1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/socket.h> 12 #include <linux/in.h> 13 #include <linux/slab.h> 14 #include <linux/ip.h> 15 #include <linux/ipv6.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/prefetch.h> 19 #include <linux/moduleparam.h> 20 #include <linux/iommu.h> 21 #include <net/ip.h> 22 #include <net/checksum.h> 23 #include "net_driver.h" 24 #include "efx.h" 25 #include "filter.h" 26 #include "nic.h" 27 #include "selftest.h" 28 #include "workarounds.h" 29 30 /* Preferred number of descriptors to fill at once */ 31 #define EFX_RX_PREFERRED_BATCH 8U 32 33 /* Number of RX buffers to recycle pages for. When creating the RX page recycle 34 * ring, this number is divided by the number of buffers per page to calculate 35 * the number of pages to store in the RX page recycle ring. 36 */ 37 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 38 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) 39 40 /* Size of buffer allocated for skb header area. */ 41 #define EFX_SKB_HEADERS 128u 42 43 /* This is the percentage fill level below which new RX descriptors 44 * will be added to the RX descriptor ring. 45 */ 46 static unsigned int rx_refill_threshold; 47 48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */ 49 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \ 50 EFX_RX_USR_BUF_SIZE) 51 52 /* 53 * RX maximum head room required. 54 * 55 * This must be at least 1 to prevent overflow, plus one packet-worth 56 * to allow pipelined receives. 57 */ 58 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) 59 60 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf) 61 { 62 return page_address(buf->page) + buf->page_offset; 63 } 64 65 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh) 66 { 67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 68 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset)); 69 #else 70 const u8 *data = eh + efx->rx_packet_hash_offset; 71 return (u32)data[0] | 72 (u32)data[1] << 8 | 73 (u32)data[2] << 16 | 74 (u32)data[3] << 24; 75 #endif 76 } 77 78 static inline struct efx_rx_buffer * 79 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) 80 { 81 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) 82 return efx_rx_buffer(rx_queue, 0); 83 else 84 return rx_buf + 1; 85 } 86 87 static inline void efx_sync_rx_buffer(struct efx_nic *efx, 88 struct efx_rx_buffer *rx_buf, 89 unsigned int len) 90 { 91 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len, 92 DMA_FROM_DEVICE); 93 } 94 95 void efx_rx_config_page_split(struct efx_nic *efx) 96 { 97 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align, 98 EFX_RX_BUF_ALIGNMENT); 99 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : 100 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / 101 efx->rx_page_buf_step); 102 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / 103 efx->rx_bufs_per_page; 104 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, 105 efx->rx_bufs_per_page); 106 } 107 108 /* Check the RX page recycle ring for a page that can be reused. */ 109 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) 110 { 111 struct efx_nic *efx = rx_queue->efx; 112 struct page *page; 113 struct efx_rx_page_state *state; 114 unsigned index; 115 116 index = rx_queue->page_remove & rx_queue->page_ptr_mask; 117 page = rx_queue->page_ring[index]; 118 if (page == NULL) 119 return NULL; 120 121 rx_queue->page_ring[index] = NULL; 122 /* page_remove cannot exceed page_add. */ 123 if (rx_queue->page_remove != rx_queue->page_add) 124 ++rx_queue->page_remove; 125 126 /* If page_count is 1 then we hold the only reference to this page. */ 127 if (page_count(page) == 1) { 128 ++rx_queue->page_recycle_count; 129 return page; 130 } else { 131 state = page_address(page); 132 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 133 PAGE_SIZE << efx->rx_buffer_order, 134 DMA_FROM_DEVICE); 135 put_page(page); 136 ++rx_queue->page_recycle_failed; 137 } 138 139 return NULL; 140 } 141 142 /** 143 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers 144 * 145 * @rx_queue: Efx RX queue 146 * 147 * This allocates a batch of pages, maps them for