1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/filter.h> 9 #include <linux/module.h> 10 #include <linux/pci.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/delay.h> 14 #include <linux/notifier.h> 15 #include <linux/ip.h> 16 #include <linux/tcp.h> 17 #include <linux/in.h> 18 #include <linux/ethtool.h> 19 #include <linux/topology.h> 20 #include <linux/gfp.h> 21 #include <linux/aer.h> 22 #include <linux/interrupt.h> 23 #include "net_driver.h" 24 #include <net/gre.h> 25 #include <net/udp_tunnel.h> 26 #include "efx.h" 27 #include "efx_common.h" 28 #include "efx_channels.h" 29 #include "rx_common.h" 30 #include "tx_common.h" 31 #include "nic.h" 32 #include "io.h" 33 #include "selftest.h" 34 #include "sriov.h" 35 #ifdef CONFIG_SFC_SIENA_SRIOV 36 #include "siena_sriov.h" 37 #endif 38 39 #include "mcdi_port_common.h" 40 #include "mcdi_pcol.h" 41 #include "workarounds.h" 42 43 /************************************************************************** 44 * 45 * Configurable values 46 * 47 *************************************************************************/ 48 49 module_param_named(interrupt_mode, efx_siena_interrupt_mode, uint, 0444); 50 MODULE_PARM_DESC(interrupt_mode, 51 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 52 53 module_param_named(rss_cpus, efx_siena_rss_cpus, uint, 0444); 54 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 55 56 /* 57 * Use separate channels for TX and RX events 58 * 59 * Set this to 1 to use separate channels for TX and RX. It allows us 60 * to control interrupt affinity separately for TX and RX. 61 * 62 * This is only used in MSI-X interrupt mode 63 */ 64 bool efx_siena_separate_tx_channels; 65 module_param_named(efx_separate_tx_channels, efx_siena_separate_tx_channels, 66 bool, 0444); 67 MODULE_PARM_DESC(efx_separate_tx_channels, 68 "Use separate channels for TX and RX"); 69 70 /* Initial interrupt moderation settings. They can be modified after 71 * module load with ethtool. 72 * 73 * The default for RX should strike a balance between increasing the 74 * round-trip latency and reducing overhead. 75 */ 76 static unsigned int rx_irq_mod_usec = 60; 77 78 /* Initial interrupt moderation settings. They can be modified after 79 * module load with ethtool. 80 * 81 * This default is chosen to ensure that a 10G link does not go idle 82 * while a TX queue is stopped after it has become full. A queue is 83 * restarted when it drops below half full. The time this takes (assuming 84 * worst case 3 descriptors per packet and 1024 descriptors) is 85 * 512 / 3 * 1.2 = 205 usec. 86 */ 87 static unsigned int tx_irq_mod_usec = 150; 88 89 static bool phy_flash_cfg; 90 module_param(phy_flash_cfg, bool, 0644); 91 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 92 93 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 94 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 95 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 96 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 97 module_param(debug, uint, 0); 98 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 99 100 /************************************************************************** 101 * 102 * Utility functions and prototypes 103 * 104 *************************************************************************/ 105 106 static void efx_remove_port(struct efx_nic *efx); 107 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog); 108 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp); 109 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 110 u32 flags); 111 112 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 113 do { \ 114 if ((efx->state == STATE_READY) || \ 115 (efx->state == STATE_RECOVERY) || \ 116 (efx->state == STATE_DISABLED)) \ 117 ASSERT_RTNL(); \ 118 } while (0) 119 120 /************************************************************************** 121 * 122 * Port handling 123 * 124 **************************************************************************/ 125 126 static void efx_fini_port(struct efx_nic *efx); 127 128 static int efx_probe_port(struct efx_nic *efx) 129 { 130 int rc; 131 132 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 133 134 if (phy_flash_cfg) 135 efx->phy_mode = PHY_MODE_SPECIAL; 136 137 /* Connect up MAC/PHY operations table */ 138 rc = efx->type->probe_port(efx); 139 if (rc) 140 return rc; 141 142 /* Initialise MAC address to permanent address */ 143 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr); 144 145 return 0; 146 } 147 148 static int efx_init_port(struct efx_nic *efx) 149 { 150 int rc; 151 152 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 