 * HZ;
703 	net_dev->irq = efx->pci_dev->irq;
704 	net_dev->netdev_ops = &efx_netdev_ops;
705 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
706 		net_dev->priv_flags |= IFF_UNICAST_FLT;
707 	net_dev->ethtool_ops = &efx_siena_ethtool_ops;
708 	netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
709 	net_dev->min_mtu = EFX_MIN_MTU;
710 	net_dev->max_mtu = EFX_MAX_MTU;
711 
712 	rtnl_lock();
713 
714 	/* Enable resets to be scheduled and check whether any were
715 	 * already requested.  If so, the NIC is probably hosed so we
716 	 * abort.
717 	 */
718 	efx->state = STATE_READY;
719 	smp_mb(); /* ensure we change state before checking reset_pending */
720 	if (efx->reset_pending) {
721 		pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
722 		rc = -EIO;
723 		goto fail_locked;
724 	}
725 
726 	rc = dev_alloc_name(net_dev, net_dev->name);
727 	if (rc < 0)
728 		goto fail_locked;
729 	efx_update_name(efx);
730 
731 	/* Always start with carrier off; PHY events will detect the link */
732 	netif_carrier_off(net_dev);
733 
734 	rc = register_netdevice(net_dev);
735 	if (rc)
736 		goto fail_locked;
737 
738 	efx_for_each_channel(channel, efx) {
739 		struct efx_tx_queue *tx_queue;
740 		efx_for_each_channel_tx_queue(tx_queue, channel)
741 			efx_siena_init_tx_queue_core_txq(tx_queue);
742 	}
743 
744 	efx_associate(efx);
745 
746 	rtnl_unlock();
747 
748 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
749 	if (rc) {
750 		netif_err(efx, drv, efx->net_dev,
751 			  "failed to init net dev attributes\n");
752 		goto fail_registered;
753 	}
754 
755 	efx_siena_init_mcdi_logging(efx);
756 
757 	return 0;
758 
759 fail_registered:
760 	rtnl_lock();
761 	efx_dissociate(efx);
762 	unregister_netdevice(net_dev);
763 fail_locked:
764 	efx->state = STATE_UNINIT;
765 	rtnl_unlock();
766 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
767 	return rc;
768 }
769 
770 static void efx_unregister_netdev(struct efx_nic *efx)
771 {
772 	if (!efx->net_dev)
773 		return;
774 
775 	BUG_ON(netdev_priv(efx->net_dev) != efx);
776 
777 	if (efx_dev_registered(efx)) {
778 		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
779 		efx_siena_fini_mcdi_logging(efx);
780 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
781 		unregister_netdev(efx->net_dev);
782 	}
783 }
784 
785 /**************************************************************************
786  *
787  * List of NICs we support
788  *
789  **************************************************************************/
790 
791 /* PCI device ID table */
792 static const struct pci_device_id efx_pci_table[] = {
793 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
794 	 .driver_data = (unsigned long)&siena_a0_nic_type},
795 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
796 	 .driver_data = (unsigned long)&siena_a0_nic_type},
797 	{0}			/* end of list */
798 };
799 
800 /**************************************************************************
801  *
802  * Data housekeeping
803  *
804  **************************************************************************/
805 
806 void efx_siena_update_sw_stats(struct efx_nic *efx, u64 *stats)
807 {
808 	u64 n_rx_nodesc_trunc = 0;
809 	struct efx_channel *channel;
810 
811 	efx_for_each_channel(channel, efx)
812 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
813 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
814 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
815 }
816 
817 /**************************************************************************
818  *
819  * PCI interface
820  *
821  **************************************************************************/
822 
823 /* Main body of final NIC shutdown code
824  * This is called only at module unload (or hotplug removal).
825  */
826 static void efx_pci_remove_main(struct efx_nic *efx)
827 {
828 	/* Flush reset_work. It can no longer be scheduled since we
829 	 * are not READY.
