1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include "net_driver.h" 12 #include <linux/module.h> 13 #include <linux/iommu.h> 14 #include "efx.h" 15 #include "nic.h" 16 #include "rx_common.h" 17 18 /* This is the percentage fill level below which new RX descriptors 19 * will be added to the RX descriptor ring. 20 */ 21 static unsigned int rx_refill_threshold; 22 module_param(rx_refill_threshold, uint, 0444); 23 MODULE_PARM_DESC(rx_refill_threshold, 24 "RX descriptor ring refill threshold (%)"); 25 26 /* Number of RX buffers to recycle pages for. When creating the RX page recycle 27 * ring, this number is divided by the number of buffers per page to calculate 28 * the number of pages to store in the RX page recycle ring. 29 */ 30 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 31 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) 32 33 /* RX maximum head room required. 34 * 35 * This must be at least 1 to prevent overflow, plus one packet-worth 36 * to allow pipelined receives. 37 */ 38 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) 39 40 /* Check the RX page recycle ring for a page that can be reused. */ 41 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) 42 { 43 struct efx_nic *efx = rx_queue->efx; 44 struct efx_rx_page_state *state; 45 unsigned int index; 46 struct page *page; 47 48 index = rx_queue->page_remove & rx_queue->page_ptr_mask; 49 page = rx_queue->page_ring[index]; 50 if (page == NULL) 51 return NULL; 52 53 rx_queue->page_ring[index] = NULL; 54 /* page_remove cannot exceed page_add. */ 55 if (rx_queue->page_remove != rx_queue->page_add) 56 ++rx_queue->page_remove; 57 58 /* If page_count is 1 then we hold the only reference to this page. */ 59 if (page_count(page) == 1) { 60 ++rx_queue->page_recycle_count; 61 return page; 62 } else { 63 state = page_address(page); 64 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 65 PAGE_SIZE << efx->rx_buffer_order, 66 DMA_FROM_DEVICE); 67 put_page(page); 68 ++rx_queue->page_recycle_failed; 69 } 70 71 return NULL; 72 } 73 74 /* Attempt to recycle the page if there is an RX recycle ring; the page can 75 * only be added if this is the final RX buffer, to prevent pages being used in 76 * the descriptor ring and appearing in the recycle ring simultaneously. 77 */ 78 static void efx_recycle_rx_page(struct efx_channel *channel, 79 struct efx_rx_buffer *rx_buf) 80 { 81 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 82 struct efx_nic *efx = rx_queue->efx; 83 struct page *page = rx_buf->page; 84 unsigned int index; 85 86 /* Only recycle the page after processing the final buffer. */ 87 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) 88 return; 89 90 index = rx_queue->page_add & rx_queue->page_ptr_mask; 91 if (rx_queue->page_ring[index] == NULL) { 92 unsigned int read_index = rx_queue->page_remove & 93 rx_queue->page_ptr_mask; 94 95 /* The next slot in the recycle ring is available, but 96 * increment page_remove if the read pointer currently 97 * points here. 98 */ 99 if (read_index == index) 100 ++rx_queue->page_remove; 101 rx_queue->page_ring[index] = page; 102 ++rx_queue->page_add; 103 return; 104 } 105 ++rx_queue->page_recycle_full; 106 efx_unmap_rx_buffer(efx, rx_buf); 107 put_page(rx_buf->page); 108 } 109 110 /* Recycle the pages that are used by buffers that have just been received. */ 111 void efx_recycle_rx_pages(struct efx_channel *channel, 112 struct efx_rx_buffer *rx_buf, 113 unsigned int n_frags) 114 { 115 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 116 117 do { 118 efx_recycle_rx_page(channel, rx_buf); 119 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 120 } while (--n_frags); 121 } 122 123 void efx_discard_rx_packet(struct efx_channel *channel, 124 struct efx_rx_buffer *rx_buf, 125 unsigned int n_frags) 126 { 127 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 128 129 efx_recycle_rx_pages(channel, rx_buf, n_frags); 130 131 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 132 } 133 134 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue) 135 { 136 unsigned int bufs_in_recycle_ring, page_ring_size; 137 struct efx_nic *efx = rx_queue->efx; 138 139 /* Set the RX recycle ring size */ 140 #ifdef CONFIG_PPC64 141 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 142 #else 143 if (iommu_present(&pci_bus_type)) 144 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 145 else 146 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; 147 #endif /* CONFIG_PPC64 */ 148 149 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / 150 efx->rx_bufs_per_page); 151 rx_queue->page_ring = kcalloc(page_ring_size, 152 sizeof(*rx_queue->page_ring), GFP_KERNEL); 153 if (!rx_queue->page_ring) 154 rx_queue->page_ptr_mask = 0; 155 else 156 rx_queue->page_ptr_mask = page_ring_size - 1; 157 } 158 159 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue) 160 { 161 struct efx_nic *efx = rx_queue->efx; 162 int i; 163 164 /* Unmap and release the pages in the recycle ring. Remove the ring. */ 165 for (i = 0; i <= rx_queue->page_ptr_mask; i++) { 166 struct page *page = rx_queue->page_ring[i]; 167 struct efx_rx_page_state *state; 168 169 if (page == NULL) 170 continue; 171 172 state = page_address(page); 173 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 174 PAGE_SIZE << efx->rx_buffer_order, 175 DMA_FROM_DEVICE); 176 put_page(page); 177 } 178 kfree(rx_queue->page_ring); 179 rx_queue->page_ring = NULL; 180 } 181 182 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 183 struct efx_rx_buffer *rx_buf) 184 { 185 /* Release the page reference we hold for the buffer. */ 186 if (rx_buf->page) 187 put_page(rx_buf->page); 188 189 /* If this is the last buffer in a page, unmap and free it. */ 190 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { 191 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 192 efx_free_rx_buffers(rx_queue, rx_buf, 1); 193 } 194 rx_buf->page = NULL; 195 } 196 197 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 198 { 199 struct efx_nic *efx = rx_queue->efx; 200 unsigned int entries; 201 int rc; 202 203 /* Create the smallest power-of-two aligned ring */ 204 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 205 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 206 rx_queue->ptr_mask = entries - 1; 207 208 netif_dbg(efx, probe, efx->net_dev, 209 "creating RX queue %d size %#x mask %#x\n", 210 efx_rx_queue_index(rx_queue), efx->rxq_entries, 211 rx_queue->ptr_mask); 212 213 /* Allocate RX buffers */ 214 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 215 GFP_KERNEL); 216 if (!rx_queue->buffer) 217 return -ENOMEM; 218 219 rc = efx_nic_probe_rx(rx_queue); 220 if (rc) { 221 kfree(rx_queue->buffer); 222 rx_queue->buffer = NULL; 223 } 224 225 return rc; 226 } 227 228 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 229 { 230 unsigned int max_fill, trigger, max_trigger; 231 struct efx_nic *efx = rx_queue->efx; 232 int rc = 0; 233 234 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 235 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 236 237 /* Initialise ptr fields */ 238 rx_queue->added_count = 0; 239 rx_queue->notified_count = 0; 240 rx_queue->removed_count = 0; 241 rx_queue->min_fill = -1U; 242 efx_init_rx_recycle_ring(rx_queue); 243 244 rx_queue->page_remove = 0; 245 rx_queue->page_add = rx_queue->page_ptr_mask + 1; 246 rx_queue->page_recycle_count = 0; 247 rx_queue->page_recycle_failed = 0; 248 rx_queue->page_recycle_full = 0; 249 250 /* Initialise limit fields */ 251 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 252 max_trigger = 253 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; 254 if (rx_refill_threshold != 0) { 255 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 256 if (trigger > max_trigger) 257 trigger = max_trigger; 258 } else { 259 trigger = max_trigger; 260 } 261 262 rx_queue->max_fill = max_fill; 263 rx_queue->fast_fill_trigger = trigger; 264 rx_queue->refill_enabled = true; 265 266 /* Initialise XDP queue information */ 267 rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev, 268 rx_queue->core_index, 0); 269 270 if (rc) { 271 netif_err(efx, rx_err, efx->net_dev, 272 "Failure to initialise XDP queue information rc=%d\n", 273 rc); 274 efx->xdp_rxq_info_failed = true; 275 } else { 276 rx_queue->xdp_rxq_info_valid = true; 277 } 278 279 /* Set up RX descriptor ring */ 280 efx_nic_init_rx(rx_queue); 281 } 282 283 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 284 { 285 struct efx_rx_buffer *rx_buf; 286 int i; 287 288 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 289 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 290 291 del_timer_sync(&rx_queue->slow_fill); 292 293 /* Release RX buffers from the current read ptr to the write ptr */ 294 if (rx_queue->buffer) { 295 for (i = rx_queue->removed_count; i < rx_queue->added_count; 296 i++) { 297 unsigned int index = i & rx_queue->ptr_mask; 298 299 rx_buf = efx_rx_buffer(rx_queue, index); 300 efx_fini_rx_buffer(rx_queue, rx_buf); 301 } 302 } 303 304 efx_fini_rx_recycle_ring(rx_queue); 305 306 if (rx_queue->xdp_rxq_info_valid) 307 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info); 308 309 rx_queue->xdp_rxq_info_valid = false; 310 } 311 312 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 313 { 314 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 315 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 316 317 efx_nic_remove_rx(rx_queue); 318 319 kfree(rx_queue->buffer); 320 rx_queue->buffer = NULL; 321 } 322 323 /* Unmap a DMA-mapped page. This function is only called for the final RX 324 * buffer in a page. 325 */ 326 void efx_unmap_rx_buffer(struct efx_nic *efx, 327 struct efx_rx_buffer *rx_buf) 328 { 329 struct page *page = rx_buf->page; 330 331 if (page) { 332 struct efx_rx_page_state *state = page_address(page); 333 334 dma_unmap_page(&efx->pci_dev->dev, 335 state->dma_addr, 336 PAGE_SIZE << efx->rx_buffer_order, 337 DMA_FROM_DEVICE); 338 } 339 } 340 341 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, 342 struct efx_rx_buffer *rx_buf, 343 unsigned int num_bufs) 344 { 345 do { 346 if (rx_buf->page) { 347 put_page(rx_buf->page); 348 rx_buf->page = NULL; 349 } 350 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 351 } while (--num_bufs); 352 } 353 354 void efx_rx_slow_fill(struct timer_list *t) 355 { 356 struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); 357 358 /* Post an event to cause NAPI to run and refill the queue */ 359 efx_nic_generate_fill_event(rx_queue); 360 ++rx_queue->slow_fill_count; 361 } 362 363 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 364 { 365 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10)); 366 } 367 368 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers 369 * 370 * @rx_queue: Efx RX queue 371 * 372 * This allocates a batch of pages, maps them for DMA, and populates 373 * struct efx_rx_buffers for each one. Return a negative error code or 374 * 0 on success. If a single page can be used for multiple buffers, 375 * then the page will either be inserted fully, or not at all. 376 */ 377 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) 378 { 379 unsigned int page_offset, index, count; 380 struct efx_nic *efx = rx_queue->efx; 381 struct efx_rx_page_state *state; 382 struct efx_rx_buffer *rx_buf; 383 dma_addr_t dma_addr; 384 struct page *page; 385 386 count = 0; 387 do { 388 page = efx_reuse_page(rx_queue); 389 if (page == NULL) { 390 page = alloc_pages(__GFP_COMP | 391 (atomic ? GFP_ATOMIC : GFP_KERNEL), 392 efx->rx_buffer_order); 393 if (unlikely(page == NULL)) 394 return -ENOMEM; 395 dma_addr = 396 dma_map_page(&efx->pci_dev->dev, page, 0, 397 PAGE_SIZE << efx->rx_buffer_order, 398 DMA_FROM_DEVICE); 399 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, 400 dma_addr))) { 401 __free_pages(page, efx->rx_buffer_order); 402 return -EIO; 403 } 404 state = page_address(page); 405 state->dma_addr = dma_addr; 406 } else { 407 state = page_address(page); 408 dma_addr = state->dma_addr; 409 } 410 411 dma_addr += sizeof(struct efx_rx_page_state); 412 page_offset = sizeof(struct efx_rx_page_state); 413 414 do { 415 index = rx_queue->added_count & rx_queue->ptr_mask; 416 rx_buf = efx_rx_buffer(rx_queue, index); 417 rx_buf->dma_addr = dma_addr + efx->rx_ip_align + 418 EFX_XDP_HEADROOM; 419 rx_buf->page = page; 420 rx_buf->page_offset = page_offset + efx->rx_ip_align + 421 EFX_XDP_HEADROOM; 422 rx_buf->len = efx->rx_dma_len; 423 