DMA, and populates 148 * struct efx_rx_buffers for each one. Return a negative error code or 149 * 0 on success. If a single page can be used for multiple buffers, 150 * then the page will either be inserted fully, or not at all. 151 */ 152 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) 153 { 154 struct efx_nic *efx = rx_queue->efx; 155 struct efx_rx_buffer *rx_buf; 156 struct page *page; 157 unsigned int page_offset; 158 struct efx_rx_page_state *state; 159 dma_addr_t dma_addr; 160 unsigned index, count; 161 162 count = 0; 163 do { 164 page = efx_reuse_page(rx_queue); 165 if (page == NULL) { 166 page = alloc_pages(__GFP_COMP | 167 (atomic ? GFP_ATOMIC : GFP_KERNEL), 168 efx->rx_buffer_order); 169 if (unlikely(page == NULL)) 170 return -ENOMEM; 171 dma_addr = 172 dma_map_page(&efx->pci_dev->dev, page, 0, 173 PAGE_SIZE << efx->rx_buffer_order, 174 DMA_FROM_DEVICE); 175 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, 176 dma_addr))) { 177 __free_pages(page, efx->rx_buffer_order); 178 return -EIO; 179 } 180 state = page_address(page); 181 state->dma_addr = dma_addr; 182 } else { 183 state = page_address(page); 184 dma_addr = state->dma_addr; 185 } 186 187 dma_addr += sizeof(struct efx_rx_page_state); 188 page_offset = sizeof(struct efx_rx_page_state); 189 190 do { 191 index = rx_queue->added_count & rx_queue->ptr_mask; 192 rx_buf = efx_rx_buffer(rx_queue, index); 193 rx_buf->dma_addr = dma_addr + efx->rx_ip_align; 194 rx_buf->page = page; 195 rx_buf->page_offset = page_offset + efx->rx_ip_align; 196 rx_buf->len = efx->rx_dma_len; 197 rx_buf->flags = 0; 198 ++rx_queue->added_count; 199 get_page(page); 200 dma_addr += efx->rx_page_buf_step; 201 page_offset += efx->rx_page_buf_step; 202 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); 203 204 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; 205 } while (++count < efx->rx_pages_per_batch); 206 207 return 0; 208 } 209 210 /* Unmap a DMA-mapped page. This function is only called for the final RX 211 * buffer in a page. 212 */ 213 static void efx_unmap_rx_buffer(struct efx_nic *efx, 214 struct efx_rx_buffer *rx_buf) 215 { 216 struct page *page = rx_buf->page; 217 218 if (page) { 219 struct efx_rx_page_state *state = page_address(page); 220 dma_unmap_page(&efx->pci_dev->dev, 221 state->dma_addr, 222 PAGE_SIZE << efx->rx_buffer_order, 223 DMA_FROM_DEVICE); 224 } 225 } 226 227 static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, 228 struct efx_rx_buffer *rx_buf, 229 unsigned int num_bufs) 230 { 231 do { 232 if (rx_buf->page) { 233 put_page(rx_buf->page); 234 rx_buf->page = NULL; 235 } 236 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 237 } while (--num_bufs); 238 } 239 240 /* Attempt to recycle the page if there is an RX recycle ring; the page can 241 * only be added if this is the final RX buffer, to prevent pages being used in 242 * the descriptor ring and appearing in the recycle ring simultaneously. 243 */ 244 static void efx_recycle_rx_page(struct efx_channel *channel, 245 struct efx_rx_buffer *rx_buf) 246 { 247 struct page *page = rx_buf->page; 248 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 249 struct efx_nic *efx = rx_queue->efx; 250 unsigned index; 251 252 /* Only recycle the page after processing the final buffer. */ 253 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) 254 return; 255 256 index = rx_queue->page_add & rx_queue->page_ptr_mask; 257 if (rx_queue->page_ring[index] == NULL) { 258 unsigned read_index = rx_queue->page_remove & 259 rx_queue->page_ptr_mask; 260 261 /* The next slot in the recycle ring is available, but 262 * increment page_remove if the read pointer currently 263 * points here. 264 */ 265 if (read_index == index) 266 ++rx_queue->page_remove; 267 rx_queue->page_ring[index] = page; 268 ++rx_queue->page_add; 269 return; 270 } 271 ++rx_queue->page_recycle_full; 272 efx_unmap_rx_buffer(efx, rx_buf); 273 put_page(rx_buf->page); 274 } 275 276 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 277 struct efx_rx_buffer *rx_buf) 278 { 279 /* Release the page reference we hold for the buffer. */ 280 if (rx_buf->page) 281 put_page(rx_buf->page); 