153 154 mutex_lock(&efx->mac_lock); 155 156 efx->port_initialized = true; 157 158 /* Ensure the PHY advertises the correct flow control settings */ 159 rc = efx_siena_mcdi_port_reconfigure(efx); 160 if (rc && rc != -EPERM) 161 goto fail; 162 163 mutex_unlock(&efx->mac_lock); 164 return 0; 165 166 fail: 167 mutex_unlock(&efx->mac_lock); 168 return rc; 169 } 170 171 static void efx_fini_port(struct efx_nic *efx) 172 { 173 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 174 175 if (!efx->port_initialized) 176 return; 177 178 efx->port_initialized = false; 179 180 efx->link_state.up = false; 181 efx_siena_link_status_changed(efx); 182 } 183 184 static void efx_remove_port(struct efx_nic *efx) 185 { 186 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 187 188 efx->type->remove_port(efx); 189 } 190 191 /************************************************************************** 192 * 193 * NIC handling 194 * 195 **************************************************************************/ 196 197 static LIST_HEAD(efx_primary_list); 198 static LIST_HEAD(efx_unassociated_list); 199 200 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 201 { 202 return left->type == right->type && 203 left->vpd_sn && right->vpd_sn && 204 !strcmp(left->vpd_sn, right->vpd_sn); 205 } 206 207 static void efx_associate(struct efx_nic *efx) 208 { 209 struct efx_nic *other, *next; 210 211 if (efx->primary == efx) { 212 /* Adding primary function; look for secondaries */ 213 214 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 215 list_add_tail(&efx->node, &efx_primary_list); 216 217 list_for_each_entry_safe(other, next, &efx_unassociated_list, 218 node) { 219 if (efx_same_controller(efx, other)) { 220 list_del(&other->node); 221 netif_dbg(other, probe, other->net_dev, 222 "moving to secondary list of %s %s\n", 223 pci_name(efx->pci_dev), 224 efx->net_dev->name); 225 list_add_tail(&other->node, 226 &efx->secondary_list); 227 other->primary = efx; 228 } 229 } 230 } else { 231 /* Adding secondary function; look for primary */ 232 233 list_for_each_entry(other, &efx_primary_list, node) { 234 if (efx_same_controller(efx, other)) { 235 netif_dbg(efx, probe, efx->net_dev, 236 "adding to secondary list of %s %s\n", 237 pci_name(other->pci_dev), 238 other->net_dev->name); 239 list_add_tail(&efx->node, 240 &other->secondary_list); 241 efx->primary = other; 242 return; 243 } 244 } 245 246 netif_dbg(efx, probe, efx->net_dev, 247 "adding to unassociated list\n"); 248 list_add_tail(&efx->node, &efx_unassociated_list); 249 } 250 } 251 252 static void efx_dissociate(struct efx_nic *efx) 253 { 254 struct efx_nic *other, *next; 255 256 list_del(&efx->node); 257 efx->primary = NULL; 258 259 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 260 list_del(&other->node); 261 netif_dbg(other, probe, other->net_dev, 262 "moving to unassociated list\n"); 263 list_add_tail(&other->node, &efx_unassociated_list); 264 other->primary = NULL; 265 } 266 } 267 268 static int efx_probe_nic(struct efx_nic *efx) 269 { 270 int rc; 271 272 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 273 274 /* Carry out hardware-type specific initialisation */ 275 rc = efx->type->probe(efx); 276 if (rc) 277 return rc; 278 279 do { 280 if (!efx->max_channels || !efx->max_tx_channels) { 281 netif_err(efx, drv, efx->net_dev, 282 "Insufficient resources to allocate" 283 " any channels\n"); 284 rc = -ENOSPC; 285 goto fail1; 286 } 287 288 /* Determine the number of channels and queues by trying 289 * to hook in MSI-X interrupts. 290 */ 291 rc = efx_siena_probe_interrupts(efx); 292 if (rc) 293 goto fail1; 294 295 rc = efx_siena_set_channels(efx); 296 if (rc) 297 goto fail1; 298 299 /* dimension_resources can fail with EAGAIN */ 300 rc = efx->type->dimension_resources(efx); 301 if (rc != 0 && rc != -EAGAIN) 302 goto fail2; 303 304 if (rc == -EAGAIN) 305 /* try again with new max_channels */ 306 efx_siena_remove_interrupts(efx); 307 308 } while (rc == -EAGAIN); 309 310 if (efx->n_channels > 1) 311 netdev_rss_key_fill(efx->rss_context.rx_hash_key, 312 sizeof(efx->rss_context.rx_hash_key)); 313 efx_siena_set_default_rx_indir_table(efx, &efx->rss_context); 314 315 /* Initialise the interrupt moderation settings */ 316 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 317 efx_siena_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, 318 true, true); 319 320 return 0; 321 322 fail2: 323 efx_siena_remove_interrupts(efx); 324 fail1: 325 efx->type->remove(efx); 326 return rc; 327 } 328 329 static void efx_remove_nic(struct efx_nic *efx) 330 { 331 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 