1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include "net_driver.h" 12 #include <linux/module.h> 13 #include <linux/iommu.h> 14 #include "efx.h" 15 #include "nic.h" 16 #include "rx_common.h" 17 18 /* This is the percentage fill level below which new RX descriptors 19 * will be added to the RX descriptor ring. 20 */ 21 static unsigned int rx_refill_threshold; 22 module_param(rx_refill_threshold, uint, 0444); 23 MODULE_PARM_DESC(rx_refill_threshold, 24 "RX descriptor ring refill threshold (%)"); 25 26 /* RX maximum head room required. 27 * 28 * This must be at least 1 to prevent overflow, plus one packet-worth 29 * to allow pipelined receives. 30 */ 31 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) 32 33 /* Check the RX page recycle ring for a page that can be reused. */ 34 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) 35 { 36 struct efx_nic *efx = rx_queue->efx; 37 struct efx_rx_page_state *state; 38 unsigned int index; 39 struct page *page; 40 41 if (unlikely(!rx_queue->page_ring)) 42 return NULL; 43 index = rx_queue->page_remove & rx_queue->page_ptr_mask; 44 page = rx_queue->page_ring[index]; 45 if (page == NULL) 46 return NULL; 47 48 rx_queue->page_ring[index] = NULL; 49 /* page_remove cannot exceed page_add. */ 50 if (rx_queue->page_remove != rx_queue->page_add) 51 ++rx_queue->page_remove; 52 53 /* If page_count is 1 then we hold the only reference to this page. */ 54 if (page_count(page) == 1) { 55 ++rx_queue->page_recycle_count; 56 return page; 57 } else { 58 state = page_address(page); 59 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 60 PAGE_SIZE << efx->rx_buffer_order, 61 DMA_FROM_DEVICE); 62 put_page(page); 63 ++rx_queue->page_recycle_failed; 64 } 65 66 return NULL; 67 } 68 69 /* Attempt to recycle the page if there is an RX recycle ring; the page can 70 * only be added if this is the final RX buffer, to prevent pages being used in 71 * the descriptor ring and appearing in the recycle ring simultaneously. 72 */ 73 static void efx_recycle_rx_page(struct efx_channel *channel, 74 struct efx_rx_buffer *rx_buf) 75 { 76 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 77 struct efx_nic *efx = rx_queue->efx; 78 struct page *page = rx_buf->page; 79 unsigned int index; 80 81 /* Only recycle the page after processing the final buffer. */ 82 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) 83 return; 84 85 index = rx_queue->page_add & rx_queue->page_ptr_mask; 86 if (rx_queue->page_ring[index] == NULL) { 87 unsigned int read_index = rx_queue->page_remove & 88 rx_queue->page_ptr_mask; 89 90 /* The next slot in the recycle ring is available, but 91 * increment page_remove if the read pointer currently 92 * points here. 93 */ 94 if (read_index == index) 95 ++rx_queue->page_remove; 96 rx_queue->page_ring[index] = page; 97 ++rx_queue->page_add; 98 return; 99 } 100 ++rx_queue->page_recycle_full; 101 efx_unmap_rx_buffer(efx, rx_buf); 102 put_page(rx_buf->page); 103 } 104 105 /* Recycle the pages that are used by buffers that have just been received. */ 106 void efx_recycle_rx_pages(struct efx_channel *channel, 107 struct efx_rx_buffer *rx_buf, 108 unsigned int n_frags) 109 { 110 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 111 112 if (unlikely(!rx_queue->page_ring)) 113 return; 114 115 do { 116 efx_recycle_rx_page(channel, rx_buf); 117 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 118 } while (--n_frags); 119 } 120 121 void efx_discard_rx_packet(struct efx_channel *channel, 122 struct efx_rx_buffer *rx_buf, 123 unsigned int n_frags) 124 { 125 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 126 127 efx_recycle_rx_pages(channel, rx_buf, n_frags); 128 129 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 130 } 131 132 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue) 133 { 134 unsigned int bufs_in_recycle_ring, page_ring_size; 135 struct efx_nic *efx = rx_queue->efx; 136 137 bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx); 138 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / 139 efx->rx_bufs_per_page); 140 rx_queue->page_ring = kcalloc(page_ring_size, 141 sizeof(*rx_queue->page_ring), GFP_KERNEL); 142 if (!rx_queue->page_ring) 143 rx_queue->page_ptr_mask = 0; 144 else 145 rx_queue->page_ptr_mask = page_ring_size - 1; 146 } 147 148 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue) 149 { 150 struct efx_nic *efx = rx_queue->efx; 151 int i; 152 153 if (unlikely(!rx_queue->page_ring)) 154 return; 155 156 /* Unmap and release the pages in the recycle ring. Remove the ring. */ 157 for (i = 0; i <= rx_queue->page_ptr_mask; i++) { 158 struct page *page = rx_queue->page_ring[i]; 159 struct efx_rx_page_state *state; 160 161 if (page == NULL) 162 continue; 163 164 state = page_address(page); 165 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 166 PAGE_SIZE << efx->rx_buffer_order, 167 DMA_FROM_DEVICE); 168 put_page(page); 169 } 170 kfree(rx_queue->page_ring); 171 rx_queue->page_ring = NULL; 172 } 173 174 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 175 struct efx_rx_buffer *rx_buf) 176 { 177 /* Release the page reference we hold for the buffer. */ 178 if (rx_buf->page) 179 put_page(rx_buf->page); 180 181 /* If this is the last buffer in a page, unmap and free it. */ 182 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { 183 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 184 efx_free_rx_buffers(rx_queue, rx_buf, 1); 185 } 186 rx_buf->page = NULL; 187 } 188 189 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 190 { 191 struct efx_nic *efx = rx_queue->efx; 192 unsigned int entries; 193 int rc; 194 195 /* Create the smallest power-of-two aligned ring */ 196 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 197 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 198 rx_queue->ptr_mask = entries - 1; 199 200 netif_dbg(efx, probe, efx->net_dev, 201 "creating RX queue %d size %#x mask %#x\n", 202 efx_rx_queue_index(rx_queue), efx->rxq_entries, 203 rx_queue->ptr_mask); 204 205 /* Allocate RX buffers */ 206 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 207 GFP_KERNEL); 208 if (!rx_queue->buffer) 209 return -ENOMEM; 210 211 rc = efx_nic_probe_rx(rx_queue); 212 if (rc) { 213 kfree(rx_queue->buffer); 214 rx_queue->buffer = NULL; 215 } 216 217 return rc; 218 } 219 220 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 221 { 222 unsigned int max_fill, trigger, max_trigger; 223 struct efx_nic *efx = rx_queue->efx; 224 int rc = 0; 225 226 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 227 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 228 229 /* Initialise ptr fields */ 230 rx_queue->added_count = 0; 231 rx_queue->notified_count = 0; 232 rx_queue->removed_count = 0; 233 rx_queue->min_fill = -1U; 234 efx_init_rx_recycle_ring(rx_queue); 235 236 rx_queue->page_remove = 0; 237 rx_queue->page_add = rx_queue->page_ptr_mask + 1; 238 rx_queue->page_recycle_count = 0; 239 rx_queue->page_recycle_failed = 0; 240 rx_queue->page_recycle_full = 0; 241 242 /* Initialise limit fields */ 243 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 244 max_trigger = 245 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; 246 if (rx_refill_threshold != 0) { 247 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 248 if (trigger > max_trigger) 249 trigger = max_trigger; 250 } else { 251 trigger = max_trigger; 252 } 253 254 rx_queue->max_fill = max_fill; 255 rx_queue->fast_fill_trigger = trigger; 256 rx_queue->refill_enabled = true; 257 258 /* Initialise XDP queue information */ 259 rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev, 260 rx_queue->core_index, 0); 261 262 if (rc) { 263 netif_err(efx, rx_err, efx->net_dev, 264 "Failure to initialise XDP queue information rc=%d\n", 265 rc); 266 efx->xdp_rxq_info_failed = true; 267 } else { 268 rx_queue->xdp_rxq_info_valid = true; 269 } 270 271 /* Set up RX descriptor ring */ 272 efx_nic_init_rx(rx_queue); 273 } 274 275 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 276 { 277 struct efx_rx_buffer *rx_buf; 278 int i; 279 280 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 281 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 282 283 