282 283 /* If this is the last buffer in a page, unmap and free it. */ 284 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { 285 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 286 efx_free_rx_buffers(rx_queue, rx_buf, 1); 287 } 288 rx_buf->page = NULL; 289 } 290 291 /* Recycle the pages that are used by buffers that have just been received. */ 292 static void efx_recycle_rx_pages(struct efx_channel *channel, 293 struct efx_rx_buffer *rx_buf, 294 unsigned int n_frags) 295 { 296 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 297 298 do { 299 efx_recycle_rx_page(channel, rx_buf); 300 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 301 } while (--n_frags); 302 } 303 304 static void efx_discard_rx_packet(struct efx_channel *channel, 305 struct efx_rx_buffer *rx_buf, 306 unsigned int n_frags) 307 { 308 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 309 310 efx_recycle_rx_pages(channel, rx_buf, n_frags); 311 312 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 313 } 314 315 /** 316 * efx_fast_push_rx_descriptors - push new RX descriptors quickly 317 * @rx_queue: RX descriptor queue 318 * 319 * This will aim to fill the RX descriptor queue up to 320 * @rx_queue->@max_fill. If there is insufficient atomic 321 * memory to do so, a slow fill will be scheduled. 322 * 323 * The caller must provide serialisation (none is used here). In practise, 324 * this means this function must run from the NAPI handler, or be called 325 * when NAPI is disabled. 326 */ 327 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) 328 { 329 struct efx_nic *efx = rx_queue->efx; 330 unsigned int fill_level, batch_size; 331 int space, rc = 0; 332 333 if (!rx_queue->refill_enabled) 334 return; 335 336 /* Calculate current fill level, and exit if we don't need to fill */ 337 fill_level = (rx_queue->added_count - rx_queue->removed_count); 338 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); 339 if (fill_level >= rx_queue->fast_fill_trigger) 340 goto out; 341 342 /* Record minimum fill level */ 343 if (unlikely(fill_level < rx_queue->min_fill)) { 344 if (fill_level) 345 rx_queue->min_fill = fill_level; 346 } 347 348 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; 349 space = rx_queue->max_fill - fill_level; 350 EFX_WARN_ON_ONCE_PARANOID(space < batch_size); 351 352 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 353 "RX queue %d fast-filling descriptor ring from" 354 " level %d to level %d\n", 355 efx_rx_queue_index(rx_queue), fill_level, 356 rx_queue->max_fill); 357 358 359 do { 360 rc = efx_init_rx_buffers(rx_queue, atomic); 361 if (unlikely(rc)) { 362 /* Ensure that we don't leave the rx queue empty */ 363 if (rx_queue->added_count == rx_queue->removed_count) 364 efx_schedule_slow_fill(rx_queue); 365 goto out; 366 } 367 } while ((space -= batch_size) >= batch_size); 368 369 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 370 "RX queue %d fast-filled descriptor ring " 371 "to level %d\n", efx_rx_queue_index(rx_queue), 372 rx_queue->added_count - rx_queue->removed_count); 373 374 out: 375 if (rx_queue->notified_count != rx_queue->added_count) 376 efx_nic_notify_rx_desc(rx_queue); 377 } 378 379 void efx_rx_slow_fill(struct timer_list *t) 380 { 381 struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); 382 383 /* Post an event to cause NAPI to run and refill the queue */ 384 efx_nic_generate_fill_event(rx_queue); 385 ++rx_queue->slow_fill_count; 386 } 387 388 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, 389 struct efx_rx_buffer *rx_buf, 390 int len) 391 { 392 struct efx_nic *efx = rx_queue->efx; 393 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; 394 395 if (likely(len <= max_len)) 396 return; 397 398 /* The packet must be discarded, but this is only a fatal error 399 * if the caller indicated it was 400 */ 401 rx_buf->flags |= EFX_RX_PKT_DISCARD; 402 403 if (net_ratelimit()) 404 netif_err(efx, rx_err, efx->net_dev, 405 "RX queue %d overlength RX event (%#x > %#x)\n", 406 efx_rx_queue_index(rx_queue), len, max_len); 407 408 efx_rx_queue_channel(rx_queue)->n_rx_overlength++; 409 } 410 411 /* Pass a received packet up through GRO. GRO can handle pages 412 * regardless of checksum state and skbs with a good checksum. 