830 	 */
831 	BUG_ON(efx->state == STATE_READY);
832 	efx_siena_flush_reset_workqueue(efx);
833 
834 	efx_siena_disable_interrupts(efx);
835 	efx_siena_clear_interrupt_affinity(efx);
836 	efx_siena_fini_interrupt(efx);
837 	efx_fini_port(efx);
838 	efx->type->fini(efx);
839 	efx_siena_fini_napi(efx);
840 	efx_remove_all(efx);
841 }
842 
843 /* Final NIC shutdown
844  * This is called only at module unload (or hotplug removal).  A PF can call
845  * this on its VFs to ensure they are unbound first.
846  */
847 static void efx_pci_remove(struct pci_dev *pci_dev)
848 {
849 	struct efx_nic *efx;
850 
851 	efx = pci_get_drvdata(pci_dev);
852 	if (!efx)
853 		return;
854 
855 	/* Mark the NIC as fini, then stop the interface */
856 	rtnl_lock();
857 	efx_dissociate(efx);
858 	dev_close(efx->net_dev);
859 	efx_siena_disable_interrupts(efx);
860 	efx->state = STATE_UNINIT;
861 	rtnl_unlock();
862 
863 	if (efx->type->sriov_fini)
864 		efx->type->sriov_fini(efx);
865 
866 	efx_unregister_netdev(efx);
867 
868 	efx_siena_mtd_remove(efx);
869 
870 	efx_pci_remove_main(efx);
871 
872 	efx_siena_fini_io(efx);
873 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
874 
875 	efx_siena_fini_struct(efx);
876 	free_netdev(efx->net_dev);
877 
878 	pci_disable_pcie_error_reporting(pci_dev);
879 };
880 
881 /* NIC VPD information
882  * Called during probe to display the part number of the
883  * installed NIC.
884  */
885 static void efx_probe_vpd_strings(struct efx_nic *efx)
886 {
887 	struct pci_dev *dev = efx->pci_dev;
888 	unsigned int vpd_size, kw_len;
889 	u8 *vpd_data;
890 	int start;
891 
892 	vpd_data = pci_vpd_alloc(dev, &vpd_size);
893 	if (IS_ERR(vpd_data)) {
894 		pci_warn(dev, "Unable to read VPD\n");
895 		return;
896 	}
897 
898 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
899 					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
900 	if (start < 0)
901 		pci_err(dev, "Part number not found or incomplete\n");
902 	else
903 		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
904 
905 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
906 					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
907 	if (start < 0)
908 		pci_err(dev, "Serial number not found or incomplete\n");
909 	else
910 		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
911 
912 	kfree(vpd_data);
913 }
914 
915 
916 /* Main body of NIC initialisation
917  * This is called at module load (or hotplug insertion, theoretically).
918  */
919 static int efx_pci_probe_main(struct efx_nic *efx)
920 {
921 	int rc;
922 
923 	/* Do start-of-day initialisation */
924 	rc = efx_probe_all(efx);
925 	if (rc)
926 		goto fail1;
927 
928 	efx_siena_init_napi(efx);
929 
930 	down_write(&efx->filter_sem);
931 	rc = efx->type->init(efx);
932 	up_write(&efx->filter_sem);
933 	if (rc) {
934 		pci_err(efx->pci_dev, "failed to initialise NIC\n");
935 		goto fail3;
936 	}
937 
938 	rc = efx_init_port(efx);
939 	if (rc) {
940 		netif_err(efx, probe, efx->net_dev,
941 			  "failed to initialise port\n");
942 		goto fail4;
943 	}
944 
945 	rc = efx_siena_init_interrupt(efx);
946 	if (rc)
947 		goto fail5;
948 
949 	efx_siena_set_interrupt_affinity(efx);
950 	rc = efx_siena_enable_interrupts(efx);
951 	if (rc)
952 		goto fail6;
953 
954 	return 0;
955 
956  fail6:
957 	efx_siena_clear_interrupt_affinity(efx);
958 	efx_siena_fini_interrupt(efx);
959  fail5:
960 	efx_fini_port(efx);
961  fail4:
962 	efx->type->fini(efx);
963  fail3:
964 	efx_siena_fini_napi(efx);
965 	efx_remove_all(efx);
966  fail1:
967 	return rc;
968 }
969 
970 static int efx_pci_probe_post_io(struct efx_nic *efx)
971 {
972 	struct net_device *net_dev = efx->net_dev;
973 	int rc = efx_pci_probe_main(efx);
974 
975 	if (rc)
976 		return rc;
977 
978 	if (efx->type->sriov_init) {
979 		rc = efx->type->sriov_init(efx);
980 		if (rc)
981 			pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
982 				rc);
983 	}
984 
985 	/* Determine netdevice features */
986 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
987 			      NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
988 	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
989 		net_dev->features |= NETIF_F_TSO6;
990 	/* Check whether device supports TSO */
991 	if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
992 		net_dev->features &= ~NETIF_F_ALL_TSO;
993 	/* Mask for features that also apply to VLAN devices */
994 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
995 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
996 				   NETIF_F_RXCSUM);
997 
998 	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
999 
1000 	/* Disable receiving frames with bad FCS, by default. */
1001 	net_dev->features &= ~NETIF_F_RXALL;
1002 
1003 	/* Disable VLAN filtering by default.  It may be enforced if
1004 	 * the feature is fixed (i.e. VLAN filters are required to
1005 	 * receive VLAN tagged packets due to vPort restrictions).