del_timer_sync(&rx_queue->slow_fill); 284 285 /* Release RX buffers from the current read ptr to the write ptr */ 286 if (rx_queue->buffer) { 287 for (i = rx_queue->removed_count; i < rx_queue->added_count; 288 i++) { 289 unsigned int index = i & rx_queue->ptr_mask; 290 291 rx_buf = efx_rx_buffer(rx_queue, index); 292 efx_fini_rx_buffer(rx_queue, rx_buf); 293 } 294 } 295 296 efx_fini_rx_recycle_ring(rx_queue); 297 298 if (rx_queue->xdp_rxq_info_valid) 299 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info); 300 301 rx_queue->xdp_rxq_info_valid = false; 302 } 303 304 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 305 { 306 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 307 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 308 309 efx_nic_remove_rx(rx_queue); 310 311 kfree(rx_queue->buffer); 312 rx_queue->buffer = NULL; 313 } 314 315 /* Unmap a DMA-mapped page. This function is only called for the final RX 316 * buffer in a page. 317 */ 318 void efx_unmap_rx_buffer(struct efx_nic *efx, 319 struct efx_rx_buffer *rx_buf) 320 { 321 struct page *page = rx_buf->page; 322 323 if (page) { 324 struct efx_rx_page_state *state = page_address(page); 325 326 dma_unmap_page(&efx->pci_dev->dev, 327 state->dma_addr, 328 PAGE_SIZE << efx->rx_buffer_order, 329 DMA_FROM_DEVICE); 330 } 331 } 332 333 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, 334 struct efx_rx_buffer *rx_buf, 335 unsigned int num_bufs) 336 { 337 do { 338 if (rx_buf->page) { 339 put_page(rx_buf->page); 340 rx_buf->page = NULL; 341 } 342 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 343 } while (--num_bufs); 344 } 345 346 void efx_rx_slow_fill(struct timer_list *t) 347 { 348 struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); 349 350 /* Post an event to cause NAPI to run and refill the queue */ 351 efx_nic_generate_fill_event(rx_queue); 352 ++rx_queue->slow_fill_count; 353 } 354 355 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 356 { 357 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10)); 358 } 359 360 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers 361 * 362 * @rx_queue: Efx RX queue 363 * 364 * This allocates a batch of pages, maps them for DMA, and populates 365 * struct efx_rx_buffers for each one. Return a negative error code or 366 * 0 on success. If a single page can be used for multiple buffers, 367 * then the page will either be inserted fully, or not at all. 368 */ 369 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) 370 { 371 unsigned int page_offset, index, count; 372 struct efx_nic *efx = rx_queue->efx; 373 struct efx_rx_page_state *state; 374 struct efx_rx_buffer *rx_buf; 375 dma_addr_t dma_addr; 376 struct page *page; 377 378 count = 0; 379 do { 380 page = efx_reuse_page(rx_queue); 381 if (page == NULL) { 382 page = alloc_pages(__GFP_COMP | 383 (atomic ? GFP_ATOMIC : GFP_KERNEL), 384 efx->rx_buffer_order); 385 if (unlikely(page == NULL)) 386 return -ENOMEM; 387 dma_addr = 388 dma_map_page(&efx->pci_dev->dev, page, 0, 389 PAGE_SIZE << efx->rx_buffer_order, 390 DMA_FROM_DEVICE); 391 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, 392 dma_addr))) { 393 __free_pages(page, efx->rx_buffer_order); 394 return -EIO; 395 } 396 state = page_address(page); 397 state->dma_addr = dma_addr; 398 } else { 399 state = page_address(page); 400 dma_addr = state->dma_addr; 401 } 402 403 dma_addr += sizeof(struct efx_rx_page_state); 404 page_offset = sizeof(struct efx_rx_page_state); 405 406 do { 407 index = rx_queue->added_count & rx_queue->ptr_mask; 408 rx_buf = efx_rx_buffer(rx_queue, index); 409 rx_buf->dma_addr = dma_addr + efx->rx_ip_align + 410 EFX_XDP_HEADROOM; 411 rx_buf->page = page; 412 rx_buf->page_offset = page_offset + efx->rx_ip_align + 413 EFX_XDP_HEADROOM; 414 rx_buf->len = efx->rx_dma_len; 415 rx_buf->flags = 0; 416 ++rx_queue->added_count; 417 get_page(page); 418 dma_addr += efx->rx_page_buf_step; 419 page_offset += efx->rx_page_buf_step; 420 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); 421 422 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; 423 } while (++count < efx->rx_pages_per_batch); 424 425 return 0; 426 } 427 428 void efx_rx_config_page_split(struct efx_nic *efx) 429 { 430 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align + 431 EFX_XDP_HEADROOM + EFX_XDP_TAILROOM, 432 EFX_RX_BUF_ALIGNMENT); 433 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : 434 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / 435 efx->rx_page_buf_step); 436 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / 437 efx->rx_bufs_per_page; 438 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, 439 efx->rx_bufs_per_page); 440 } 441 442 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly 443 * @rx_queue: RX descriptor queue 444 * 445 * This will aim to fill the RX descriptor queue up to 446 * @rx_queue->@max_fill. If there is insufficient atomic 447 * memory to do so, a slow fill will be scheduled. 448 * 449 * The caller must provide serialisation (none is used here). In practise, 450 * this means this function must run from the NAPI handler, or be called 451 * when NAPI is disabled. 452 */ 453 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) 454 { 455 struct efx_nic *efx = rx_queue->efx; 456 unsigned int fill_level, batch_size; 457 int space, rc = 0; 458 459 if (!rx_queue->refill_enabled) 460 return; 461 462 /* Calculate current fill level, and exit if we don't need to fill */ 463 fill_level = (rx_queue->added_count - rx_queue->removed_count); 464 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); 465 if (fill_level >= rx_queue->fast_fill_trigger) 466 goto out; 467 468 /* Record minimum fill level */ 469 if (unlikely(fill_level < rx_queue->min_fill)) { 470 if (fill_level) 471 rx_queue->min_fill = fill_level; 472 } 473 474 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; 475 space = rx_queue->max_fill - fill_level; 476 EFX_WARN_ON_ONCE_PARANOID(space < batch_size); 477 478 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 479 "RX queue %d fast-filling descriptor ring from" 480 " level %d to level %d\n", 481 efx_rx_queue_index(rx_queue), fill_level, 482 rx_queue->max_fill); 483 484 do { 485 rc = efx_init_rx_buffers(rx_queue, atomic); 486 if (unlikely(rc)) { 487 /* Ensure that we don't leave the rx queue empty */ 488 efx_schedule_slow_fill(rx_queue); 489 goto out; 490 } 491 } while ((space -= batch_size) >= batch_size); 492 493 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 494 "RX queue %d fast-filled descriptor ring " 495 "to level %d\n", efx_rx_queue_index(rx_queue), 496 rx_queue->added_count - rx_queue->removed_count); 497 498 out: 499 if (rx_queue->notified_count != rx_queue->added_count) 500 efx_nic_notify_rx_desc(rx_queue); 501 } 502 503 /* Pass a received packet up through GRO. GRO can handle pages 504 * regardless of checksum state and skbs with a good checksum. 505 */ 506 void 507 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, 508 unsigned int n_frags, u8 *eh, __wsum csum) 509 { 510 struct napi_struct *napi = &channel->napi_str; 511 struct efx_nic *efx = channel->efx; 512 struct sk_buff *skb; 513 514 skb = napi_get_frags(napi); 515 if (unlikely(!skb)) { 516 struct efx_rx_queue *rx_queue; 517 518 rx_queue = efx_channel_get_rx_queue(channel); 519 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 520 return; 521 } 522 523 if (efx->net_dev->features & NETIF_F_RXHASH && 524 efx_rx_buf_hash_valid(efx, eh)) 525 skb_set_hash(skb, efx_rx_buf_hash(efx, eh), 526 PKT_HASH_TYPE_L3); 527 if (csum) { 528 skb->csum = csum; 529 skb->ip_summed = CHECKSUM_COMPLETE; 530 } else { 531 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 532 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 533 } 534 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 535 536 for (;;) { 537 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 538 rx_buf->page, rx_buf->page_offset, 539 rx_buf->len); 540 rx_buf->page = NULL; 541 skb->len += rx_buf->len; 542 if (skb_shinfo(skb)->nr_frags == n_frags) 543 break; 544 545 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 546 } 547 548 skb->data_len = skb->len; 549 skb->truesize += n_frags * efx->rx_buffer_truesize; 550 551 skb_record_rx_queue(skb, channel->rx_queue.core_index); 552 553 napi_gro_frags(napi); 554 } 555 556 /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because 557 * (a) this is an infrequent control-plane operation and (b) n is small (max 64) 558 */ 559 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx) 560 { 561 struct list_head *head = &efx->rss_context.list; 562 struct efx_rss_context *ctx, *new; 563 u32 id = 1; /* Don't use zero, that refers to the master RSS context */ 564 565 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 566 567 /* Search for first gap in the numbering */ 568 list_for_each_entry(ctx, head, list) { 569 if (ctx->user_id != id) 570 break; 571 id++; 572 /* Check for wrap. If this happens, we have nearly 2^32 573 * allocated RSS contexts, which seems unlikely. 574 */ 575 if (WARN_ON_ONCE(!id)) 576 return NULL; 577 } 578 579 /* Create the new entry */ 580 new = kmalloc(sizeof(*new), GFP_KERNEL); 581 if (!new) 582 return NULL; 583 new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID; 584 new->rx_hash_udp_4tuple = false; 585 586 /* Insert the new entry into the gap */ 587 new->user_id = id; 588 list_add_tail(&new->list, &ctx->list); 589 return new; 590 } 591 592 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id) 593 { 594 struct list_head *head = &efx->rss_context.list; 595 struct efx_rss_context *ctx; 596 597 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 598 599 list_for_each_entry(ctx, head, list) 600 if (ctx->user_id == id) 601 return ctx; 602 return NULL; 603 } 604 605 void efx_free_rss_context_entry(struct efx_rss_context *ctx) 606 { 607 list_del(&ctx->list); 608 kfree(ctx); 609 } 610 611 void efx_set_default_rx_indir_table(struct efx_nic *efx, 612 struct efx_rss_context *ctx) 613 { 614 size_t i; 615 616 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++) 617 ctx->rx_indir_table[i] = 618 ethtool_rxfh_indir_default(i, efx->rss_spread); 619 } 620 621 /** 622 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient 623 * @spec: Specification to test 624 * 625 * Return: %true if the specification is a non-drop RX filter that 626 * matches a local MAC address I/G bit value of 1 or matches a local 627 * IPv4 or IPv6 address value in the respective multicast address 628 * range. Otherwise %false. 629 */ 630 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) 631 { 632 if (!(spec->flags & EFX_FILTER_FLAG_RX) || 633 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) 634 return false; 635 636 if (spec->match_flags & 637 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && 638 is_multicast_ether_addr(spec->loc_mac)) 639 return true; 640 641 if ((spec->match_flags & 642 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 643 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 644 if (spec->ether_type == htons(ETH_P_IP) && 645 ipv4_is_multicast(spec->loc_host[0])) 646 return true; 647 if (spec->ether_type == htons(ETH_P_IPV6) && 648 ((const u8 *)spec->loc_host)[0] == 0xff) 649 return true; 650 } 651 652 return false; 653 } 654 655 bool efx_filter_spec_equal(const struct efx_filter_spec *left, 656 const struct efx_filter_spec *right) 657 { 658 if ((left->match_flags ^ right->match_flags) | 659 ((left->flags ^ right->flags) & 660 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) 661 return false; 662 663 return memcmp(&left->outer_vid, &right->outer_vid, 664 sizeof(struct efx_filter_spec) - 665 offsetof(struct efx_filter_spec, outer_vid)) == 0; 666 } 667 668 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) 669 { 670 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3); 671 return jhash2((const u32 *)&spec->outer_vid, 672 (sizeof(struct efx_filter_spec) - 673 offsetof(struct efx_filter_spec, outer_vid)) / 4, 674 0); 675 } 676 677 #ifdef CONFIG_RFS_ACCEL 678 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, 679 bool *force) 680 { 681 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { 682 /* ARFS is currently updating this entry, leave it */ 683 return false; 684 } 685 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { 686 /* ARFS tried and failed to update this, so it's probably out 687 * of date. Remove the filter and the ARFS rule entry. 