413 */ 414 static void 415 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, 416 unsigned int n_frags, u8 *eh) 417 { 418 struct napi_struct *napi = &channel->napi_str; 419 gro_result_t gro_result; 420 struct efx_nic *efx = channel->efx; 421 struct sk_buff *skb; 422 423 skb = napi_get_frags(napi); 424 if (unlikely(!skb)) { 425 struct efx_rx_queue *rx_queue; 426 427 rx_queue = efx_channel_get_rx_queue(channel); 428 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 429 return; 430 } 431 432 if (efx->net_dev->features & NETIF_F_RXHASH) 433 skb_set_hash(skb, efx_rx_buf_hash(efx, eh), 434 PKT_HASH_TYPE_L3); 435 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 436 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 437 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 438 439 for (;;) { 440 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 441 rx_buf->page, rx_buf->page_offset, 442 rx_buf->len); 443 rx_buf->page = NULL; 444 skb->len += rx_buf->len; 445 if (skb_shinfo(skb)->nr_frags == n_frags) 446 break; 447 448 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 449 } 450 451 skb->data_len = skb->len; 452 skb->truesize += n_frags * efx->rx_buffer_truesize; 453 454 skb_record_rx_queue(skb, channel->rx_queue.core_index); 455 456 gro_result = napi_gro_frags(napi); 457 if (gro_result != GRO_DROP) 458 channel->irq_mod_score += 2; 459 } 460 461 /* Allocate and construct an SKB around page fragments */ 462 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel, 463 struct efx_rx_buffer *rx_buf, 464 unsigned int n_frags, 465 u8 *eh, int hdr_len) 466 { 467 struct efx_nic *efx = channel->efx; 468 struct sk_buff *skb; 469 470 /* Allocate an SKB to store the headers */ 471 skb = netdev_alloc_skb(efx->net_dev, 472 efx->rx_ip_align + efx->rx_prefix_size + 473 hdr_len); 474 if (unlikely(skb == NULL)) { 475 atomic_inc(&efx->n_rx_noskb_drops); 476 return NULL; 477 } 478 479 EFX_WARN_ON_ONCE_PARANOID(rx_buf->len < hdr_len); 480 481 memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size, 482 efx->rx_prefix_size + hdr_len); 483 skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size); 484 __skb_put(skb, hdr_len); 485 486 /* Append the remaining page(s) onto the frag list */ 487 if (rx_buf->len > hdr_len) { 488 rx_buf->page_offset += hdr_len; 489 rx_buf->len -= hdr_len; 490 491 for (;;) { 492 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 493 rx_buf->page, rx_buf->page_offset, 494 rx_buf->len); 495 rx_buf->page = NULL; 496 skb->len += rx_buf->len; 497 skb->data_len += rx_buf->len; 498 if (skb_shinfo(skb)->nr_frags == n_frags) 499 break; 500 501 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 502 } 503 } else { 504 __free_pages(rx_buf->page, efx->rx_buffer_order); 505 rx_buf->page = NULL; 506 n_frags = 0; 507 } 508 509 skb->truesize += n_frags * efx->rx_buffer_truesize; 510 511 /* Move past the ethernet header */ 512 skb->protocol = eth_type_trans(skb, efx->net_dev); 513 514 skb_mark_napi_id(skb, &channel->napi_str); 515 516 return skb; 517 } 518 519 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, 520 unsigned int n_frags, unsigned int len, u16 flags) 521 { 522 struct efx_nic *efx = rx_queue->efx; 523 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 524 struct efx_rx_buffer *rx_buf; 525 526 rx_queue->rx_packets++; 527 528 rx_buf = efx_rx_buffer(rx_queue, index); 529 rx_buf->flags |= flags; 530 531 /* Validate the number of fragments and completed length */ 532 if (n_frags == 1) { 533 if (!(flags & EFX_RX_PKT_PREFIX_LEN)) 534 efx_rx_packet__check_len(rx_queue, rx_buf, len); 535 } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) || 536 unlikely(len <= (n_frags - 1) * efx->rx_dma_len) || 537 unlikely(len > n_frags * efx->rx_dma_len) || 538 unlikely(!efx->rx_scatter)) { 539 /* If this isn't an explicit discard request, either 540 * the hardware or the driver is broken. 