rx_buf->flags = 0; 424 ++rx_queue->added_count; 425 get_page(page); 426 dma_addr += efx->rx_page_buf_step; 427 page_offset += efx->rx_page_buf_step; 428 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); 429 430 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; 431 } while (++count < efx->rx_pages_per_batch); 432 433 return 0; 434 } 435 436 void efx_rx_config_page_split(struct efx_nic *efx) 437 { 438 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align + 439 EFX_XDP_HEADROOM + EFX_XDP_TAILROOM, 440 EFX_RX_BUF_ALIGNMENT); 441 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : 442 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / 443 efx->rx_page_buf_step); 444 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / 445 efx->rx_bufs_per_page; 446 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, 447 efx->rx_bufs_per_page); 448 } 449 450 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly 451 * @rx_queue: RX descriptor queue 452 * 453 * This will aim to fill the RX descriptor queue up to 454 * @rx_queue->@max_fill. If there is insufficient atomic 455 * memory to do so, a slow fill will be scheduled. 456 * 457 * The caller must provide serialisation (none is used here). In practise, 458 * this means this function must run from the NAPI handler, or be called 459 * when NAPI is disabled. 460 */ 461 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) 462 { 463 struct efx_nic *efx = rx_queue->efx; 464 unsigned int fill_level, batch_size; 465 int space, rc = 0; 466 467 if (!rx_queue->refill_enabled) 468 return; 469 470 /* Calculate current fill level, and exit if we don't need to fill */ 471 fill_level = (rx_queue->added_count - rx_queue->removed_count); 472 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); 473 if (fill_level >= rx_queue->fast_fill_trigger) 474 goto out; 475 476 /* Record minimum fill level */ 477 if (unlikely(fill_level < rx_queue->min_fill)) { 478 if (fill_level) 479 rx_queue->min_fill = fill_level; 480 } 481 482 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; 483 space = rx_queue->max_fill - fill_level; 484 EFX_WARN_ON_ONCE_PARANOID(space < batch_size); 485 486 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 487 "RX queue %d fast-filling descriptor ring from" 488 " level %d to level %d\n", 489 efx_rx_queue_index(rx_queue), fill_level, 490 rx_queue->max_fill); 491 492 do { 493 rc = efx_init_rx_buffers(rx_queue, atomic); 494 if (unlikely(rc)) { 495 /* Ensure that we don't leave the rx queue empty */ 496 efx_schedule_slow_fill(rx_queue); 497 goto out; 498 } 499 } while ((space -= batch_size) >= batch_size); 500 501 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 502 "RX queue %d fast-filled descriptor ring " 503 "to level %d\n", efx_rx_queue_index(rx_queue), 504 rx_queue->added_count - rx_queue->removed_count); 505 506 out: 507 if (rx_queue->notified_count != rx_queue->added_count) 508 efx_nic_notify_rx_desc(rx_queue); 509 } 510 511 /* Pass a received packet up through GRO. GRO can handle pages 512 * regardless of checksum state and skbs with a good checksum. 513 */ 514 void 515 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, 516 unsigned int n_frags, u8 *eh, __wsum csum) 517 { 518 struct napi_struct *napi = &channel->napi_str; 519 struct efx_nic *efx = channel->efx; 520 struct sk_buff *skb; 521 522 skb = napi_get_frags(napi); 523 if (unlikely(!skb)) { 524 struct efx_rx_queue *rx_queue; 525 526 rx_queue = efx_channel_get_rx_queue(channel); 527 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 528 return; 529 } 530 531 if (efx->net_dev->features & NETIF_F_RXHASH && 532 efx_rx_buf_hash_valid(efx, eh)) 533 skb_set_hash(skb, efx_rx_buf_hash(efx, eh), 534 PKT_HASH_TYPE_L3); 535 if (csum) { 536 skb->csum = csum; 537 skb->ip_summed = CHECKSUM_COMPLETE; 538 } else { 539 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 540 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 541 } 542 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 543 544 for (;;) { 545 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 546 rx_buf->page, rx_buf->page_offset, 547 rx_buf->len); 548 rx_buf->page = NULL; 549 skb->len += rx_buf->len; 550 if (skb_shinfo(skb)->nr_frags == n_frags) 551 break; 552 553 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 554 } 555 556 skb->data_len = skb->len; 557 skb->truesize += n_frags * efx->rx_buffer_truesize; 558 559 skb_record_rx_queue(skb, channel->rx_queue.core_index); 560 561 napi_gro_frags(napi); 562 } 563 564 /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because 565 * (a) this is an infrequent control-plane operation and (b) n is small (max 64) 566 */ 567 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx) 568 { 569 struct list_head *head = &efx->rss_context.list; 570 struct efx_rss_context *ctx, *new; 571 u32 id = 1; /* Don't use zero, that refers to the master RSS context */ 572 573 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 574 575 /* Search for first gap in the numbering */ 576 list_for_each_entry(ctx, head, list) { 577 if (ctx->user_id != id) 578 break; 579 id++; 580 /* Check for wrap. If this happens, we have nearly 2^32 581 * allocated RSS contexts, which seems unlikely. 582 */ 583 if (WARN_ON_ONCE(!id)) 584 return NULL; 585 } 586 587 /* Create the new entry */ 588 new = kmalloc(sizeof(*new), GFP_KERNEL); 589 if (!new) 590 return NULL; 591 new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID; 592 new->rx_hash_udp_4tuple = false; 593 594 /* Insert the new entry into the gap */ 595 new->user_id = id; 596 list_add_tail(&new->list, &ctx->list); 597 return new; 598 } 599 600 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id) 601 { 602 struct list_head *head = &efx->rss_context.list; 603 struct efx_rss_context *ctx; 604 605 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 606 607 list_for_each_entry(ctx, head, list) 608 if (ctx->user_id == id) 609 return ctx; 610 return NULL; 611 } 612 613 void efx_free_rss_context_entry(struct efx_rss_context *ctx) 614 { 615 list_del(&ctx->list); 616 kfree(ctx); 617 } 618 619 void efx_set_default_rx_indir_table(struct efx_nic *efx, 620 struct efx_rss_context *ctx) 621 { 622 size_t i; 623 624 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++) 625 ctx->rx_indir_table[i] = 626 ethtool_rxfh_indir_default(i, efx->rss_spread); 627 } 628 629 /** 630 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient 631 * @spec: Specification to test 632 * 633 * Return: %true if the specification is a non-drop RX filter that 634 * matches a local MAC address I/G bit value of 1 or matches a local 635 * IPv4 or IPv6 address value in the respective multicast address 636 * range. Otherwise %false. 637 */ 638 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) 639 { 640 if (!(spec->flags & EFX_FILTER_FLAG_RX) || 641 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) 642 return false; 643 644 if (spec->match_flags & 645 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && 646 is_multicast_ether_addr(spec->loc_mac)) 647 return true; 648 649 if ((spec->match_flags & 650 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 651 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 652 if (spec->ether_type == htons(ETH_P_IP) && 653 ipv4_is_multicast(spec->loc_host[0])) 654 return true; 655 if (spec->ether_type == htons(ETH_P_IPV6) && 656 ((const u8 *)spec->loc_host)[0] == 0xff) 657 return true; 658 } 659 660 return false; 661 } 662 663 bool efx_filter_spec_equal(const struct efx_filter_spec *left, 664 const struct efx_filter_spec *right) 665 { 666 if ((left->match_flags ^ right->match_flags) | 667 ((left->flags ^ right->flags) & 668 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) 669 return false; 670 671 return memcmp(&left->outer_vid, &right->outer_vid, 672 sizeof(struct efx_filter_spec) - 673 offsetof(struct efx_filter_spec, outer_vid)) == 0; 674 } 675 676 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) 677 { 678 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3); 679 return jhash2((const u32 *)&spec->outer_vid, 680 (sizeof(struct efx_filter_spec) - 681 offsetof(struct efx_filter_spec, outer_vid)) / 4, 682 0); 683 } 684 685 #ifdef CONFIG_RFS_ACCEL 686 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, 687 bool *force) 688 { 689 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { 690 /* ARFS is currently updating this entry, leave it */ 691 return false; 692 } 693 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { 694 /* ARFS tried and failed to update this, so it's probably out 695 * of date. Remove the filter and the ARFS rule entry. 