332 333 efx_siena_remove_interrupts(efx); 334 efx->type->remove(efx); 335 } 336 337 /************************************************************************** 338 * 339 * NIC startup/shutdown 340 * 341 *************************************************************************/ 342 343 static int efx_probe_all(struct efx_nic *efx) 344 { 345 int rc; 346 347 rc = efx_probe_nic(efx); 348 if (rc) { 349 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 350 goto fail1; 351 } 352 353 rc = efx_probe_port(efx); 354 if (rc) { 355 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 356 goto fail2; 357 } 358 359 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 360 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 361 rc = -EINVAL; 362 goto fail3; 363 } 364 365 #ifdef CONFIG_SFC_SIENA_SRIOV 366 rc = efx->type->vswitching_probe(efx); 367 if (rc) /* not fatal; the PF will still work fine */ 368 netif_warn(efx, probe, efx->net_dev, 369 "failed to setup vswitching rc=%d;" 370 " VFs may not function\n", rc); 371 #endif 372 373 rc = efx_siena_probe_filters(efx); 374 if (rc) { 375 netif_err(efx, probe, efx->net_dev, 376 "failed to create filter tables\n"); 377 goto fail4; 378 } 379 380 rc = efx_siena_probe_channels(efx); 381 if (rc) 382 goto fail5; 383 384 return 0; 385 386 fail5: 387 efx_siena_remove_filters(efx); 388 fail4: 389 #ifdef CONFIG_SFC_SIENA_SRIOV 390 efx->type->vswitching_remove(efx); 391 #endif 392 fail3: 393 efx_remove_port(efx); 394 fail2: 395 efx_remove_nic(efx); 396 fail1: 397 return rc; 398 } 399 400 static void efx_remove_all(struct efx_nic *efx) 401 { 402 rtnl_lock(); 403 efx_xdp_setup_prog(efx, NULL); 404 rtnl_unlock(); 405 406 efx_siena_remove_channels(efx); 407 efx_siena_remove_filters(efx); 408 #ifdef CONFIG_SFC_SIENA_SRIOV 409 efx->type->vswitching_remove(efx); 410 #endif 411 efx_remove_port(efx); 412 efx_remove_nic(efx); 413 } 414 415 /************************************************************************** 416 * 417 * Interrupt moderation 418 * 419 **************************************************************************/ 420 unsigned int efx_siena_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs) 421 { 422 if (usecs == 0) 423 return 0; 424 if (usecs * 1000 < efx->timer_quantum_ns) 425 return 1; /* never round down to 0 */ 426 return usecs * 1000 / efx->timer_quantum_ns; 427 } 428 429 /* Set interrupt moderation parameters */ 430 int efx_siena_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 431 unsigned int rx_usecs, bool rx_adaptive, 432 bool rx_may_override_tx) 433 { 434 struct efx_channel *channel; 435 unsigned int timer_max_us; 436 437 EFX_ASSERT_RESET_SERIALISED(efx); 438 439 timer_max_us = efx->timer_max_ns / 1000; 440 441 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 442 return -EINVAL; 443 444 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 445 !rx_may_override_tx) { 446 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 447 "RX and TX IRQ moderation must be equal\n"); 448 return -EINVAL; 449 } 450 451 efx->irq_rx_adaptive = rx_adaptive; 452 efx->irq_rx_moderation_us = rx_usecs; 453 efx_for_each_channel(channel, efx) { 454 if (efx_channel_has_rx_queue(channel)) 455 channel->irq_moderation_us = rx_usecs; 456 else if (efx_channel_has_tx_queues(channel)) 457 channel->irq_moderation_us = tx_usecs; 458 else if (efx_channel_is_xdp_tx(channel)) 459 channel->irq_moderation_us = tx_usecs; 460 } 461 462 return 0; 463 } 464 465 void efx_siena_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 466 unsigned int *rx_usecs, bool *rx_adaptive) 467 { 468 *rx_adaptive = efx->irq_rx_adaptive; 469 *rx_usecs = efx->irq_rx_moderation_us; 470 471 /* If channels are shared between RX and TX, so is IRQ 472 * moderation. Otherwise, IRQ moderation is the same for all 473 * TX channels and is not adaptive. 474 */ 475 if (efx->tx_channel_offset == 0) { 476 *tx_usecs = *rx_usecs; 477 } else { 478 struct efx_channel *tx_channel; 479 480 tx_channel = efx->channel[efx->tx_channel_offset]; 481 *tx_usecs = tx_channel->irq_moderation_us; 482 } 483 } 484 485 /************************************************************************** 486 * 487 * ioctls 488 * 489 *************************************************************************/ 490 491 /* Net device ioctl 492 * Context: process, rtnl_lock() held. 493 */ 494 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 495 { 496 struct efx_nic *efx = netdev_priv(net_dev); 497 struct mii_ioctl_data *data = if_mii(ifr); 498 499 if (cmd == SIOCSHWTSTAMP) 500 return efx_siena_ptp_set_ts_config(efx, ifr); 501 if (cmd == SIOCGHWTSTAMP) 