688 */ 689 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; 690 *force = true; 691 return true; 692 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ 693 /* ARFS has moved on, so old filter is not needed. Since we did 694 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will 695 * not be removed by efx_rps_hash_del() subsequently. 696 */ 697 *force = true; 698 return true; 699 } 700 /* Remove it iff ARFS wants to. */ 701 return true; 702 } 703 704 static 705 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, 706 const struct efx_filter_spec *spec) 707 { 708 u32 hash = efx_filter_spec_hash(spec); 709 710 lockdep_assert_held(&efx->rps_hash_lock); 711 if (!efx->rps_hash_table) 712 return NULL; 713 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; 714 } 715 716 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, 717 const struct efx_filter_spec *spec) 718 { 719 struct efx_arfs_rule *rule; 720 struct hlist_head *head; 721 struct hlist_node *node; 722 723 head = efx_rps_hash_bucket(efx, spec); 724 if (!head) 725 return NULL; 726 hlist_for_each(node, head) { 727 rule = container_of(node, struct efx_arfs_rule, node); 728 if (efx_filter_spec_equal(spec, &rule->spec)) 729 return rule; 730 } 731 return NULL; 732 } 733 734 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, 735 const struct efx_filter_spec *spec, 736 bool *new) 737 { 738 struct efx_arfs_rule *rule; 739 struct hlist_head *head; 740 struct hlist_node *node; 741 742 head = efx_rps_hash_bucket(efx, spec); 743 if (!head) 744 return NULL; 745 hlist_for_each(node, head) { 746 rule = container_of(node, struct efx_arfs_rule, node); 747 if (efx_filter_spec_equal(spec, &rule->spec)) { 748 *new = false; 749 return rule; 750 } 751 } 752 rule = kmalloc(sizeof(*rule), GFP_ATOMIC); 753 *new = true; 754 if (rule) { 755 memcpy(&rule->spec, spec, sizeof(rule->spec)); 756 hlist_add_head(&rule->node, head); 757 } 758 return rule; 759 } 760 761 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) 762 { 763 struct efx_arfs_rule *rule; 764 struct hlist_head *head; 765 struct hlist_node *node; 766 767 head = efx_rps_hash_bucket(efx, spec); 768 if (WARN_ON(!head)) 769 return; 770 hlist_for_each(node, head) { 771 rule = container_of(node, struct efx_arfs_rule, node); 772 if (efx_filter_spec_equal(spec, &rule->spec)) { 773 /* Someone already reused the entry. We know that if 774 * this check doesn't fire (i.e. filter_id == REMOVING) 775 * then the REMOVING mark was put there by our caller, 776 * because caller is holding a lock on filter table and 777 * only holders of that lock set REMOVING. 778 */ 779 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) 780 return; 781 hlist_del(node); 782 kfree(rule); 783 return; 784 } 785 } 786 /* We didn't find it. */ 787 WARN_ON(1); 788 } 789 #endif 790 791 int efx_probe_filters(struct efx_nic *efx) 792 { 793 int rc; 794 795 mutex_lock(&efx->mac_lock); 796 down_write(&efx->filter_sem); 797 rc = efx->type->filter_table_probe(efx); 798 if (rc) 799 goto out_unlock; 800 801 #ifdef CONFIG_RFS_ACCEL 802 if (efx->type->offload_features & NETIF_F_NTUPLE) { 803 struct efx_channel *channel; 804 int i, success = 1; 805 806 efx_for_each_channel(channel, efx) { 807 channel->rps_flow_id = 808 kcalloc(efx->type->max_rx_ip_filters, 809 sizeof(*channel->rps_flow_id), 810 GFP_KERNEL); 811 if (!channel->rps_flow_id) 812 success = 0; 813 else 814 for (i = 0; 815 i < efx->type->max_rx_ip_filters; 816 ++i) 817 channel->rps_flow_id[i] = 818 RPS_FLOW_ID_INVALID; 819 channel->rfs_expire_index = 0; 820 channel->rfs_filter_count = 0; 821 } 822 823 if (!success) { 824 efx_for_each_channel(channel, efx) 825 kfree(channel->rps_flow_id); 826 efx->type->filter_table_remove(efx); 827 rc = -ENOMEM; 828 goto out_unlock; 829 } 830 } 831 #endif 832 out_unlock: 833 up_write(&efx->filter_sem); 834 mutex_unlock(&efx->mac_lock); 835 return rc; 836 } 837 838 void efx_remove_filters(struct efx_nic *efx) 