541 */ 542 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD)); 543 rx_buf->flags |= EFX_RX_PKT_DISCARD; 544 } 545 546 netif_vdbg(efx, rx_status, efx->net_dev, 547 "RX queue %d received ids %x-%x len %d %s%s\n", 548 efx_rx_queue_index(rx_queue), index, 549 (index + n_frags - 1) & rx_queue->ptr_mask, len, 550 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "", 551 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : ""); 552 553 /* Discard packet, if instructed to do so. Process the 554 * previous receive first. 555 */ 556 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) { 557 efx_rx_flush_packet(channel); 558 efx_discard_rx_packet(channel, rx_buf, n_frags); 559 return; 560 } 561 562 if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN)) 563 rx_buf->len = len; 564 565 /* Release and/or sync the DMA mapping - assumes all RX buffers 566 * consumed in-order per RX queue. 567 */ 568 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); 569 570 /* Prefetch nice and early so data will (hopefully) be in cache by 571 * the time we look at it. 572 */ 573 prefetch(efx_rx_buf_va(rx_buf)); 574 575 rx_buf->page_offset += efx->rx_prefix_size; 576 rx_buf->len -= efx->rx_prefix_size; 577 578 if (n_frags > 1) { 579 /* Release/sync DMA mapping for additional fragments. 580 * Fix length for last fragment. 581 */ 582 unsigned int tail_frags = n_frags - 1; 583 584 for (;;) { 585 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 586 if (--tail_frags == 0) 587 break; 588 efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len); 589 } 590 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len; 591 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); 592 } 593 594 /* All fragments have been DMA-synced, so recycle pages. */ 595 rx_buf = efx_rx_buffer(rx_queue, index); 596 efx_recycle_rx_pages(channel, rx_buf, n_frags); 597 598 /* Pipeline receives so that we give time for packet headers to be 599 * prefetched into cache. 600 */ 601 efx_rx_flush_packet(channel); 602 channel->rx_pkt_n_frags = n_frags; 603 channel->rx_pkt_index = index; 604 } 605 606 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh, 607 struct efx_rx_buffer *rx_buf, 608 unsigned int n_frags) 609 { 610 struct sk_buff *skb; 611 u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS); 612 613 skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len); 614 if (unlikely(skb == NULL)) { 615 struct efx_rx_queue *rx_queue; 616 617 rx_queue = efx_channel_get_rx_queue(channel); 618 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 619 return; 620 } 621 skb_record_rx_queue(skb, channel->rx_queue.core_index); 622 623 /* Set the SKB flags */ 624 skb_checksum_none_assert(skb); 625 if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) { 626 skb->ip_summed = CHECKSUM_UNNECESSARY; 627 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 628 } 629 630 efx_rx_skb_attach_timestamp(channel, skb); 631 632 if (channel->type->receive_skb) 633 if (channel->type->receive_skb(channel, skb)) 634 return; 635 636 /* Pass the packet up */ 637 if (channel->rx_list != NULL) 638 /* Add to list, will pass up later */ 639 list_add_tail(&skb->list, channel->rx_list); 640 else 641 /* No list, so pass it up now */ 642 netif_receive_skb(skb); 643 } 644 645 /* Handle a received packet. Second half: Touches packet payload. */ 646 void __efx_rx_packet(struct efx_channel *channel) 647 { 648 struct efx_nic *efx = channel->efx; 649 struct efx_rx_buffer *rx_buf = 650 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index); 651 u8 *eh = efx_rx_buf_va(rx_buf); 652 653 /* Read length from the prefix if necessary. This already 654 * excludes the length of the prefix itself. 