502 return efx_siena_ptp_get_ts_config(efx, ifr); 503 504 /* Convert phy_id from older PRTAD/DEVAD format */ 505 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 506 (data->phy_id & 0xfc00) == 0x0400) 507 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 508 509 return mdio_mii_ioctl(&efx->mdio, data, cmd); 510 } 511 512 /************************************************************************** 513 * 514 * Kernel net device interface 515 * 516 *************************************************************************/ 517 518 /* Context: process, rtnl_lock() held. */ 519 static int efx_net_open(struct net_device *net_dev) 520 { 521 struct efx_nic *efx = netdev_priv(net_dev); 522 int rc; 523 524 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 525 raw_smp_processor_id()); 526 527 rc = efx_check_disabled(efx); 528 if (rc) 529 return rc; 530 if (efx->phy_mode & PHY_MODE_SPECIAL) 531 return -EBUSY; 532 if (efx_siena_mcdi_poll_reboot(efx) && efx_siena_reset(efx, RESET_TYPE_ALL)) 533 return -EIO; 534 535 /* Notify the kernel of the link state polled during driver load, 536 * before the monitor starts running */ 537 efx_siena_link_status_changed(efx); 538 539 efx_siena_start_all(efx); 540 if (efx->state == STATE_DISABLED || efx->reset_pending) 541 netif_device_detach(efx->net_dev); 542 efx_siena_selftest_async_start(efx); 543 return 0; 544 } 545 546 /* Context: process, rtnl_lock() held. 547 * Note that the kernel will ignore our return code; this method 548 * should really be a void. 549 */ 550 static int efx_net_stop(struct net_device *net_dev) 551 { 552 struct efx_nic *efx = netdev_priv(net_dev); 553 554 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 555 raw_smp_processor_id()); 556 557 /* Stop the device and flush all the channels */ 558 efx_siena_stop_all(efx); 559 560 return 0; 561 } 562 563 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid) 564 { 565 struct efx_nic *efx = netdev_priv(net_dev); 566 567 if (efx->type->vlan_rx_add_vid) 568 return efx->type->vlan_rx_add_vid(efx, proto, vid); 569 else 570 return -EOPNOTSUPP; 571 } 572 573 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid) 574 { 575 struct efx_nic *efx = netdev_priv(net_dev); 576 577 if (efx->type->vlan_rx_kill_vid) 578 return efx->type->vlan_rx_kill_vid(efx, proto, vid); 579 else 580 return -EOPNOTSUPP; 581 } 582 583 static const struct net_device_ops efx_netdev_ops = { 584 .ndo_open = efx_net_open, 585 .ndo_stop = efx_net_stop, 586 .ndo_get_stats64 = efx_siena_net_stats, 587 .ndo_tx_timeout = efx_siena_watchdog, 588 .ndo_start_xmit = efx_siena_hard_start_xmit, 589 .ndo_validate_addr = eth_validate_addr, 590 .ndo_eth_ioctl = efx_ioctl, 591 .ndo_change_mtu = efx_siena_change_mtu, 592 .ndo_set_mac_address = efx_siena_set_mac_address, 593 .ndo_set_rx_mode = efx_siena_set_rx_mode, 594 .ndo_set_features = efx_siena_set_features, 595 .ndo_features_check = efx_siena_features_check, 596 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid, 597 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid, 598 #ifdef CONFIG_SFC_SIENA_SRIOV 599 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 600 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 601 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 602 .ndo_get_vf_config = efx_sriov_get_vf_config, 603 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, 604 #endif 605 .ndo_get_phys_port_id = efx_siena_get_phys_port_id, 606 .ndo_get_phys_port_name = efx_siena_get_phys_port_name, 607 .ndo_setup_tc = efx_siena_setup_tc, 608 #ifdef CONFIG_RFS_ACCEL 609 .ndo_rx_flow_steer = efx_siena_filter_rfs, 610 #endif 611 .ndo_xdp_xmit = efx_xdp_xmit, 612 .ndo_bpf = efx_xdp 613 }; 614 615 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog) 616 { 617 struct bpf_prog *old_prog; 618 619 if (efx->xdp_rxq_info_failed) { 620 netif_err(efx, drv, efx->net_dev, 621 "Unable to bind XDP program due to previous failure of rxq_info\n"); 622 return -EINVAL; 623 } 624 625 if (prog && efx->net_dev->mtu > efx_siena_xdp_max_mtu(efx)) { 626 netif_err(efx, drv, efx->net_dev, 627 "Unable to configure XDP with MTU of %d (max: %d)\n", 628 efx->net_dev->mtu, efx_siena_xdp_max_mtu(efx)); 629 return -EINVAL; 630 } 631 632 old_prog = rtnl_dereference(efx->xdp_prog); 633 rcu_assign_pointer(efx->xdp_prog, prog); 634 /* Release the reference that was originally passed by the caller. */ 635 if (old_prog) 636 bpf_prog_put(old_prog); 637 638 return 0; 639 } 640 641 /* Context: process, rtnl_lock() held. */ 642 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp) 643 { 644 struct efx_nic *efx = netdev_priv(dev); 