696 */ 697 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; 698 *force = true; 699 return true; 700 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ 701 /* ARFS has moved on, so old filter is not needed. Since we did 702 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will 703 * not be removed by efx_rps_hash_del() subsequently. 704 */ 705 *force = true; 706 return true; 707 } 708 /* Remove it iff ARFS wants to. */ 709 return true; 710 } 711 712 static 713 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, 714 const struct efx_filter_spec *spec) 715 { 716 u32 hash = efx_filter_spec_hash(spec); 717 718 lockdep_assert_held(&efx->rps_hash_lock); 719 if (!efx->rps_hash_table) 720 return NULL; 721 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; 722 } 723 724 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, 725 const struct efx_filter_spec *spec) 726 { 727 struct efx_arfs_rule *rule; 728 struct hlist_head *head; 729 struct hlist_node *node; 730 731 head = efx_rps_hash_bucket(efx, spec); 732 if (!head) 733 return NULL; 734 hlist_for_each(node, head) { 735 rule = container_of(node, struct efx_arfs_rule, node); 736 if (efx_filter_spec_equal(spec, &rule->spec)) 737 return rule; 738 } 739 return NULL; 740 } 741 742 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, 743 const struct efx_filter_spec *spec, 744 bool *new) 745 { 746 struct efx_arfs_rule *rule; 747 struct hlist_head *head; 748 struct hlist_node *node; 749 750 head = efx_rps_hash_bucket(efx, spec); 751 if (!head) 752 return NULL; 753 hlist_for_each(node, head) { 754 rule = container_of(node, struct efx_arfs_rule, node); 755 if (efx_filter_spec_equal(spec, &rule->spec)) { 756 *new = false; 757 return rule; 758 } 759 } 760 rule = kmalloc(sizeof(*rule), GFP_ATOMIC); 761 *new = true; 762 if (rule) { 763 memcpy(&rule->spec, spec, sizeof(rule->spec)); 764 hlist_add_head(&rule->node, head); 765 } 766 return rule; 767 } 768 769 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) 770 { 771 struct efx_arfs_rule *rule; 772 struct hlist_head *head; 773 struct hlist_node *node; 774 775 head = efx_rps_hash_bucket(efx, spec); 776 if (WARN_ON(!head)) 777 return; 778 hlist_for_each(node, head) { 779 rule = container_of(node, struct efx_arfs_rule, node); 780 if (efx_filter_spec_equal(spec, &rule->spec)) { 781 /* Someone already reused the entry. We know that if 782 * this check doesn't fire (i.e. filter_id == REMOVING) 783 * then the REMOVING mark was put there by our caller, 784 * because caller is holding a lock on filter table and 785 * only holders of that lock set REMOVING. 786 */ 787 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) 788 return; 789 hlist_del(node); 790 kfree(rule); 791 return; 792 } 793 } 794 /* We didn't find it. */ 795 WARN_ON(1); 796 } 797 #endif 798 799 int efx_probe_filters(struct efx_nic *efx) 800 { 801 int rc; 802 803 mutex_lock(&efx->mac_lock); 804 down_write(&efx->filter_sem); 805 rc = efx->type->filter_table_probe(efx); 806 if (rc) 807 goto out_unlock; 808 809 #ifdef CONFIG_RFS_ACCEL 810 if (efx->type->offload_features & NETIF_F_NTUPLE) { 811 struct efx_channel *channel; 812 int i, success = 1; 813 814 efx_for_each_channel(channel, efx) { 815 channel->rps_flow_id = 816 kcalloc(efx->type->max_rx_ip_filters, 817 sizeof(*channel->rps_flow_id), 818 GFP_KERNEL); 819 if (!channel->rps_flow_id) 820 success = 0; 821 else 822 for (i = 0; 823 i < efx->type->max_rx_ip_filters; 824 ++i) 825 channel->rps_flow_id[i] = 826 RPS_FLOW_ID_INVALID; 827 channel->rfs_expire_index = 0; 828 channel->rfs_filter_count = 0; 829 } 830 831 if (!success) { 832 efx_for_each_channel(channel, efx) 833 kfree(channel->rps_flow_id); 834 efx->type->filter_table_remove(efx); 835 rc = -ENOMEM; 836 goto out_unlock; 837 } 838 } 839 #endif 840 out_unlock: 841 up_write(&efx->filter_sem); 