1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include "net_driver.h" 12 #include <linux/module.h> 13 #include <linux/iommu.h> 14 #include "efx.h" 15 #include "nic.h" 16 #include "rx_common.h" 17 18 /* This is the percentage fill level below which new RX descriptors 19 * will be added to the RX descriptor ring. 20 */ 21 static unsigned int rx_refill_threshold; 22 module_param(rx_refill_threshold, uint, 0444); 23 MODULE_PARM_DESC(rx_refill_threshold, 24 "RX descriptor ring refill threshold (%)"); 25 26 /* Number of RX buffers to recycle pages for. When creating the RX page recycle 27 * ring, this number is divided by the number of buffers per page to calculate 28 * the number of pages to store in the RX page recycle ring. 29 */ 30 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 31 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) 32 33 /* RX maximum head room required. 34 * 35 * This must be at least 1 to prevent overflow, plus one packet-worth 36 * to allow pipelined receives. 37 */ 38 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) 39 40 /* Check the RX page recycle ring for a page that can be reused. */ 41 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) 42 { 43 struct efx_nic *efx = rx_queue->efx; 44 struct efx_rx_page_state *state; 45 unsigned int index; 46 struct page *page; 47 48 if (unlikely(!rx_queue->page_ring)) 49 return NULL; 50 index = rx_queue->page_remove & rx_queue->page_ptr_mask; 51 page = rx_queue->page_ring[index]; 52 if (page == NULL) 53 return NULL; 54 55 rx_queue->page_ring[index] = NULL; 56 /* page_remove cannot exceed page_add. */ 57 if (rx_queue->page_remove != rx_queue->page_add) 58 ++rx_queue->page_remove; 59 60 /* If page_count is 1 then we hold the only reference to this page. */ 61 if (page_count(page) == 1) { 62 ++rx_queue->page_recycle_count; 63 return page; 64 } else { 65 state = page_address(page); 66 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 67 PAGE_SIZE << efx->rx_buffer_order, 68 DMA_FROM_DEVICE); 69 put_page(page); 70 ++rx_queue->page_recycle_failed; 71 } 72 73 return NULL; 74 } 75 76 /* Attempt to recycle the page if there is an RX recycle ring; the page can 77 * only be added if this is the final RX buffer, to prevent pages being used in 78 * the descriptor ring and appearing in the recycle ring simultaneously. 79 */ 80 static void efx_recycle_rx_page(struct efx_channel *channel, 81 struct efx_rx_buffer *rx_buf) 82 { 83 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 84 struct efx_nic *efx = rx_queue->efx; 85 struct page *page = rx_buf->page; 86 unsigned int index; 87 88 /* Only recycle the page after processing the final buffer. */ 89 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) 90 return; 91 92 index = rx_queue->page_add & rx_queue->page_ptr_mask; 93 if (rx_queue->page_ring[index] == NULL) { 94 unsigned int read_index = rx_queue->page_remove & 95 rx_queue->page_ptr_mask; 96 97 /* The next slot in the recycle ring is available, but 98 * increment page_remove if the read pointer currently 99 * points here. 100 */ 101 if (read_index == index) 102 ++rx_queue->page_remove; 103 rx_queue->page_ring[index] = page; 104 ++rx_queue->page_add; 105 return; 106 } 107 ++rx_queue->page_recycle_full; 108 efx_unmap_rx_buffer(efx, rx_buf); 109 put_page(rx_buf->page); 110 } 111 112 /* Recycle the pages that are used by buffers that have just been received. */ 113 void efx_recycle_rx_pages(struct efx_channel *channel, 114 struct efx_rx_buffer *rx_buf, 115 unsigned int n_frags) 116 { 117 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 118 119 if (unlikely(!rx_queue->page_ring)) 120 return; 121 122 do { 123 efx_recycle_rx_page(channel, rx_buf); 124 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 125 } while (--n_frags); 126 } 127 128 void efx_discard_rx_packet(struct efx_channel *channel, 129 struct efx_rx_buffer *rx_buf, 130 unsigned int n_frags) 131 { 132 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 133 134 efx_recycle_rx_pages(channel, rx_buf, n_frags); 135 136 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 137 } 138 139 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue) 