1006 	 */
1007 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1008 	net_dev->features |= efx->fixed_features;
1009 
1010 	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1011 				NETDEV_XDP_ACT_REDIRECT |
1012 				NETDEV_XDP_ACT_NDO_XMIT;
1013 
1014 	rc = efx_register_netdev(efx);
1015 	if (!rc)
1016 		return 0;
1017 
1018 	efx_pci_remove_main(efx);
1019 	return rc;
1020 }
1021 
1022 /* NIC initialisation
1023  *
1024  * This is called at module load (or hotplug insertion,
1025  * theoretically).  It sets up PCI mappings, resets the NIC,
1026  * sets up and registers the network devices with the kernel and hooks
1027  * the interrupt service routine.  It does not prepare the device for
1028  * transmission; this is left to the first time one of the network
1029  * interfaces is brought up (i.e. efx_net_open).
1030  */
1031 static int efx_pci_probe(struct pci_dev *pci_dev,
1032 			 const struct pci_device_id *entry)
1033 {
1034 	struct net_device *net_dev;
1035 	struct efx_nic *efx;
1036 	int rc;
1037 
1038 	/* Allocate and initialise a struct net_device and struct efx_nic */
1039 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
1040 				     EFX_MAX_RX_QUEUES);
1041 	if (!net_dev)
1042 		return -ENOMEM;
1043 	efx = netdev_priv(net_dev);
1044 	efx->type = (const struct efx_nic_type *) entry->driver_data;
1045 	efx->fixed_features |= NETIF_F_HIGHDMA;
1046 
1047 	pci_set_drvdata(pci_dev, efx);
1048 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1049 	rc = efx_siena_init_struct(efx, pci_dev, net_dev);
1050 	if (rc)
1051 		goto fail1;
1052 
1053 	pci_info(pci_dev, "Solarflare NIC detected\n");
1054 
1055 	if (!efx->type->is_vf)
1056 		efx_probe_vpd_strings(efx);
1057 
1058 	/* Set up basic I/O (BAR mappings etc) */
1059 	rc = efx_siena_init_io(efx, efx->type->mem_bar(efx),
1060 			       efx->type->max_dma_mask,
1061 			       efx->type->mem_map_size(efx));
1062 	if (rc)
1063 		goto fail2;
1064 
1065 	rc = efx_pci_probe_post_io(efx);
1066 	if (rc) {
1067 		/* On failure, retry once immediately.
1068 		 * If we aborted probe due to a scheduled reset, dismiss it.
1069 		 */
1070 		efx->reset_pending = 0;
1071 		rc = efx_pci_probe_post_io(efx);
1072 		if (rc) {
1073 			/* On another failure, retry once more
1074 			 * after a 50-305ms delay.
