1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/socket.h> 12 #include <linux/in.h> 13 #include <linux/slab.h> 14 #include <linux/ip.h> 15 #include <linux/ipv6.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/prefetch.h> 19 #include <linux/moduleparam.h> 20 #include <linux/iommu.h> 21 #include <net/ip.h> 22 #include <net/checksum.h> 23 #include "net_driver.h" 24 #include "efx.h" 25 #include "filter.h" 26 #include "nic.h" 27 #include "selftest.h" 28 #include "workarounds.h" 29 30 /* Preferred number of descriptors to fill at once */ 31 #define EFX_RX_PREFERRED_BATCH 8U 32 33 /* Number of RX buffers to recycle pages for. When creating the RX page recycle 34 * ring, this number is divided by the number of buffers per page to calculate 35 * the number of pages to store in the RX page recycle ring. 36 */ 37 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 38 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) 39 40 /* Size of buffer allocated for skb header area. */ 41 #define EFX_SKB_HEADERS 128u 42 43 /* This is the percentage fill level below which new RX descriptors 44 * will be added to the RX descriptor ring. 45 */ 46 static unsigned int rx_refill_threshold; 47 48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */ 49 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \ 50 EFX_RX_USR_BUF_SIZE) 51 52 /* 53 * RX maximum head room required. 54 * 55 * This must be at least 1 to prevent overflow, plus one packet-worth 56 * to allow pipelined receives. 57 */ 58 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) 59 60 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf) 61 { 62 return page_address(buf->page) + buf->page_offset; 63 } 64 65 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh) 66 { 67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 68 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset)); 69 #else 70 const u8 *data = eh + efx->rx_packet_hash_offset; 71 return (u32)data[0] | 72 (u32)data[1] << 8 | 73 (u32)data[2] << 16 | 74 (u32)data[3] << 24; 75 #endif 76 } 77 78 static inline struct efx_rx_buffer * 79 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) 80 { 81 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) 82 return efx_rx_buffer(rx_queue, 0); 83 else 84 return rx_buf + 1; 85 } 86 87 static inline void efx_sync_rx_buffer(struct efx_nic *efx, 88 struct efx_rx_buffer *rx_buf, 89 unsigned int len) 90 { 91 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len, 92 DMA_FROM_DEVICE); 93 } 94 95 void efx_rx_config_page_split(struct efx_nic *efx) 96 { 97 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align, 98 EFX_RX_BUF_ALIGNMENT); 99 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : 100 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / 101 efx->rx_page_buf_step); 102 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / 103 efx->rx_bufs_per_page; 104 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, 105 efx->rx_bufs_per_page); 106 } 107 108 /* Check the RX page recycle ring for a page that can be reused. */ 109 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) 110 { 111 struct efx_nic *efx = rx_queue->efx; 112 struct page *page; 113 struct efx_rx_page_state *state; 114 unsigned index; 115 116 index = rx_queue->page_remove & rx_queue->page_ptr_mask; 117 page = rx_queue->page_ring[index]; 118 if (page == NULL) 119 return NULL; 120 121 rx_queue->page_ring[index] = NULL; 122 /* page_remove cannot exceed page_add. */ 123 if (rx_queue->page_remove != rx_queue->page_add) 124 ++rx_queue->page_remove; 125 126 /* If page_count is 1 then we hold the only reference to this page. */ 127 if (page_count(page) == 1) { 128 ++rx_queue->page_recycle_count; 129 return page; 130 } else { 131 state = page_address(page); 132 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 133 PAGE_SIZE << efx->rx_buffer_order, 134 DMA_FROM_DEVICE); 135 put_page(page); 136 ++rx_queue->page_recycle_failed; 137 } 138 139 return NULL; 140 } 141 142 /** 143 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers 144 * 145 * @rx_queue: Efx RX queue 146 * 147 * This allocates a batch of pages, maps them for DMA, and populates 148 * struct efx_rx_buffers for each one. Return a negative error code or 149 * 0 on success. If a single page can be used for multiple buffers, 150 * then the page will either be inserted fully, or not at all. 151 */ 152 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) 153 { 154 struct efx_nic *efx = rx_queue->efx; 155 struct efx_rx_buffer *rx_buf; 156 struct page *page; 157 unsigned int page_offset; 158 struct efx_rx_page_state *state; 159 dma_addr_t