140 { 141 unsigned int bufs_in_recycle_ring, page_ring_size; 142 struct efx_nic *efx = rx_queue->efx; 143 144 /* Set the RX recycle ring size */ 145 #ifdef CONFIG_PPC64 146 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 147 #else 148 if (iommu_present(&pci_bus_type)) 149 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 150 else 151 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; 152 #endif /* CONFIG_PPC64 */ 153 154 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / 155 efx->rx_bufs_per_page); 156 rx_queue->page_ring = kcalloc(page_ring_size, 157 sizeof(*rx_queue->page_ring), GFP_KERNEL); 158 if (!rx_queue->page_ring) 159 rx_queue->page_ptr_mask = 0; 160 else 161 rx_queue->page_ptr_mask = page_ring_size - 1; 162 } 163 164 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue) 165 { 166 struct efx_nic *efx = rx_queue->efx; 167 int i; 168 169 /* Unmap and release the pages in the recycle ring. Remove the ring. */ 170 for (i = 0; i <= rx_queue->page_ptr_mask; i++) { 171 struct page *page = rx_queue->page_ring[i]; 172 struct efx_rx_page_state *state; 173 174 if (page == NULL) 175 continue; 176 177 state = page_address(page); 178 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 179 PAGE_SIZE << efx->rx_buffer_order, 180 DMA_FROM_DEVICE); 181 put_page(page); 182 } 183 kfree(rx_queue->page_ring); 184 rx_queue->page_ring = NULL; 185 } 186 187 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 188 struct efx_rx_buffer *rx_buf) 189 { 190 /* Release the page reference we hold for the buffer. */ 191 if (rx_buf->page) 192 put_page(rx_buf->page); 193 194 /* If this is the last buffer in a page, unmap and free it. */ 195 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { 196 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 197 efx_free_rx_buffers(rx_queue, rx_buf, 1); 198 } 199 rx_buf->page = NULL; 200 } 201 202 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 203 { 204 struct efx_nic *efx = rx_queue->efx; 205 unsigned int entries; 206 int rc; 207 208 /* Create the smallest power-of-two aligned ring */ 209 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 210 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 211 rx_queue->ptr_mask = entries - 1; 212 213 netif_dbg(efx, probe, efx->net_dev, 214 "creating RX queue %d size %#x mask %#x\n", 215 efx_rx_queue_index(rx_queue), efx->rxq_entries, 216 rx_queue->ptr_mask); 217 218 /* Allocate RX buffers */ 219 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 220 GFP_KERNEL); 221 if (!rx_queue->buffer) 222 return -ENOMEM; 223 224 rc = efx_nic_probe_rx(rx_queue); 225 if (rc) { 226 kfree(rx_queue->buffer); 227 rx_queue->buffer = NULL; 228 } 229 230 return rc; 231 } 232 233 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 234 { 235 unsigned int max_fill, trigger, max_trigger; 236 struct efx_nic *efx = rx_queue->efx; 237 int rc = 0; 238 239 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 240 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 241 242 /* Initialise ptr fields */ 243 rx_queue->added_count = 0; 244 rx_queue->notified_count = 0; 245 rx_queue->removed_count = 0; 246 rx_queue->min_fill = -1U; 247 efx_init_rx_recycle_ring(rx_queue); 248 249 rx_queue->page_remove = 0; 250 rx_queue->page_add = rx_queue->page_ptr_mask + 1; 251 rx_queue->page_recycle_count = 0; 252 rx_queue->page_recycle_failed = 0; 253 rx_queue->page_recycle_full = 0; 254 255 /* Initialise limit fields */ 256 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 257 max_trigger = 258 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; 259 if (rx_refill_threshold != 0) { 260 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 261 if (trigger > max_trigger) 262 trigger = max_trigger; 263 } else { 264 trigger = max_trigger; 265 } 266 267 rx_queue->max_fill = max_fill; 268 rx_queue->fast_fill_trigger = trigger; 269 rx_queue->refill_enabled = true; 270 271 /* Initialise XDP queue information */ 272 rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev, 273 rx_queue->core_index, 0); 274 275 if (rc) { 276 netif_err(efx, rx_err, efx->net_dev, 277 "Failure to initialise XDP queue information rc=%d\n", 278 rc); 