645 646 switch (xdp->command) { 647 case XDP_SETUP_PROG: 648 return efx_xdp_setup_prog(efx, xdp->prog); 649 default: 650 return -EINVAL; 651 } 652 } 653 654 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 655 u32 flags) 656 { 657 struct efx_nic *efx = netdev_priv(dev); 658 659 if (!netif_running(dev)) 660 return -EINVAL; 661 662 return efx_siena_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH); 663 } 664 665 static void efx_update_name(struct efx_nic *efx) 666 { 667 strcpy(efx->name, efx->net_dev->name); 668 efx_siena_mtd_rename(efx); 669 efx_siena_set_channel_names(efx); 670 } 671 672 static int efx_netdev_event(struct notifier_block *this, 673 unsigned long event, void *ptr) 674 { 675 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 676 677 if ((net_dev->netdev_ops == &efx_netdev_ops) && 678 event == NETDEV_CHANGENAME) 679 efx_update_name(netdev_priv(net_dev)); 680 681 return NOTIFY_DONE; 682 } 683 684 static struct notifier_block efx_netdev_notifier = { 685 .notifier_call = efx_netdev_event, 686 }; 687 688 static ssize_t phy_type_show(struct device *dev, 689 struct device_attribute *attr, char *buf) 690 { 691 struct efx_nic *efx = dev_get_drvdata(dev); 692 return sprintf(buf, "%d\n", efx->phy_type); 693 } 694 static DEVICE_ATTR_RO(phy_type); 695 696 static int efx_register_netdev(struct efx_nic *efx) 697 { 698 struct net_device *net_dev = efx->net_dev; 699 struct efx_channel *channel; 700 int rc; 701 702 net_dev->watchdog_timeo = 5 * HZ; 703 net_dev->irq = efx->pci_dev->irq; 704 net_dev->netdev_ops = &efx_netdev_ops; 705 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 706 net_dev->priv_flags |= IFF_UNICAST_FLT; 707 net_dev->ethtool_ops = &efx_siena_ethtool_ops; 708 netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS); 709 net_dev->min_mtu = EFX_MIN_MTU; 710 net_dev->max_mtu = EFX_MAX_MTU; 711 712 rtnl_lock(); 713 714 /* Enable resets to be scheduled and check whether any were 715 * already requested. If so, the NIC is probably hosed so we 716 * abort. 717 */ 718 efx->state = STATE_READY; 719 smp_mb(); /* ensure we change state before checking reset_pending */ 720 if (efx->reset_pending) { 721 pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n"); 722 rc = -EIO; 723 goto fail_locked; 724 } 725 726 rc = dev_alloc_name(net_dev, net_dev->name); 727 if (rc < 0) 728 goto fail_locked; 729 efx_update_name(efx); 730 731 /* Always start with carrier off; PHY events will detect the link */ 732 netif_carrier_off(net_dev); 733 734 rc = register_netdevice(net_dev); 735 if (rc) 736 goto fail_locked; 737 738 efx_for_each_channel(channel, efx) { 739 struct efx_tx_queue *tx_queue; 740 efx_for_each_channel_tx_queue(tx_queue, channel) 741 efx_siena_init_tx_queue_core_txq(tx_queue); 742 } 743 744 efx_associate(efx); 745 746 rtnl_unlock(); 747 748 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 749 if (rc) { 750 netif_err(efx, drv, efx->net_dev, 751 "failed to init net dev attributes\n"); 752 goto fail_registered; 753 } 754 755 efx_siena_init_mcdi_logging(efx); 756 757 return 0; 758 759 fail_registered: 760 rtnl_lock(); 761 efx_dissociate(efx); 762 unregister_netdevice(net_dev); 763 fail_locked: 764 efx->state = STATE_UNINIT; 765 rtnl_unlock(); 766 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 767 return rc; 768 } 769 770 static void efx_unregister_netdev(struct efx_nic *efx) 771 { 772 if (!efx->net_dev) 773 return; 774 775 BUG_ON(netdev_priv(efx->net_dev) != efx); 776 777 if (efx_dev_registered(efx)) { 778 strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 779 efx_siena_fini_mcdi_logging(efx); 780 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 781 unregister_netdev(efx->net_dev); 782 } 783 } 784 785 /************************************************************************** 786 * 787 * List of NICs we support 788 * 789 **************************************************************************/ 790 791 /* PCI device ID table */ 792 static const struct pci_device_id efx_pci_table[] = { 793 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 794 .driver_data = (unsigned long)&siena_a0_nic_type}, 795 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 796 .driver_data = (unsigned long)&siena_a0_nic_type}, 797 {0} /* end of list */ 798 }; 799 800 /************************************************************************** 801 * 802 * Data housekeeping 803 * 804 **************************************************************************/ 805 806 void efx_siena_update_sw_stats(struct efx_nic *efx, u64 *stats) 807 { 808 u64 n_rx_nodesc_trunc = 0; 809 struct efx_channel *channel; 810 811 efx_for_each_channel(channel, efx) 812 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 813 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 814 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 815 } 816 817 /************************************************************************** 818 * 819 * PCI interface 820 * 821 **************************************************************************/ 822 823 /* Main body of final NIC shutdown code 824 * This is called only at module unload (or hotplug removal). 