1075 			 */
1076 			unsigned char r;
1077 
1078 			get_random_bytes(&r, 1);
1079 			msleep((unsigned int)r + 50);
1080 			efx->reset_pending = 0;
1081 			rc = efx_pci_probe_post_io(efx);
1082 		}
1083 	}
1084 	if (rc)
1085 		goto fail3;
1086 
1087 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1088 
1089 	/* Try to create MTDs, but allow this to fail */
1090 	rtnl_lock();
1091 	rc = efx_mtd_probe(efx);
1092 	rtnl_unlock();
1093 	if (rc && rc != -EPERM)
1094 		netif_warn(efx, probe, efx->net_dev,
1095 			   "failed to create MTDs (%d)\n", rc);
1096 
1097 	(void)pci_enable_pcie_error_reporting(pci_dev);
1098 
1099 	if (efx->type->udp_tnl_push_ports)
1100 		efx->type->udp_tnl_push_ports(efx);
1101 
1102 	return 0;
1103 
1104  fail3:
1105 	efx_siena_fini_io(efx);
1106  fail2:
1107 	efx_siena_fini_struct(efx);
1108  fail1:
1109 	WARN_ON(rc > 0);
1110 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1111 	free_netdev(net_dev);
1112 	return rc;
1113 }
1114 
1115 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1116  * enabled on success
1117  */
1118 #ifdef CONFIG_SFC_SIENA_SRIOV
1119 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1120 {
1121 	int rc;
1122 	struct efx_nic *efx = pci_get_drvdata(dev);
1123 
1124 	if (efx->type->sriov_configure) {
1125 		rc = efx->type->sriov_configure(efx, num_vfs);
1126 		if (rc)
1127 			return rc;
1128 		else
1129 			return num_vfs;
1130 	} else
1131 		return -EOPNOTSUPP;
1132 }
1133 #endif
1134 
1135 static int efx_pm_freeze(struct device *dev)
1136 {
1137 	struct efx_nic *efx = dev_get_drvdata(dev);
1138 
1139 	rtnl_lock();
1140 
1141 	if (efx->state != STATE_DISABLED) {
1142 		efx->state = STATE_UNINIT;
1143 
1144 		efx_device_detach_sync(efx);
1145 
1146 		efx_siena_stop_all(efx);
1147 		efx_siena_disable_interrupts(efx);
1148 	}
1149 
1150 	rtnl_unlock();
1151 
1152 	return 0;
1153 }
1154 
1155 static void efx_pci_shutdown(struct pci_dev *pci_dev)
1156 {
1157 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1158 
1159 	if (!efx)
1160 		return;
1161 
1162 	efx_pm_freeze(&pci_dev->dev);
1163 	pci_disable_device(pci_dev);
1164 }
1165 
1166 static int efx_pm_thaw(struct device *dev)
1167 {
1168 	int rc;
1169 	struct efx_nic *efx = dev_get_drvdata(dev);
1170 
1171 	rtnl_lock();
1172 
1173 	if (efx->state != STATE_DISABLED) {
1174 		rc = efx_siena_enable_interrupts(efx);
1175 		if (rc)
1176 			goto fail;
1177 
1178 		mutex_lock(&efx->mac_lock);
1179 		efx_siena_mcdi_port_reconfigure(efx);
1180 		mutex_unlock(&efx->mac_lock);
1181 
1182 		efx_siena_start_all(efx);
1183 
1184 		efx_device_attach_if_not_resetting(efx);
1185 
1186 		efx->state = STATE_READY;
1187 
1188 		efx->type->resume_wol(efx);
1189 	}
1190 
1191 	rtnl_unlock();
1192 
1193 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1194 	efx_siena_queue_reset_work(efx);
1195 
1196 	return 0;
1197 
1198 fail:
1199 	rtnl_unlock();
1200 
1201 	return rc;
1202 }
1203 
1204 static int efx_pm_poweroff(struct device *dev)
1205 {
1206 	struct pci_dev *pci_dev = to_pci_dev(dev);
1207 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1208 
1209 	efx->type->fini(efx);
1210 
1211 	efx->reset_pending = 0;
1212 
1213 	pci_save_state(pci_dev);
1214 	return pci_set_power_state(pci_dev, PCI_D3hot);
1215 }
1216 
1217 /* Used for both resume and restore */