279 efx->xdp_rxq_info_failed = true; 280 } else { 281 rx_queue->xdp_rxq_info_valid = true; 282 } 283 284 /* Set up RX descriptor ring */ 285 efx_nic_init_rx(rx_queue); 286 } 287 288 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 289 { 290 struct efx_rx_buffer *rx_buf; 291 int i; 292 293 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 294 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 295 296 del_timer_sync(&rx_queue->slow_fill); 297 298 /* Release RX buffers from the current read ptr to the write ptr */ 299 if (rx_queue->buffer) { 300 for (i = rx_queue->removed_count; i < rx_queue->added_count; 301 i++) { 302 unsigned int index = i & rx_queue->ptr_mask; 303 304 rx_buf = efx_rx_buffer(rx_queue, index); 305 efx_fini_rx_buffer(rx_queue, rx_buf); 306 } 307 } 308 309 efx_fini_rx_recycle_ring(rx_queue); 310 311 if (rx_queue->xdp_rxq_info_valid) 312 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info); 313 314 rx_queue->xdp_rxq_info_valid = false; 315 } 316 317 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 318 { 319 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 320 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 321 322 efx_nic_remove_rx(rx_queue); 323 324 kfree(rx_queue->buffer); 325 rx_queue->buffer = NULL; 326 } 327 328 /* Unmap a DMA-mapped page. This function is only called for the final RX 329 * buffer in a page. 330 */ 331 void efx_unmap_rx_buffer(struct efx_nic *efx, 332 struct efx_rx_buffer *rx_buf) 333 { 334 struct page *page = rx_buf->page; 335 336 if (page) { 337 struct efx_rx_page_state *state = page_address(page); 338 339 dma_unmap_page(&efx->pci_dev->dev, 340 state->dma_addr, 341 PAGE_SIZE << efx->rx_buffer_order, 342 DMA_FROM_DEVICE); 343 } 344 } 345 346 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, 347 struct efx_rx_buffer *rx_buf, 348 unsigned int num_bufs) 349 { 350 do { 351 if (rx_buf->page) { 352 put_page(rx_buf->page); 353 rx_buf->page = NULL; 354 } 355 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 356 } while (--num_bufs); 357 } 358 359 void efx_rx_slow_fill(struct timer_list *t) 360 { 361 struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); 362 363 /* Post an event to cause NAPI to run and refill the queue */ 364 efx_nic_generate_fill_event(rx_queue); 365 ++rx_queue->slow_fill_count; 366 } 367 368 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 369 { 370 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10)); 371 } 372 373 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers 374 * 375 * @rx_queue: Efx RX queue 376 * 377 * This allocates a batch of pages, maps them for DMA, and populates 378 * struct efx_rx_buffers for each one. Return a negative error code or 379 * 0 on success. If a single page can be used for multiple buffers, 380 * then the page will either be inserted fully, or not at all. 381 */ 382 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) 383 { 384 unsigned int page_offset, index, count; 385 struct efx_nic *efx = rx_queue->efx; 386 struct efx_rx_page_state *state; 387 struct efx_rx_buffer *rx_buf; 388 dma_addr_t dma_addr; 389 struct page *page; 390 391 count = 0; 392 do { 393 page = efx_reuse_page(rx_queue); 394 if (page == NULL) { 395 page = alloc_pages(__GFP_COMP | 396 (atomic ? GFP_ATOMIC : GFP_KERNEL), 397 efx->rx_buffer_order); 398 if (unlikely(page == NULL)) 399 return -ENOMEM; 400 dma_addr = 401 dma_map_page(&efx->pci_dev->dev, page, 0, 402 PAGE_SIZE << efx->rx_buffer_order, 403 DMA_FROM_DEVICE); 404 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, 405 dma_addr))) { 406 __free_pages(page, efx->rx_buffer_order); 407 return -EIO; 408 } 409 state = page_address(page); 410 state->dma_addr = dma_addr; 411 } else { 412 state = page_address(page); 413 dma_addr = state->dma_addr; 414 } 415 416 dma_addr += sizeof(struct efx_rx_page_state); 417 page_offset = sizeof(struct efx_rx_page_state); 418 419 do { 420 index = rx_queue->added_count & rx_queue->ptr_mask; 421 rx_buf = efx_rx_buffer(rx_queue, index); 422 rx_buf->dma_addr = dma_addr + efx->rx_ip_align + 423 EFX_XDP_HEADROOM; 424 rx_buf->page = page; 425 rx_buf->page_offset = page_offset + efx->rx_ip_align + 426 EFX_XDP_HEADROOM; 427 rx_buf->len = efx->rx_dma_len; 428 rx_buf->flags = 0; 429 ++rx_queue->added_count; 430 get_page(page); 431 dma_addr += efx->rx_page_buf_step; 432 page_offset += efx->rx_page_buf_step; 433 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); 434 435 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; 436 } while (++count < efx->rx_pages_per_batch); 437 438 return 0; 439 } 440 441 void efx_rx_config_page_split(struct efx_nic *efx) 442 { 443 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align + 444 EFX_XDP_HEADROOM + EFX_XDP_TAILROOM, 445 EFX_RX_BUF_ALIGNMENT); 446 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : 447 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / 448 efx->rx_page_buf_step); 449 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / 450 efx->rx_bufs_per_page; 451 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, 452 efx->rx_bufs_per_page); 453 } 454 455 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly 456 * @rx_queue: RX descriptor queue 457 * 458 * This will aim to fill the RX descriptor queue up to 459 * @rx_queue->@max_fill. If there is insufficient atomic 460 * memory to do so, a slow fill will be scheduled. 461 * 462 * The caller must provide serialisation (none is used here). In practise, 463 * this means this function must run from the NAPI handler, or be called 464 * when NAPI is disabled. 465 */ 466 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) 467 { 468 struct efx_nic *efx = rx_queue->efx; 469 unsigned int fill_level, batch_size; 470 int space, rc = 0; 471 472 if (!rx_queue->refill_enabled) 473 return; 474 475 /* Calculate current fill level, and exit if we don't need to fill */ 476 fill_level = (rx_queue->added_count - rx_queue->removed_count); 477 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); 478 if (fill_level >= rx_queue->fast_fill_trigger) 479 goto out; 480 481 /* Record minimum fill level */ 482 if (unlikely(fill_level < rx_queue->min_fill)) { 483 if (fill_level) 484 rx_queue->min_fill = fill_level; 485 } 486 487 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; 488 space = rx_queue->max_fill - fill_level; 489 EFX_WARN_ON_ONCE_PARANOID(space < batch_size); 490 491 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 492 "RX queue %d fast-filling descriptor ring from" 493 " level %d to level %d\n", 494 efx_rx_queue_index(rx_queue), fill_level, 495 rx_queue->max_fill); 496 497 do { 498 rc = efx_init_rx_buffers(rx_queue, atomic); 499 if (unlikely(rc)) { 500 /* Ensure that we don't leave the rx queue empty */ 501 efx_schedule_slow_fill(rx_queue); 502 goto out; 503 } 504 } while ((space -= batch_size) >= batch_size); 505 506 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 507 "RX queue %d fast-filled descriptor ring " 508 "to level %d\n", efx_rx_queue_index(rx_queue), 509 rx_queue->added_count - rx_queue->removed_count); 510 511 out: 512 if (rx_queue->notified_count != rx_queue->added_count) 513 efx_nic_notify_rx_desc(rx_queue); 514 } 515 516 /* Pass a received packet up through GRO. GRO can handle pages 517 * regardless of checksum state and skbs with a good checksum. 518 */ 519 void 520 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, 521 unsigned int n_frags, u8 *eh, __wsum csum) 522 { 523 struct napi_struct *napi = &channel->napi_str; 524 struct efx_nic *efx = channel->efx; 525 struct sk_buff *skb; 526 527 skb = napi_get_frags(napi); 528 if (unlikely(!skb)) { 529 struct efx_rx_queue *rx_queue; 530 531 rx_queue = efx_channel_get_rx_queue(channel); 532 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 533 return; 534 } 535 536 if (efx->net_dev->features & NETIF_F_RXHASH && 537 efx_rx_buf_hash_valid(efx, eh)) 538 skb_set_hash(skb, efx_rx_buf_hash(efx, eh), 539 PKT_HASH_TYPE_L3); 540 if (csum) { 541 skb->csum = csum; 542 skb->ip_summed = CHECKSUM_COMPLETE; 543 } else { 544 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 545 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 546 } 547 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 548 549 for (;;) { 550 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 551 rx_buf->page, rx_buf->page_offset, 