825 */ 826 static void efx_pci_remove_main(struct efx_nic *efx) 827 { 828 /* Flush reset_work. It can no longer be scheduled since we 829 * are not READY. 830 */ 831 BUG_ON(efx->state == STATE_READY); 832 efx_siena_flush_reset_workqueue(efx); 833 834 efx_siena_disable_interrupts(efx); 835 efx_siena_clear_interrupt_affinity(efx); 836 efx_siena_fini_interrupt(efx); 837 efx_fini_port(efx); 838 efx->type->fini(efx); 839 efx_siena_fini_napi(efx); 840 efx_remove_all(efx); 841 } 842 843 /* Final NIC shutdown 844 * This is called only at module unload (or hotplug removal). A PF can call 845 * this on its VFs to ensure they are unbound first. 846 */ 847 static void efx_pci_remove(struct pci_dev *pci_dev) 848 { 849 struct efx_nic *efx; 850 851 efx = pci_get_drvdata(pci_dev); 852 if (!efx) 853 return; 854 855 /* Mark the NIC as fini, then stop the interface */ 856 rtnl_lock(); 857 efx_dissociate(efx); 858 dev_close(efx->net_dev); 859 efx_siena_disable_interrupts(efx); 860 efx->state = STATE_UNINIT; 861 rtnl_unlock(); 862 863 if (efx->type->sriov_fini) 864 efx->type->sriov_fini(efx); 865 866 efx_unregister_netdev(efx); 867 868 efx_siena_mtd_remove(efx); 869 870 efx_pci_remove_main(efx); 871 872 efx_siena_fini_io(efx); 873 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 874 875 efx_siena_fini_struct(efx); 876 free_netdev(efx->net_dev); 877 878 pci_disable_pcie_error_reporting(pci_dev); 879 }; 880 881 /* NIC VPD information 882 * Called during probe to display the part number of the 883 * installed NIC. 884 */ 885 static void efx_probe_vpd_strings(struct efx_nic *efx) 886 { 887 struct pci_dev *dev = efx->pci_dev; 888 unsigned int vpd_size, kw_len; 889 u8 *vpd_data; 890 int start; 891 892 vpd_data = pci_vpd_alloc(dev, &vpd_size); 893 if (IS_ERR(vpd_data)) { 894 pci_warn(dev, "Unable to read VPD\n"); 895 return; 896 } 897 898 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 899 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 900 if (start < 0) 901 pci_err(dev, "Part number not found or incomplete\n"); 902 else 903 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start); 904 905 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 906 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len); 907 if (start < 0) 908 pci_err(dev, "Serial number not found or incomplete\n"); 909 else 910 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL); 911 912 kfree(vpd_data); 913 } 914 915 916 /* Main body of NIC initialisation 917 * This is called at module load (or hotplug insertion, theoretically). 918 */ 919 static int efx_pci_probe_main(struct efx_nic *efx) 920 { 921 int rc; 922 923 /* Do start-of-day initialisation */ 924 rc = efx_probe_all(efx); 925 if (rc) 926 goto fail1; 927 928 efx_siena_init_napi(efx); 929 930 down_write(&efx->filter_sem); 931 rc = efx->type->init(efx); 932 up_write(&efx->filter_sem); 933 if (rc) { 934 pci_err(efx->pci_dev, "failed to initialise NIC\n"); 935 goto fail3; 936 } 937 938 rc = efx_init_port(efx); 939 if (rc) { 940 netif_err(efx, probe, efx->net_dev, 941 "failed to initialise port\n"); 942 goto fail4; 943 } 944 945 rc = efx_siena_init_interrupt(efx); 946 if (rc) 947 goto fail5; 948 949 efx_siena_set_interrupt_affinity(efx); 950 rc = efx_siena_enable_interrupts(efx); 951 if (rc) 952 goto fail6; 953 954 return 0; 955 956 fail6: 957 efx_siena_clear_interrupt_affinity(efx); 958 efx_siena_fini_interrupt(efx); 959 fail5: 960 efx_fini_port(efx); 961 fail4: 962 efx->type->fini(efx); 963 fail3: 964 efx_siena_fini_napi(efx); 965 efx_remove_all(efx); 966 fail1: 967 return rc; 968 } 969 970 static int efx_pci_probe_post_io(struct efx_nic *efx) 971 { 972 struct net_device *net_dev = efx->net_dev; 973 int rc = efx_pci_probe_main(efx); 974 975 if (rc) 976 return rc; 977 978 if (efx->type->sriov_init) { 979 rc = efx->type->sriov_init(efx); 980 if (rc) 981 pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n", 982 rc); 983 } 984 985 /* Determine netdevice features */ 986 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 987 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL); 