839 { 840 #ifdef CONFIG_RFS_ACCEL 841 struct efx_channel *channel; 842 843 efx_for_each_channel(channel, efx) { 844 cancel_delayed_work_sync(&channel->filter_work); 845 kfree(channel->rps_flow_id); 846 channel->rps_flow_id = NULL; 847 } 848 #endif 849 down_write(&efx->filter_sem); 850 efx->type->filter_table_remove(efx); 851 up_write(&efx->filter_sem); 852 } 853 854 #ifdef CONFIG_RFS_ACCEL 855 856 static void efx_filter_rfs_work(struct work_struct *data) 857 { 858 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, 859 work); 860 struct efx_nic *efx = efx_netdev_priv(req->net_dev); 861 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); 862 int slot_idx = req - efx->rps_slot; 863 struct efx_arfs_rule *rule; 864 u16 arfs_id = 0; 865 int rc; 866 867 rc = efx->type->filter_insert(efx, &req->spec, true); 868 if (rc >= 0) 869 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */ 870 rc %= efx->type->max_rx_ip_filters; 871 if (efx->rps_hash_table) { 872 spin_lock_bh(&efx->rps_hash_lock); 873 rule = efx_rps_hash_find(efx, &req->spec); 874 /* The rule might have already gone, if someone else's request 875 * for the same spec was already worked and then expired before 876 * we got around to our work. In that case we have nothing 877 * tying us to an arfs_id, meaning that as soon as the filter 878 * is considered for expiry it will be removed. 879 */ 880 if (rule) { 881 if (rc < 0) 882 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; 883 else 884 rule->filter_id = rc; 885 arfs_id = rule->arfs_id; 886 } 887 spin_unlock_bh(&efx->rps_hash_lock); 888 } 889 if (rc >= 0) { 890 /* Remember this so we can check whether to expire the filter 891 * later. 892 */ 893 mutex_lock(&efx->rps_mutex); 894 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID) 895 channel->rfs_filter_count++; 896 channel->rps_flow_id[rc] = req->flow_id; 897 mutex_unlock(&efx->rps_mutex); 898 899 if (req->spec.ether_type == htons(ETH_P_IP)) 900 netif_info(efx, rx_status, efx->net_dev, 901 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", 902 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 903 req->spec.rem_host, ntohs(req->spec.rem_port), 904 req->spec.loc_host, ntohs(req->spec.loc_port), 905 req->rxq_index, req->flow_id, rc, arfs_id); 906 else 907 netif_info(efx, rx_status, efx->net_dev, 908 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", 909 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 910 req->spec.rem_host, ntohs(req->spec.rem_port), 911 req->spec.loc_host, ntohs(req->spec.loc_port), 912 req->rxq_index, req->flow_id, rc, arfs_id); 913 channel->n_rfs_succeeded++; 914 } else { 915 if (req->spec.ether_type == htons(ETH_P_IP)) 916 netif_dbg(efx, rx_status, efx->net_dev, 917 "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n", 918 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 919 req->spec.rem_host, ntohs(req->spec.rem_port), 920 req->spec.loc_host, ntohs(req->spec.loc_port), 921 req->rxq_index, req->flow_id, rc, arfs_id); 922 else 923 netif_dbg(efx, rx_status, efx->net_dev, 924 "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n", 925 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 926 req->spec.rem_host, ntohs(req->spec.rem_port), 927 req->spec.loc_host, ntohs(req->spec.loc_port), 928 req->rxq_index, req->flow_id, rc, arfs_id); 929 channel->n_rfs_failed++; 930 /* We're overloading the NIC's filter tables, so let's do a 931 * chunk of extra expiry work. 932 */ 933 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, 934 100u)); 935 } 936 937 /* Release references */ 938 clear_bit(slot_idx, &efx->rps_slot_map); 939 dev_put(req->net_dev); 940 } 941 942 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, 943 u16 rxq_index, u32 flow_id) 944 { 945 struct efx_nic *efx = efx_netdev_priv(net_dev); 946 struct efx_async_filter_insertion *req; 947 struct efx_arfs_rule *rule; 948 struct flow_keys fk; 949 int slot_idx; 950 bool new; 951 int rc; 952 953 /* find a free slot */ 954 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) 955 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) 956 