552 rx_buf->len); 553 rx_buf->page = NULL; 554 skb->len += rx_buf->len; 555 if (skb_shinfo(skb)->nr_frags == n_frags) 556 break; 557 558 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 559 } 560 561 skb->data_len = skb->len; 562 skb->truesize += n_frags * efx->rx_buffer_truesize; 563 564 skb_record_rx_queue(skb, channel->rx_queue.core_index); 565 566 napi_gro_frags(napi); 567 } 568 569 /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because 570 * (a) this is an infrequent control-plane operation and (b) n is small (max 64) 571 */ 572 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx) 573 { 574 struct list_head *head = &efx->rss_context.list; 575 struct efx_rss_context *ctx, *new; 576 u32 id = 1; /* Don't use zero, that refers to the master RSS context */ 577 578 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 579 580 /* Search for first gap in the numbering */ 581 list_for_each_entry(ctx, head, list) { 582 if (ctx->user_id != id) 583 break; 584 id++; 585 /* Check for wrap. If this happens, we have nearly 2^32 586 * allocated RSS contexts, which seems unlikely. 587 */ 588 if (WARN_ON_ONCE(!id)) 589 return NULL; 590 } 591 592 /* Create the new entry */ 593 new = kmalloc(sizeof(*new), GFP_KERNEL); 594 if (!new) 595 return NULL; 596 new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID; 597 new->rx_hash_udp_4tuple = false; 598 599 /* Insert the new entry into the gap */ 600 new->user_id = id; 601 list_add_tail(&new->list, &ctx->list); 602 return new; 603 } 604 605 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id) 606 { 607 struct list_head *head = &efx->rss_context.list; 608 struct efx_rss_context *ctx; 609 610 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 611 612 list_for_each_entry(ctx, head, list) 613 if (ctx->user_id == id) 614 return ctx; 615 return NULL; 616 } 617 618 void efx_free_rss_context_entry(struct efx_rss_context *ctx) 619 { 620 list_del(&ctx->list); 621 kfree(ctx); 622 } 623 624 void efx_set_default_rx_indir_table(struct efx_nic *efx, 625 struct efx_rss_context *ctx) 626 { 627 size_t i; 628 629 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++) 630 ctx->rx_indir_table[i] = 631 ethtool_rxfh_indir_default(i, efx->rss_spread); 632 } 633 634 /** 635 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient 636 * @spec: Specification to test 637 * 638 * Return: %true if the specification is a non-drop RX filter that 639 * matches a local MAC address I/G bit value of 1 or matches a local 640 * IPv4 or IPv6 address value in the respective multicast address 641 * range. Otherwise %false. 642 */ 643 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) 644 { 645 if (!(spec->flags & EFX_FILTER_FLAG_RX) || 646 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) 647 return false; 648 649 if (spec->match_flags & 650 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && 651 is_multicast_ether_addr(spec->loc_mac)) 652 return true; 653 654 if ((spec->match_flags & 655 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 656 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 657 if (spec->ether_type == htons(ETH_P_IP) && 658 ipv4_is_multicast(spec->loc_host[0])) 659 return true; 660 if (spec->ether_type == htons(ETH_P_IPV6) && 661 ((const u8 *)spec->loc_host)[0] == 0xff) 662 return true; 663 } 664 665 return false; 666 } 667 668 bool efx_filter_spec_equal(const struct efx_filter_spec *left, 669 const struct efx_filter_spec *right) 670 { 671 if ((left->match_flags ^ right->match_flags) | 672 ((left->flags ^ right->flags) & 673 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) 674 return false; 675 676 return memcmp(&left->outer_vid, &right->outer_vid, 677 sizeof(struct efx_filter_spec) - 678 offsetof(struct efx_filter_spec, outer_vid)) == 0; 679 } 680 681 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) 682 { 683 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3); 684 return jhash2((const u32 *)&spec->outer_vid, 685 (sizeof(struct efx_filter_spec) - 686 offsetof(struct efx_filter_spec, outer_vid)) / 4, 687 0); 688 } 689 690 #ifdef CONFIG_RFS_ACCEL 691 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, 692 bool *force) 693 { 694 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { 695 /* ARFS is currently updating this entry, leave it */ 696 return false; 697 } 698 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { 699 /* ARFS tried and failed to update this, so it's probably out 700 * of date. Remove the filter and the ARFS rule entry. 