842 mutex_unlock(&efx->mac_lock); 843 return rc; 844 } 845 846 void efx_remove_filters(struct efx_nic *efx) 847 { 848 #ifdef CONFIG_RFS_ACCEL 849 struct efx_channel *channel; 850 851 efx_for_each_channel(channel, efx) { 852 cancel_delayed_work_sync(&channel->filter_work); 853 kfree(channel->rps_flow_id); 854 channel->rps_flow_id = NULL; 855 } 856 #endif 857 down_write(&efx->filter_sem); 858 efx->type->filter_table_remove(efx); 859 up_write(&efx->filter_sem); 860 } 861 862 #ifdef CONFIG_RFS_ACCEL 863 864 static void efx_filter_rfs_work(struct work_struct *data) 865 { 866 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, 867 work); 868 struct efx_nic *efx = netdev_priv(req->net_dev); 869 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); 870 int slot_idx = req - efx->rps_slot; 871 struct efx_arfs_rule *rule; 872 u16 arfs_id = 0; 873 int rc; 874 875 rc = efx->type->filter_insert(efx, &req->spec, true); 876 if (rc >= 0) 877 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */ 878 rc %= efx->type->max_rx_ip_filters; 879 if (efx->rps_hash_table) { 880 spin_lock_bh(&efx->rps_hash_lock); 881 rule = efx_rps_hash_find(efx, &req->spec); 882 /* The rule might have already gone, if someone else's request 883 * for the same spec was already worked and then expired before 884 * we got around to our work. In that case we have nothing 885 * tying us to an arfs_id, meaning that as soon as the filter 886 * is considered for expiry it will be removed. 887 */ 888 if (rule) { 889 if (rc < 0) 890 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; 891 else 892 rule->filter_id = rc; 893 arfs_id = rule->arfs_id; 894 } 895 spin_unlock_bh(&efx->rps_hash_lock); 896 } 897 if (rc >= 0) { 898 /* Remember this so we can check whether to expire the filter 899 * later. 900 */ 901 mutex_lock(&efx->rps_mutex); 902 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID) 903 channel->rfs_filter_count++; 904 channel->rps_flow_id[rc] = req->flow_id; 905 mutex_unlock(&efx->rps_mutex); 906 907 if (req->spec.ether_type == htons(ETH_P_IP)) 908 netif_info(efx, rx_status, efx->net_dev, 909 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", 910 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 911 req->spec.rem_host, ntohs(req->spec.rem_port), 912 req->spec.loc_host, ntohs(req->spec.loc_port), 913 req->rxq_index, req->flow_id, rc, arfs_id); 914 else 915 netif_info(efx, rx_status, efx->net_dev, 916 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", 917 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 918 req->spec.rem_host, ntohs(req->spec.rem_port), 919 req->spec.loc_host, ntohs(req->spec.loc_port), 920 req->rxq_index, req->flow_id, rc, arfs_id); 921 channel->n_rfs_succeeded++; 922 } else { 923 if (req->spec.ether_type == htons(ETH_P_IP)) 924 netif_dbg(efx, rx_status, efx->net_dev, 925 "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n", 926 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 927 req->spec.rem_host, ntohs(req->spec.rem_port), 928 req->spec.loc_host, ntohs(req->spec.loc_port), 929 req->rxq_index, req->flow_id, rc, arfs_id); 930 else 931 netif_dbg(efx, rx_status, efx->net_dev, 932 "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n", 933 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 934 req->spec.rem_host, ntohs(req->spec.rem_port), 935 req->spec.loc_host, ntohs(req->spec.loc_port), 936 req->rxq_index, req->flow_id, rc, arfs_id); 937 channel->n_rfs_failed++; 938 /* We're overloading the NIC's filter tables, so let's do a 939 * chunk of extra expiry work. 940 */ 941 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, 942 100u)); 943 } 944 945 /* Release references */ 946 clear_bit(slot_idx, &efx->rps_slot_map); 947 dev_put(req->net_dev); 948 } 949 950 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, 951 u16 rxq_index, u32 flow_id) 952 { 953 struct efx_nic *efx = netdev_priv(net_dev); 954 struct efx_async_filter_insertion *req; 955 struct efx_arfs_rule *rule; 956 struct flow_keys fk; 957 int slot_idx; 958 bool new; 959 int rc; 960 961 /* find a free slot */ 962 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) 963 