988 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) 989 net_dev->features |= NETIF_F_TSO6; 990 /* Check whether device supports TSO */ 991 if (!efx->type->tso_versions || !efx->type->tso_versions(efx)) 992 net_dev->features &= ~NETIF_F_ALL_TSO; 993 /* Mask for features that also apply to VLAN devices */ 994 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 995 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 996 NETIF_F_RXCSUM); 997 998 net_dev->hw_features |= net_dev->features & ~efx->fixed_features; 999 1000 /* Disable receiving frames with bad FCS, by default. */ 1001 net_dev->features &= ~NETIF_F_RXALL; 1002 1003 /* Disable VLAN filtering by default. It may be enforced if 1004 * the feature is fixed (i.e. VLAN filters are required to 1005 * receive VLAN tagged packets due to vPort restrictions). 1006 */ 1007 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 1008 net_dev->features |= efx->fixed_features; 1009 1010 rc = efx_register_netdev(efx); 1011 if (!rc) 1012 return 0; 1013 1014 efx_pci_remove_main(efx); 1015 return rc; 1016 } 1017 1018 /* NIC initialisation 1019 * 1020 * This is called at module load (or hotplug insertion, 1021 * theoretically). It sets up PCI mappings, resets the NIC, 1022 * sets up and registers the network devices with the kernel and hooks 1023 * the interrupt service routine. It does not prepare the device for 1024 * transmission; this is left to the first time one of the network 1025 * interfaces is brought up (i.e. efx_net_open). 1026 */ 1027 static int efx_pci_probe(struct pci_dev *pci_dev, 1028 const struct pci_device_id *entry) 1029 { 1030 struct net_device *net_dev; 1031 struct efx_nic *efx; 1032 int rc; 1033 1034 /* Allocate and initialise a struct net_device and struct efx_nic */ 1035 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 1036 EFX_MAX_RX_QUEUES); 1037 if (!net_dev) 1038 return -ENOMEM; 1039 efx = netdev_priv(net_dev); 1040 efx->type = (const struct efx_nic_type *) entry->driver_data; 1041 efx->fixed_features |= NETIF_F_HIGHDMA; 1042 1043 pci_set_drvdata(pci_dev, efx); 1044 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 1045 rc = efx_siena_init_struct(efx, pci_dev, net_dev); 1046 if (rc) 1047 goto fail1; 1048 1049 pci_info(pci_dev, "Solarflare NIC detected\n"); 1050 1051 if (!efx->type->is_vf) 1052 efx_probe_vpd_strings(efx); 1053 1054 /* Set up basic I/O (BAR mappings etc) */ 1055 rc = efx_siena_init_io(efx, efx->type->mem_bar(efx), 1056 efx->type->max_dma_mask, 1057 efx->type->mem_map_size(efx)); 1058 if (rc) 1059 goto fail2; 1060 1061 rc = efx_pci_probe_post_io(efx); 1062 if (rc) { 1063 /* On failure, retry once immediately. 1064 * If we aborted probe due to a scheduled reset, dismiss it. 1065 */ 1066 efx->reset_pending = 0; 1067 rc = efx_pci_probe_post_io(efx); 1068 if (rc) { 1069 /* On another failure, retry once more 1070 * after a 50-305ms delay. 1071 */ 1072 unsigned char r; 1073 1074 get_random_bytes(&r, 1); 1075 msleep((unsigned int)r + 50); 1076 efx->reset_pending = 0; 1077 rc = efx_pci_probe_post_io(efx); 1078 } 1079 } 1080 if (rc) 1081 goto fail3; 1082 1083 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 1084 1085 /* Try to create MTDs, but allow this to fail */ 1086 rtnl_lock(); 1087 rc = efx_mtd_probe(efx); 1088 rtnl_unlock(); 1089 if (rc && rc != -EPERM) 1090 netif_warn(efx, probe, efx->net_dev, 1091 "failed to create MTDs (%d)\n", rc); 1092 1093 (void)pci_enable_pcie_error_reporting(pci_dev); 1094 1095 if (efx->type->udp_tnl_push_ports) 1096 efx->type->udp_tnl_push_ports(efx); 1097 1098 return 0; 1099 1100 fail3: 1101 efx_siena_fini_io(efx); 1102 fail2: 1103 efx_siena_fini_struct(efx); 1104 fail1: 1105 WARN_ON(rc > 0); 1106 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 1107 free_netdev(net_dev); 1108 return rc; 1109 } 1110 1111 /* efx_pci_sriov_configure returns the actual number of Virtual Functions 1112 * enabled on success 1113 */ 1114 #ifdef CONFIG_SFC_SIENA_SRIOV 1115 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 1116 { 1117 int rc; 1118 struct efx_nic *efx = pci_get_drvdata(dev); 1119 1120 if (efx->type->sriov_configure) { 1121 rc = efx->type->sriov_configure(efx, num_vfs); 1122 if (rc) 1123 return rc; 1124 else 1125 return num_vfs; 1126 } else 1127 return -EOPNOTSUPP; 1128 } 1129 #endif 1130 1131 static int efx_pm_freeze(struct device *dev) 1132 { 1133 struct efx_nic *efx = dev_get_drvdata(dev); 1134 1135 rtnl_lock(); 1136 1137 if (efx->state != STATE_DISABLED) { 1138 efx->state = STATE_UNINIT; 1139 1140 efx_device_detach_sync(efx); 1141 1142 efx_siena_stop_all(efx); 1143 efx_siena_disable_interrupts(efx); 