break; 957 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) 958 return -EBUSY; 959 960 if (flow_id == RPS_FLOW_ID_INVALID) { 961 rc = -EINVAL; 962 goto out_clear; 963 } 964 965 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { 966 rc = -EPROTONOSUPPORT; 967 goto out_clear; 968 } 969 970 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { 971 rc = -EPROTONOSUPPORT; 972 goto out_clear; 973 } 974 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { 975 rc = -EPROTONOSUPPORT; 976 goto out_clear; 977 } 978 979 req = efx->rps_slot + slot_idx; 980 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, 981 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, 982 rxq_index); 983 req->spec.match_flags = 984 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 985 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 986 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; 987 req->spec.ether_type = fk.basic.n_proto; 988 req->spec.ip_proto = fk.basic.ip_proto; 989 990 if (fk.basic.n_proto == htons(ETH_P_IP)) { 991 req->spec.rem_host[0] = fk.addrs.v4addrs.src; 992 req->spec.loc_host[0] = fk.addrs.v4addrs.dst; 993 } else { 994 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, 995 sizeof(struct in6_addr)); 996 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, 997 sizeof(struct in6_addr)); 998 } 999 1000 req->spec.rem_port = fk.ports.src; 1001 req->spec.loc_port = fk.ports.dst; 1002 1003 if (efx->rps_hash_table) { 1004 /* Add it to ARFS hash table */ 1005 spin_lock(&efx->rps_hash_lock); 1006 rule = efx_rps_hash_add(efx, &req->spec, &new); 1007 if (!rule) { 1008 rc = -ENOMEM; 1009 goto out_unlock; 1010 } 1011 if (new) 1012 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; 1013 rc = rule->arfs_id; 1014 /* Skip if existing or pending filter already does the right thing */ 1015 if (!new && rule->rxq_index == rxq_index && 1016 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) 1017 goto out_unlock; 1018 rule->rxq_index = rxq_index; 1019 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; 1020 spin_unlock(&efx->rps_hash_lock); 1021 } else { 1022 /* Without an ARFS hash table, we just use arfs_id 0 for all 1023 * filters. This means if multiple flows hash to the same 1024 * flow_id, all but the most recently touched will be eligible 1025 * for expiry. 1026 */ 1027 rc = 0; 1028 } 1029 1030 /* Queue the request */ 1031 dev_hold(req->net_dev = net_dev); 1032 INIT_WORK(&req->work, efx_filter_rfs_work); 1033 req->rxq_index = rxq_index; 1034 req->flow_id = flow_id; 1035 schedule_work(&req->work); 1036 return rc; 1037 out_unlock: 1038 spin_unlock(&efx->rps_hash_lock); 1039 out_clear: 1040 clear_bit(slot_idx, &efx->rps_slot_map); 1041 return rc; 1042 } 1043 1044 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota) 1045 { 1046 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); 1047 struct efx_nic *efx = channel->efx; 1048 unsigned int index, size, start; 1049 u32 flow_id; 1050 1051 if (!mutex_trylock(&efx->rps_mutex)) 1052 return false; 1053 expire_one = efx->type->filter_rfs_expire_one; 1054 index = channel->rfs_expire_index; 1055 start = index; 1056 size = efx->type->max_rx_ip_filters; 1057 while (quota) { 1058 flow_id = channel->rps_flow_id[index]; 1059 1060 if (flow_id != RPS_FLOW_ID_INVALID) { 1061 quota--; 1062 if (expire_one(efx, flow_id, index)) { 1063 netif_info(efx, rx_status, efx->net_dev, 1064 "expired filter %d [channel %u flow %u]\n", 1065 index, channel->channel, flow_id); 1066 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; 1067 channel->rfs_filter_count--; 1068 } 1069 } 1070 if (++index == size) 1071 index = 0; 1072 /* If we were called with a quota that exceeds the total number 1073 * of filters in the table (which shouldn't happen, but could 1074 * if two callers race), ensure that we don't loop forever - 1075 * stop when we've examined every row of the table. 1076 */ 1077 if (index == start) 1078 break; 1079 } 1080 1081 channel->rfs_expire_index = index; 1082 mutex_unlock(&efx->rps_mutex); 1083 return true; 1084 } 1085 1086 #endif /* CONFIG_RFS_ACCEL */ 1087