701 */ 702 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; 703 *force = true; 704 return true; 705 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ 706 /* ARFS has moved on, so old filter is not needed. Since we did 707 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will 708 * not be removed by efx_rps_hash_del() subsequently. 709 */ 710 *force = true; 711 return true; 712 } 713 /* Remove it iff ARFS wants to. */ 714 return true; 715 } 716 717 static 718 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, 719 const struct efx_filter_spec *spec) 720 { 721 u32 hash = efx_filter_spec_hash(spec); 722 723 lockdep_assert_held(&efx->rps_hash_lock); 724 if (!efx->rps_hash_table) 725 return NULL; 726 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; 727 } 728 729 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, 730 const struct efx_filter_spec *spec) 731 { 732 struct efx_arfs_rule *rule; 733 struct hlist_head *head; 734 struct hlist_node *node; 735 736 head = efx_rps_hash_bucket(efx, spec); 737 if (!head) 738 return NULL; 739 hlist_for_each(node, head) { 740 rule = container_of(node, struct efx_arfs_rule, node); 741 if (efx_filter_spec_equal(spec, &rule->spec)) 742 return rule; 743 } 744 return NULL; 745 } 746 747 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, 748 const struct efx_filter_spec *spec, 749 bool *new) 750 { 751 struct efx_arfs_rule *rule; 752 struct hlist_head *head; 753 struct hlist_node *node; 754 755 head = efx_rps_hash_bucket(efx, spec); 756 if (!head) 757 return NULL; 758 hlist_for_each(node, head) { 759 rule = container_of(node, struct efx_arfs_rule, node); 760 if (efx_filter_spec_equal(spec, &rule->spec)) { 761 *new = false; 762 return rule; 763 } 764 } 765 rule = kmalloc(sizeof(*rule), GFP_ATOMIC); 766 *new = true; 767 if (rule) { 768 memcpy(&rule->spec, spec, sizeof(rule->spec)); 769 hlist_add_head(&rule->node, head); 770 } 771 return rule; 772 } 773 774 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) 775 { 776 struct efx_arfs_rule *rule; 777 struct hlist_head *head; 778 struct hlist_node *node; 779 780 head = efx_rps_hash_bucket(efx, spec); 781 if (WARN_ON(!head)) 782 return; 783 hlist_for_each(node, head) { 784 rule = container_of(node, struct efx_arfs_rule, node); 785 if (efx_filter_spec_equal(spec, &rule->spec)) { 786 /* Someone already reused the entry. We know that if 787 * this check doesn't fire (i.e. filter_id == REMOVING) 788 * then the REMOVING mark was put there by our caller, 789 * because caller is holding a lock on filter table and 790 * only holders of that lock set REMOVING. 791 */ 792 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) 793 return; 794 hlist_del(node); 795 kfree(rule); 796 return; 797 } 798 } 799 /* We didn't find it. */ 800 WARN_ON(1); 801 } 802 #endif 803 804 int efx_probe_filters(struct efx_nic *efx) 805 { 806 int rc; 807 808 mutex_lock(&efx->mac_lock); 809 down_write(&efx->filter_sem); 810 rc = efx->type->filter_table_probe(efx); 811 if (rc) 812 goto out_unlock; 813 814 #ifdef CONFIG_RFS_ACCEL 815 if (efx->type->offload_features & NETIF_F_NTUPLE) { 816 struct efx_channel *channel; 817 int i, success = 1; 818 819 efx_for_each_channel(channel, efx) { 820 channel->rps_flow_id = 821 kcalloc(efx->type->max_rx_ip_filters, 822 sizeof(*channel->rps_flow_id), 823 GFP_KERNEL); 824 if (!channel->rps_flow_id) 825 success = 0; 826 else 827 for (i = 0; 828 i < efx->type->max_rx_ip_filters; 829 ++i) 830 channel->rps_flow_id[i] = 831 RPS_FLOW_ID_INVALID; 832 channel->rfs_expire_index = 0; 833 channel->rfs_filter_count = 0; 834 } 835 836 if (!success) { 837 efx_for_each_channel(channel, efx) 838 kfree(channel->rps_flow_id); 839 efx->type->filter_table_remove(efx); 840 rc = -ENOMEM; 841 goto out_unlock; 842 } 843 } 844 #endif 845 out_unlock: 