1144 } 1145 1146 rtnl_unlock(); 1147 1148 return 0; 1149 } 1150 1151 static void efx_pci_shutdown(struct pci_dev *pci_dev) 1152 { 1153 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1154 1155 if (!efx) 1156 return; 1157 1158 efx_pm_freeze(&pci_dev->dev); 1159 pci_disable_device(pci_dev); 1160 } 1161 1162 static int efx_pm_thaw(struct device *dev) 1163 { 1164 int rc; 1165 struct efx_nic *efx = dev_get_drvdata(dev); 1166 1167 rtnl_lock(); 1168 1169 if (efx->state != STATE_DISABLED) { 1170 rc = efx_siena_enable_interrupts(efx); 1171 if (rc) 1172 goto fail; 1173 1174 mutex_lock(&efx->mac_lock); 1175 efx_siena_mcdi_port_reconfigure(efx); 1176 mutex_unlock(&efx->mac_lock); 1177 1178 efx_siena_start_all(efx); 1179 1180 efx_device_attach_if_not_resetting(efx); 1181 1182 efx->state = STATE_READY; 1183 1184 efx->type->resume_wol(efx); 1185 } 1186 1187 rtnl_unlock(); 1188 1189 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 1190 efx_siena_queue_reset_work(efx); 1191 1192 return 0; 1193 1194 fail: 1195 rtnl_unlock(); 1196 1197 return rc; 1198 } 1199 1200 static int efx_pm_poweroff(struct device *dev) 1201 { 1202 struct pci_dev *pci_dev = to_pci_dev(dev); 1203 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1204 1205 efx->type->fini(efx); 1206 1207 efx->reset_pending = 0; 1208 1209 pci_save_state(pci_dev); 1210 return pci_set_power_state(pci_dev, PCI_D3hot); 1211 } 1212 1213 /* Used for both resume and restore */ 1214 static int efx_pm_resume(struct device *dev) 1215 { 1216 struct pci_dev *pci_dev = to_pci_dev(dev); 1217 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1218 int rc; 1219 1220 rc = pci_set_power_state(pci_dev, PCI_D0); 1221 if (rc) 1222 return rc; 1223 pci_restore_state(pci_dev); 1224 rc = pci_enable_device(pci_dev); 1225 if (rc) 1226 return rc; 1227 pci_set_master(efx->pci_dev); 1228 rc = efx->type->reset(efx, RESET_TYPE_ALL); 1229 if (rc) 1230 return rc; 1231 down_write(&efx->filter_sem); 1232 rc = efx->type->init(efx); 1233 up_write(&efx->filter_sem); 1234 if (rc) 1235 return rc; 1236 rc = efx_pm_thaw(dev); 1237 return rc; 1238 } 1239 1240 static int efx_pm_suspend(struct device *dev) 1241 { 1242 int rc; 1243 1244 efx_pm_freeze(dev); 1245 rc = efx_pm_poweroff(dev); 1246 if (rc) 1247 efx_pm_resume(dev); 1248 return rc; 1249 } 1250 1251 static const struct dev_pm_ops efx_pm_ops = { 1252 .suspend = efx_pm_suspend, 1253 .resume = efx_pm_resume, 1254 .freeze = efx_pm_freeze, 1255 .thaw = efx_pm_thaw, 1256 .poweroff = efx_pm_poweroff, 1257 .restore = efx_pm_resume, 1258 }; 1259 1260 static struct pci_driver efx_pci_driver = { 1261 .name = KBUILD_MODNAME, 1262 .id_table = efx_pci_table, 1263 .probe = efx_pci_probe, 1264 .remove = efx_pci_remove, 1265 .driver.pm = &efx_pm_ops, 1266 .shutdown = efx_pci_shutdown, 1267 .err_handler = &efx_siena_err_handlers, 1268 #ifdef CONFIG_SFC_SIENA_SRIOV 1269 .sriov_configure = efx_pci_sriov_configure, 1270 #endif 1271 }; 1272 1273 /************************************************************************** 1274 * 1275 * Kernel module interface 1276 * 1277 *************************************************************************/ 1278 1279 static int __init efx_init_module(void) 1280 { 1281 int rc; 1282 1283 pr_info("Solarflare Siena driver\n"); 1284 1285 rc = register_netdevice_notifier(&efx_netdev_notifier); 1286 if (rc) 1287 goto err_notifier; 1288 1289 #ifdef CONFIG_SFC_SIENA_SRIOV 1290 rc = efx_init_sriov(); 1291 if (rc) 1292 goto err_sriov; 1293 #endif 1294 1295 rc = efx_siena_create_reset_workqueue(); 1296 if (rc) 1297 goto err_reset; 1298 1299 rc = pci_register_driver(&efx_pci_driver); 1300 if (rc < 0) 1301 goto err_pci; 1302 1303 return 0; 1304 1305 err_pci: 1306 efx_siena_destroy_reset_workqueue(); 1307 err_reset: 1308 #ifdef CONFIG_SFC_SIENA_SRIOV 1309 efx_fini_sriov(); 1310 err_sriov: 1311 #endif 1312 unregister_netdevice_notifier(&efx_netdev_notifier); 1313 err_notifier: 1314 return rc; 1315 } 1316 1317 static void __exit efx_exit_module(void) 1318 { 1319 pr_info("Solarflare Siena driver unloading\n"); 1320 1321 pci_unregister_driver(&efx_pci_driver); 1322 efx_siena_destroy_reset_workqueue(); 1323 #ifdef CONFIG_SFC_SIENA_SRIOV 1324 efx_fini_sriov(); 1325 #endif 1326 unregister_netdevice_notifier(&efx_netdev_notifier); 1327 1328 } 1329 1330 module_init(efx_init_module); 1331 module_exit(efx_exit_module); 1332 1333 MODULE_AUTHOR("Solarflare Communications and " 1334 "Michael Brown <mbrown@fensystems.co.uk>"); 1335 MODULE_DESCRIPTION("Solarflare Siena network driver"); 1336 MODULE_LICENSE("GPL"); 1337 MODULE_DEVICE_TABLE(pci, efx_pci_table); 1338