655 */ 656 if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN) 657 rx_buf->len = le16_to_cpup((__le16 *) 658 (eh + efx->rx_packet_len_offset)); 659 660 /* If we're in loopback test, then pass the packet directly to the 661 * loopback layer, and free the rx_buf here 662 */ 663 if (unlikely(efx->loopback_selftest)) { 664 struct efx_rx_queue *rx_queue; 665 666 efx_loopback_rx_packet(efx, eh, rx_buf->len); 667 rx_queue = efx_channel_get_rx_queue(channel); 668 efx_free_rx_buffers(rx_queue, rx_buf, 669 channel->rx_pkt_n_frags); 670 goto out; 671 } 672 673 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) 674 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED; 675 676 if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb) 677 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh); 678 else 679 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags); 680 out: 681 channel->rx_pkt_n_frags = 0; 682 } 683 684 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 685 { 686 struct efx_nic *efx = rx_queue->efx; 687 unsigned int entries; 688 int rc; 689 690 /* Create the smallest power-of-two aligned ring */ 691 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 692 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 693 rx_queue->ptr_mask = entries - 1; 694 695 netif_dbg(efx, probe, efx->net_dev, 696 "creating RX queue %d size %#x mask %#x\n", 697 efx_rx_queue_index(rx_queue), efx->rxq_entries, 698 rx_queue->ptr_mask); 699 700 /* Allocate RX buffers */ 701 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 702 GFP_KERNEL); 703 if (!rx_queue->buffer) 704 return -ENOMEM; 705 706 rc = efx_nic_probe_rx(rx_queue); 707 if (rc) { 708 kfree(rx_queue->buffer); 709 rx_queue->buffer = NULL; 710 } 711 712 return rc; 713 } 714 715 static void efx_init_rx_recycle_ring(struct efx_nic *efx, 716 struct efx_rx_queue *rx_queue) 717 { 718 unsigned int bufs_in_recycle_ring, page_ring_size; 719 720 /* Set the RX recycle ring size */ 721 #ifdef CONFIG_PPC64 722 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 723 #else 724 if (iommu_present(&pci_bus_type)) 725 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 726 else 727 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; 728 #endif /* CONFIG_PPC64 */ 729 730 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / 731 efx->rx_bufs_per_page); 732 rx_queue->page_ring = kcalloc(page_ring_size, 733 sizeof(*rx_queue->page_ring), GFP_KERNEL); 734 rx_queue->page_ptr_mask = page_ring_size - 1; 735 } 736 737 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 738 { 739 struct efx_nic *efx = rx_queue->efx; 740 unsigned int max_fill, trigger, max_trigger; 741 742 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 743 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 744 745 /* Initialise ptr fields */ 746 rx_queue->added_count = 0; 747 rx_queue->notified_count = 0; 748 rx_queue->removed_count = 0; 749 rx_queue->min_fill = -1U; 750 efx_init_rx_recycle_ring(efx, rx_queue); 751 752 rx_queue->page_remove = 0; 753 rx_queue->page_add = rx_queue->page_ptr_mask + 1; 754 rx_queue->page_recycle_count = 0; 755 rx_queue->page_recycle_failed = 0; 756 rx_queue->page_recycle_full = 0; 757 758 /* Initialise limit fields */ 759 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 760 max_trigger = 761 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; 762 if (rx_refill_threshold != 0) { 763 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 764 if (trigger > max_trigger) 765 trigger = max_trigger; 766 } else { 767 trigger = max_trigger; 768 } 769 770 rx_queue->max_fill = max_fill; 771 rx_queue->fast_fill_trigger = trigger; 772 rx_queue->refill_enabled = true; 773 774 /* Set up RX descriptor ring */ 775 efx_nic_init_rx(rx_queue); 776 } 777 778 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 779 { 780 int i; 781 struct efx_nic *efx = rx_queue->efx; 782 struct efx_rx_buffer *rx_buf; 783 784 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 785 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 786 787 del_timer_sync(&rx_queue->slow_fill); 788 789 /* Release RX buffers from the current read ptr to the write ptr */ 790 if (rx_queue->buffer) { 791 for (i = rx_queue->removed_count; i < rx_queue->added_count; 792 i++) { 793 unsigned index = i & rx_queue->ptr_mask; 794 rx_buf = efx_rx_buffer(rx_queue, index); 795 efx_fini_rx_buffer(rx_queue, rx_buf); 796 } 797 } 798 799 /* Unmap and release the pages in the recycle ring. Remove the ring. */ 800 for (i = 0; i <= rx_queue->page_ptr_mask; i++) { 801 struct page *page = rx_queue->page_ring[i]; 802 struct efx_rx_page_state *state; 803 804 if (page == NULL) 805 continue; 806 807 state = page_address(page); 808 