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) 964 break; 965 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) 966 return -EBUSY; 967 968 if (flow_id == RPS_FLOW_ID_INVALID) { 969 rc = -EINVAL; 970 goto out_clear; 971 } 972 973 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { 974 rc = -EPROTONOSUPPORT; 975 goto out_clear; 976 } 977 978 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { 979 rc = -EPROTONOSUPPORT; 980 goto out_clear; 981 } 982 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { 983 rc = -EPROTONOSUPPORT; 984 goto out_clear; 985 } 986 987 req = efx->rps_slot + slot_idx; 988 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, 989 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, 990 rxq_index); 991 req->spec.match_flags = 992 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 993 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 994 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; 995 req->spec.ether_type = fk.basic.n_proto; 996 req->spec.ip_proto = fk.basic.ip_proto; 997 998 if (fk.basic.n_proto == htons(ETH_P_IP)) { 999 req->spec.rem_host[0] = fk.addrs.v4addrs.src; 1000 req->spec.loc_host[0] = fk.addrs.v4addrs.dst; 1001 } else { 1002 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, 1003 sizeof(struct in6_addr)); 1004 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, 1005 sizeof(struct in6_addr)); 1006 } 1007 1008 req->spec.rem_port = fk.ports.src; 1009 req->spec.loc_port = fk.ports.dst; 1010 1011 if (efx->rps_hash_table) { 1012 /* Add it to ARFS hash table */ 1013 spin_lock(&efx->rps_hash_lock); 1014 rule = efx_rps_hash_add(efx, &req->spec, &new); 1015 if (!rule) { 1016 rc = -ENOMEM; 1017 goto out_unlock; 1018 } 1019 if (new) 1020 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; 1021 rc = rule->arfs_id; 1022 /* Skip if existing or pending filter already does the right thing */ 1023 if (!new && rule->rxq_index == rxq_index && 1024 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) 1025 goto out_unlock; 1026 rule->rxq_index = rxq_index; 1027 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; 1028 spin_unlock(&efx->rps_hash_lock); 1029 } else { 1030 /* Without an ARFS hash table, we just use arfs_id 0 for all 1031 * filters. This means if multiple flows hash to the same 1032 * flow_id, all but the most recently touched will be eligible 1033 * for expiry. 1034 */ 1035 rc = 0; 1036 } 1037 1038 /* Queue the request */ 1039 dev_hold(req->net_dev = net_dev); 1040 INIT_WORK(&req->work, efx_filter_rfs_work); 1041 req->rxq_index = rxq_index; 1042 req->flow_id = flow_id; 1043 schedule_work(&req->work); 1044 return rc; 1045 out_unlock: 1046 spin_unlock(&efx->rps_hash_lock); 1047 out_clear: 1048 clear_bit(slot_idx, &efx->rps_slot_map); 1049 return rc; 1050 } 1051 1052 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota) 1053 { 1054 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); 1055 struct efx_nic *efx = channel->efx; 1056 unsigned int index, size, start; 1057 u32 flow_id; 1058 1059 if (!mutex_trylock(&efx->rps_mutex)) 1060 return false; 1061 expire_one = efx->type->filter_rfs_expire_one; 1062 index = channel->rfs_expire_index; 1063 start = index; 1064 size = efx->type->max_rx_ip_filters; 1065 while (quota) { 1066 flow_id = channel->rps_flow_id[index]; 1067 1068 if (flow_id != RPS_FLOW_ID_INVALID) { 1069 quota--; 1070 if (expire_one(efx, flow_id, index)) { 1071 netif_info(efx, rx_status, efx->net_dev, 1072 "expired filter %d [channel %u flow %u]\n", 1073 index, channel->channel, flow_id); 1074 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; 1075 channel->rfs_filter_count--; 1076 } 1077 } 1078 if (++index == size) 1079 index = 0; 1080 /* If we were called with a quota that exceeds the total number 1081 * of filters in the table (which shouldn't happen, but could 1082 * if two callers race), ensure that we don't loop forever - 1083 * stop when we've examined every row of the table. 1084 */ 1085 if (index == start) 1086 break; 1087 } 1088 1089 channel->rfs_expire_index = index; 1090 mutex_unlock(&efx->rps_mutex); 1091 return true; 1092 } 1093 1094 #endif /* CONFIG_RFS_ACCEL */ 1095