1218 static int efx_pm_resume(struct device *dev)
1219 {
1220 	struct pci_dev *pci_dev = to_pci_dev(dev);
1221 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1222 	int rc;
1223 
1224 	rc = pci_set_power_state(pci_dev, PCI_D0);
1225 	if (rc)
1226 		return rc;
1227 	pci_restore_state(pci_dev);
1228 	rc = pci_enable_device(pci_dev);
1229 	if (rc)
1230 		return rc;
1231 	pci_set_master(efx->pci_dev);
1232 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1233 	if (rc)
1234 		return rc;
1235 	down_write(&efx->filter_sem);
1236 	rc = efx->type->init(efx);
1237 	up_write(&efx->filter_sem);
1238 	if (rc)
1239 		return rc;
1240 	rc = efx_pm_thaw(dev);
1241 	return rc;
1242 }
1243 
1244 static int efx_pm_suspend(struct device *dev)
1245 {
1246 	int rc;
1247 
1248 	efx_pm_freeze(dev);
1249 	rc = efx_pm_poweroff(dev);
1250 	if (rc)
1251 		efx_pm_resume(dev);
1252 	return rc;
1253 }
1254 
1255 static const struct dev_pm_ops efx_pm_ops = {
1256 	.suspend	= efx_pm_suspend,
1257 	.resume		= efx_pm_resume,
1258 	.freeze		= efx_pm_freeze,
1259 	.thaw		= efx_pm_thaw,
1260 	.poweroff	= efx_pm_poweroff,
1261 	.restore	= efx_pm_resume,
1262 };
1263 
1264 static struct pci_driver efx_pci_driver = {
1265 	.name		= KBUILD_MODNAME,
1266 	.id_table	= efx_pci_table,
1267 	.probe		= efx_pci_probe,
1268 	.remove		= efx_pci_remove,
1269 	.driver.pm	= &efx_pm_ops,
1270 	.shutdown	= efx_pci_shutdown,
1271 	.err_handler	= &efx_siena_err_handlers,
1272 #ifdef CONFIG_SFC_SIENA_SRIOV
1273 	.sriov_configure = efx_pci_sriov_configure,
1274 #endif
1275 };
1276 
1277 /**************************************************************************
1278  *
1279  * Kernel module interface
1280  *
1281  *************************************************************************/
1282 
1283 static int __init efx_init_module(void)
1284 {
1285 	int rc;
1286 
1287 	pr_info("Solarflare Siena driver\n");
1288 
1289 	rc = register_netdevice_notifier(&efx_netdev_notifier);
1290 	if (rc)
1291 		goto err_notifier;
1292 
1293 #ifdef CONFIG_SFC_SIENA_SRIOV
1294 	rc = efx_init_sriov();
1295 	if (rc)
1296 		goto err_sriov;
1297 #endif
1298 
1299 	rc = efx_siena_create_reset_workqueue();
1300 	if (rc)
1301 		goto err_reset;
1302 
1303 	rc = pci_register_driver(&efx_pci_driver);
1304 	if (rc < 0)
1305 		goto err_pci;
1306 
1307 	return 0;
1308 
1309  err_pci:
1310 	efx_siena_destroy_reset_workqueue();
1311  err_reset:
1312 #ifdef CONFIG_SFC_SIENA_SRIOV
1313 	efx_fini_sriov();
1314  err_sriov:
1315 #endif
1316 	unregister_netdevice_notifier(&efx_netdev_notifier);
1317  err_notifier:
1318 	return rc;
1319 }
1320 
1321 static void __exit efx_exit_module(void)
1322 {
1323 	pr_info("Solarflare Siena driver unloading\n");
1324 
1325 	pci_unregister_driver(&efx_pci_driver);
1326 	efx_siena_destroy_reset_workqueue();
1327 #ifdef CONFIG_SFC_SIENA_SRIOV
1328 	efx_fini_sriov();
1329 #endif
1330 	unregister_netdevice_notifier(&efx_netdev_notifier);
1331 
1332 }
1333 
1334 module_init(efx_init_module);
1335 module_exit(efx_exit_module);
1336 
1337 MODULE_AUTHOR("Solarflare Communications and "
1338 	      "Michael Brown <mbrown@fensystems.co.uk>");
1339 MODULE_DESCRIPTION("Solarflare Siena network driver");
1340 MODULE_LICENSE("GPL");
1341 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1342