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 809 PAGE_SIZE << efx->rx_buffer_order, 810 DMA_FROM_DEVICE); 811 put_page(page); 812 } 813 kfree(rx_queue->page_ring); 814 rx_queue->page_ring = NULL; 815 } 816 817 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 818 { 819 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 820 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 821 822 efx_nic_remove_rx(rx_queue); 823 824 kfree(rx_queue->buffer); 825 rx_queue->buffer = NULL; 826 } 827 828 829 module_param(rx_refill_threshold, uint, 0444); 830 MODULE_PARM_DESC(rx_refill_threshold, 831 "RX descriptor ring refill threshold (%)"); 832 833 #ifdef CONFIG_RFS_ACCEL 834 835 static void efx_filter_rfs_work(struct work_struct *data) 836 { 837 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, 838 work); 839 struct efx_nic *efx = netdev_priv(req->net_dev); 840 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); 841 int slot_idx = req - efx->rps_slot; 842 struct efx_arfs_rule *rule; 843 u16 arfs_id = 0; 844 int rc; 845 846 rc = efx->type->filter_insert(efx, &req->spec, true); 847 if (rc >= 0) 848 rc %= efx->type->max_rx_ip_filters; 849 if (efx->rps_hash_table) { 850 spin_lock_bh(&efx->rps_hash_lock); 851 rule = efx_rps_hash_find(efx, &req->spec); 852 /* The rule might have already gone, if someone else's request 853 * for the same spec was already worked and then expired before 854 * we got around to our work. In that case we have nothing 855 * tying us to an arfs_id, meaning that as soon as the filter 856 * is considered for expiry it will be removed. 857 */ 858 if (rule) { 859 if (rc < 0) 860 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; 861 else 862 rule->filter_id = rc; 863 arfs_id = rule->arfs_id; 864 } 865 spin_unlock_bh(&efx->rps_hash_lock); 866 } 867 if (rc >= 0) { 868 /* Remember this so we can check whether to expire the filter 869 * later. 870 */ 871 mutex_lock(&efx->rps_mutex); 872 channel->rps_flow_id[rc] = req->flow_id; 873 ++channel->rfs_filters_added; 874 mutex_unlock(&efx->rps_mutex); 875 876 if (req->spec.ether_type == htons(ETH_P_IP)) 877 netif_info(efx, rx_status, efx->net_dev, 878 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", 879 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 880 req->spec.rem_host, ntohs(req->spec.rem_port), 881 req->spec.loc_host, ntohs(req->spec.loc_port), 882 req->rxq_index, req->flow_id, rc, arfs_id); 883 else 884 netif_info(efx, rx_status, efx->net_dev, 885 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", 886 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 887 req->spec.rem_host, ntohs(req->spec.rem_port), 888 req->spec.loc_host, ntohs(req->spec.loc_port), 889 req->rxq_index, req->flow_id, rc, arfs_id); 890 } 891 892 /* Release references */ 893 clear_bit(slot_idx, &efx->rps_slot_map); 894 dev_put(req->net_dev); 895 } 896 897 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, 898 u16 rxq_index, u32 flow_id) 899 { 900 struct efx_nic *efx = netdev_priv(net_dev); 901 struct efx_async_filter_insertion *req; 902 struct efx_arfs_rule *rule; 903 struct flow_keys fk; 904 int slot_idx; 905 bool new; 906 int rc; 907 908 /* find a free slot */ 909 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) 910 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) 911 break; 912 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) 913 return -EBUSY; 914 915 if (flow_id == RPS_FLOW_ID_INVALID) { 916 rc = -EINVAL; 917 goto out_clear; 918 } 919 920 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { 921 rc = -EPROTONOSUPPORT; 922 goto out_clear; 923 } 924 925 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { 926 rc = -EPROTONOSUPPORT; 927 goto out_clear; 928 } 929 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { 930 rc = -EPROTONOSUPPORT; 931 goto out_clear; 932 } 933 934 req = efx->rps_slot + slot_idx; 935 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, 936 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, 937 rxq_index); 938 req->spec.match_flags = 939 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 940 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 941 