846 up_write(&efx->filter_sem); 847 mutex_unlock(&efx->mac_lock); 848 return rc; 849 } 850 851 void efx_remove_filters(struct efx_nic *efx) 852 { 853 #ifdef CONFIG_RFS_ACCEL 854 struct efx_channel *channel; 855 856 efx_for_each_channel(channel, efx) { 857 cancel_delayed_work_sync(&channel->filter_work); 858 kfree(channel->rps_flow_id); 859 channel->rps_flow_id = NULL; 860 } 861 #endif 862 down_write(&efx->filter_sem); 863 efx->type->filter_table_remove(efx); 864 up_write(&efx->filter_sem); 865 } 866 867 #ifdef CONFIG_RFS_ACCEL 868 869 static void efx_filter_rfs_work(struct work_struct *data) 870 { 871 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, 872 work); 873 struct efx_nic *efx = netdev_priv(req->net_dev); 874 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); 875 int slot_idx = req - efx->rps_slot; 876 struct efx_arfs_rule *rule; 877 u16 arfs_id = 0; 878 int rc; 879 880 rc = efx->type->filter_insert(efx, &req->spec, true); 881 if (rc >= 0) 882 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */ 883 rc %= efx->type->max_rx_ip_filters; 884 if (efx->rps_hash_table) { 885 spin_lock_bh(&efx->rps_hash_lock); 886 rule = efx_rps_hash_find(efx, &req->spec); 887 /* The rule might have already gone, if someone else's request 888 * for the same spec was already worked and then expired before 889 * we got around to our work. In that case we have nothing 890 * tying us to an arfs_id, meaning that as soon as the filter 891 * is considered for expiry it will be removed. 892 */ 893 if (rule) { 894 if (rc < 0) 895 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; 896 else 897 rule->filter_id = rc; 898 arfs_id = rule->arfs_id; 899 } 900 spin_unlock_bh(&efx->rps_hash_lock); 901 } 902 if (rc >= 0) { 903 /* Remember this so we can check whether to expire the filter 904 * later. 905 */ 906 mutex_lock(&efx->rps_mutex); 907 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID) 908 channel->rfs_filter_count++; 909 channel->rps_flow_id[rc] = req->flow_id; 910 mutex_unlock(&efx->rps_mutex); 911 912 if (req->spec.ether_type == htons(ETH_P_IP)) 913 netif_info(efx, rx_status, efx->net_dev, 914 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", 915 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 916 req->spec.rem_host, ntohs(req->spec.rem_port), 917 req->spec.loc_host, ntohs(req->spec.loc_port), 918 req->rxq_index, req->flow_id, rc, arfs_id); 919 else 920 netif_info(efx, rx_status, efx->net_dev, 921 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", 922 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 923 req->spec.rem_host, ntohs(req->spec.rem_port), 924 req->spec.loc_host, ntohs(req->spec.loc_port), 925 req->rxq_index, req->flow_id, rc, arfs_id); 926 channel->n_rfs_succeeded++; 927 } else { 928 if (req->spec.ether_type == htons(ETH_P_IP)) 929 netif_dbg(efx, rx_status, efx->net_dev, 930 "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n", 931 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 932 req->spec.rem_host, ntohs(req->spec.rem_port), 933 req->spec.loc_host, ntohs(req->spec.loc_port), 934 req->rxq_index, req->flow_id, rc, arfs_id); 935 else 936 netif_dbg(efx, rx_status, efx->net_dev, 937 "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n", 938 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 939 req->spec.rem_host, ntohs(req->spec.rem_port), 940 req->spec.loc_host, ntohs(req->spec.loc_port), 941 req->rxq_index, req->flow_id, rc, arfs_id); 942 channel->n_rfs_failed++; 943 /* We're overloading the NIC's filter tables, so let's do a 944 * chunk of extra expiry work. 945 */ 946 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, 947 100u)); 948 } 949 950 /* Release references */ 951 clear_bit(slot_idx, &efx->rps_slot_map); 952 dev_put(req->net_dev); 953 } 954 955 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, 956 u16 rxq_index, u32 flow_id) 957 { 958 struct efx_nic *efx = netdev_priv(net_dev); 959 struct efx_async_filter_insertion *req; 960 struct efx_arfs_rule *rule; 961 struct flow_keys fk; 962 int slot_idx; 963 bool new; 964 int rc; 965 966 /* find a free slot */ 967 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) 968 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) 969 break; 970 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) 971 return -EBUSY; 972 973 if (flow_id == RPS_FLOW_ID_INVALID) { 974 rc = -EINVAL; 975 goto out_clear; 976 } 977 978 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { 979 rc = -EPROTONOSUPPORT; 980 goto out_clear; 981 } 982 983 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { 984 rc = -EPROTONOSUPPORT; 985 goto out_clear; 986 } 987 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { 988 rc = -EPROTONOSUPPORT; 989 goto out_clear; 990 } 991 992 req = efx->rps_slot + slot_idx; 993 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, 994 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, 995 rxq_index); 996 req->spec.match_flags = 997 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 998 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 999 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; 1000 req->spec.ether_type = fk.basic.n_proto; 1001 req->spec.ip_proto = fk.basic.ip_proto; 1002 1003 if (fk.basic.n_proto == htons(ETH_P_IP)) { 1004 req->spec.rem_host[0] = fk.addrs.v4addrs.src; 1005 req->spec.loc_host[0] = fk.addrs.v4addrs.dst; 1006 } else { 1007 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, 1008 sizeof(struct in6_addr)); 1009 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, 1010 sizeof(struct in6_addr)); 1011 } 1012 1013 req->spec.rem_port = fk.ports.src; 1014 req->spec.loc_port = fk.ports.dst; 1015 1016 if (efx->rps_hash_table) { 1017 /* Add it to ARFS hash table */ 1018 spin_lock(&efx->rps_hash_lock); 1019 rule = efx_rps_hash_add(efx, &req->spec, &new); 1020 if (!rule) { 1021 rc = -ENOMEM; 1022 goto out_unlock; 1023 } 1024 if (new) 1025 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; 1026 rc = rule->arfs_id; 1027 /* Skip if existing or pending filter already does the right thing */ 1028 if (!new && rule->rxq_index == rxq_index && 1029 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) 1030 goto out_unlock; 1031 rule->rxq_index = rxq_index; 1032 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; 1033 spin_unlock(&efx->rps_hash_lock); 1034 } else { 1035 /* Without an ARFS hash table, we just use arfs_id 0 for all 1036 * filters. This means if multiple flows hash to the same 1037 * flow_id, all but the most recently touched will be eligible 1038 * for expiry. 1039 */ 1040 rc = 0; 1041 } 1042 1043 /* Queue the request */ 1044 dev_hold(req->net_dev = net_dev); 1045 INIT_WORK(&req->work, efx_filter_rfs_work); 1046 req->rxq_index = rxq_index; 1047 req->flow_id = flow_id; 1048 schedule_work(&req->work); 1049 return rc; 1050 out_unlock: 1051 spin_unlock(&efx->rps_hash_lock); 1052 out_clear: 1053 clear_bit(slot_idx, &efx->rps_slot_map); 1054 return rc; 1055 } 1056 1057 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota) 1058 { 1059 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); 1060 struct efx_nic *efx = channel->efx; 1061 unsigned int index, size, start; 1062 u32 flow_id; 1063 1064 if (!mutex_trylock(&efx->rps_mutex)) 1065 return false; 1066 expire_one = efx->type->filter_rfs_expire_one; 1067 index = channel->rfs_expire_index; 1068 start = index; 1069 size = efx->type->max_rx_ip_filters; 1070 while (quota) { 1071 flow_id = channel->rps_flow_id[index]; 1072 1073 if (flow_id != RPS_FLOW_ID_INVALID) { 1074 quota--; 1075 if (expire_one(efx, flow_id, index)) { 1076 netif_info(efx, rx_status, efx->net_dev, 1077 "expired filter %d [channel %u flow %u]\n", 1078 index, channel->channel, flow_id); 1079 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; 1080 channel->rfs_filter_count--; 1081 } 1082 } 1083 if (++index == size) 1084 index = 0; 1085 /* If we were called with a quota that exceeds the total number 1086 * of filters in the table (which shouldn't happen, but could 1087 * if two callers race), ensure that we don't loop forever - 1088 * stop when we've examined every row of the table. 1089 */ 1090 if (index == start) 1091 break; 1092 } 1093 1094 channel->rfs_expire_index = index; 1095 mutex_unlock(&efx->rps_mutex); 1096 return true; 1097 } 1098 1099 #endif /* CONFIG_RFS_ACCEL */ 1100