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; 942 req->spec.ether_type = fk.basic.n_proto; 943 req->spec.ip_proto = fk.basic.ip_proto; 944 945 if (fk.basic.n_proto == htons(ETH_P_IP)) { 946 req->spec.rem_host[0] = fk.addrs.v4addrs.src; 947 req->spec.loc_host[0] = fk.addrs.v4addrs.dst; 948 } else { 949 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, 950 sizeof(struct in6_addr)); 951 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, 952 sizeof(struct in6_addr)); 953 } 954 955 req->spec.rem_port = fk.ports.src; 956 req->spec.loc_port = fk.ports.dst; 957 958 if (efx->rps_hash_table) { 959 /* Add it to ARFS hash table */ 960 spin_lock(&efx->rps_hash_lock); 961 rule = efx_rps_hash_add(efx, &req->spec, &new); 962 if (!rule) { 963 rc = -ENOMEM; 964 goto out_unlock; 965 } 966 if (new) 967 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; 968 rc = rule->arfs_id; 969 /* Skip if existing or pending filter already does the right thing */ 970 if (!new && rule->rxq_index == rxq_index && 971 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) 972 goto out_unlock; 973 rule->rxq_index = rxq_index; 974 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; 975 spin_unlock(&efx->rps_hash_lock); 976 } else { 977 /* Without an ARFS hash table, we just use arfs_id 0 for all 978 * filters. This means if multiple flows hash to the same 979 * flow_id, all but the most recently touched will be eligible 980 * for expiry. 981 */ 982 rc = 0; 983 } 984 985 /* Queue the request */ 986 dev_hold(req->net_dev = net_dev); 987 INIT_WORK(&req->work, efx_filter_rfs_work); 988 req->rxq_index = rxq_index; 989 req->flow_id = flow_id; 990 schedule_work(&req->work); 991 return rc; 992 out_unlock: 993 spin_unlock(&efx->rps_hash_lock); 994 out_clear: 995 clear_bit(slot_idx, &efx->rps_slot_map); 996 return rc; 997 } 998 999 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota) 1000 { 1001 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); 1002 unsigned int channel_idx, index, size; 1003 u32 flow_id; 1004 1005 if (!mutex_trylock(&efx->rps_mutex)) 1006 return false; 1007 expire_one = efx->type->filter_rfs_expire_one; 1008 channel_idx = efx->rps_expire_channel; 1009 index = efx->rps_expire_index; 1010 size = efx->type->max_rx_ip_filters; 1011 while (quota--) { 1012 struct efx_channel *channel = efx_get_channel(efx, channel_idx); 1013 flow_id = channel->rps_flow_id[index]; 1014 1015 if (flow_id != RPS_FLOW_ID_INVALID && 1016 expire_one(efx, flow_id, index)) { 1017 netif_info(efx, rx_status, efx->net_dev, 1018 "expired filter %d [queue %u flow %u]\n", 1019 index, channel_idx, flow_id); 1020 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; 1021 } 1022 if (++index == size) { 1023 if (++channel_idx == efx->n_channels) 1024 channel_idx = 0; 1025 index = 0; 1026 } 1027 } 1028 efx->rps_expire_channel = channel_idx; 1029 efx->rps_expire_index = index; 1030 1031 mutex_unlock(&efx->rps_mutex); 1032 return true; 1033 } 1034 1035 #endif /* CONFIG_RFS_ACCEL */ 1036 1037 /** 1038 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient 1039 * @spec: Specification to test 1040 * 1041 * Return: %true if the specification is a non-drop RX filter that 1042 * matches a local MAC address I/G bit value of 1 or matches a local 1043 * IPv4 or IPv6 address value in the respective multicast address 1044 * range. Otherwise %false. 1045 */ 1046 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) 1047 { 1048 if (!(spec->flags & EFX_FILTER_FLAG_RX) || 1049 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) 1050 return false; 1051 1052 if (spec->match_flags & 1053 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && 1054 is_multicast_ether_addr(spec->loc_mac)) 1055 return true; 1056 1057 if ((spec->match_flags & 1058 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 1059 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 1060 if (spec->ether_type == htons(ETH_P_IP) && 1061 ipv4_is_multicast(spec->loc_host[0])) 1062 return true; 1063 if (spec->ether_type == htons(ETH_P_IPV6) && 1064 ((const u8 *)spec->loc_host)[0] == 0xff) 1065 return true; 1066 } 1067 1068 return false; 1069 } 1070