dma_addr; 160 unsigned index, count; 161 162 count = 0; 163 do { 164 page = efx_reuse_page(rx_queue); 165 if (page == NULL) { 166 page = alloc_pages(__GFP_COLD | __GFP_COMP | 167 (atomic ? GFP_ATOMIC : GFP_KERNEL), 168 efx->rx_buffer_order); 169 if (unlikely(page == NULL)) 170 return -ENOMEM; 171 dma_addr = 172 dma_map_page(&efx->pci_dev->dev, page, 0, 173 PAGE_SIZE << efx->rx_buffer_order, 174 DMA_FROM_DEVICE); 175 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, 176 dma_addr))) { 177 __free_pages(page, efx->rx_buffer_order); 178 return -EIO; 179 } 180 state = page_address(page); 181 state->dma_addr = dma_addr; 182 } else { 183 state = page_address(page); 184 dma_addr = state->dma_addr; 185 } 186 187 dma_addr += sizeof(struct efx_rx_page_state); 188 page_offset = sizeof(struct efx_rx_page_state); 189 190 do { 191 index = rx_queue->added_count & rx_queue->ptr_mask; 192 rx_buf = efx_rx_buffer(rx_queue, index); 193 rx_buf->dma_addr = dma_addr + efx->rx_ip_align; 194 rx_buf->page = page; 195 rx_buf->page_offset = page_offset + efx->rx_ip_align; 196 rx_buf->len = efx->rx_dma_len; 197 rx_buf->flags = 0; 198 ++rx_queue->added_count; 199 get_page(page); 200 dma_addr += efx->rx_page_buf_step; 201 page_offset += efx->rx_page_buf_step; 202 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); 203 204 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; 205 } while (++count < efx->rx_pages_per_batch); 206 207 return 0; 208 } 209 210 /* Unmap a DMA-mapped page. This function is only called for the final RX 211 * buffer in a page. 212 */ 213 static void efx_unmap_rx_buffer(struct efx_nic *efx, 214 struct efx_rx_buffer *rx_buf) 215 { 216 struct page *page = rx_buf->page; 217 218 if (page) { 219 struct efx_rx_page_state *state = page_address(page); 220 dma_unmap_page(&efx->pci_dev->dev, 221 state->dma_addr, 222 PAGE_SIZE << efx->rx_buffer_order, 223 DMA_FROM_DEVICE); 224 } 225 } 226 227 static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf) 228 { 229 if (rx_buf->page) { 230 put_page(rx_buf->page); 231 rx_buf->page = NULL; 232 } 233 } 234 235 /* Attempt to recycle the page if there is an RX recycle ring; the page can 236 * only be added if this is the final RX buffer, to prevent pages being used in 237 * the descriptor ring and appearing in the recycle ring simultaneously. 238 */ 239 static void efx_recycle_rx_page(struct efx_channel *channel, 240 struct efx_rx_buffer *rx_buf) 241 { 242 struct page *page = rx_buf->page; 243 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 244 struct efx_nic *efx = rx_queue->efx; 245 unsigned index; 246 247 /* Only recycle the page after processing the final buffer. */ 248 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) 249 return; 250 251 index = rx_queue->page_add & rx_queue->page_ptr_mask; 252 if (rx_queue->page_ring[index] == NULL) { 253 unsigned read_index = rx_queue->page_remove & 254 rx_queue->page_ptr_mask; 255 256 /* The next slot in the recycle ring is available, but 257 * increment page_remove if the read pointer currently 258 * points here. 259 */ 260 if (read_index == index) 261 ++rx_queue->page_remove; 262 rx_queue->page_ring[index] = page; 263 ++rx_queue->page_add; 264 return; 265 } 266 ++rx_queue->page_recycle_full; 267 efx_unmap_rx_buffer(efx, rx_buf); 268 put_page(rx_buf->page); 269 } 270 271 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 272 struct efx_rx_buffer *rx_buf) 273 { 274 /* Release the page reference we hold for the buffer. */ 275 if (rx_buf->page) 276 put_page(rx_buf->page); 277 278 /* If this is the last buffer in a page, unmap and free it. */ 279 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { 280 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 281 efx_free_rx_buffer(rx_buf); 282 } 283 rx_buf->page = NULL; 284 } 285 286 /* Recycle the pages that are used by buffers that have just been received. */ 287 static void efx_recycle_rx_pages(struct efx_channel *channel, 288 struct efx_rx_buffer *rx_buf, 289 unsigned int n_frags) 290 { 291 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 292 293 do { 294 efx_recycle_rx_page(channel, rx_buf); 295 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 296 } while (--n_frags); 297 } 298 299 static void efx_discard_rx_packet(struct efx_channel *channel, 300 struct efx_rx_buffer *rx_buf, 301 unsigned int n_frags) 302 { 303 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 304 305 efx_recycle_rx_pages(channel, rx_buf, n_frags); 306 307 do { 308 efx_free_rx_buffer(rx_buf); 309 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 310 } while (--n_frags); 311 } 312 313 /** 314 * efx_fast_push_rx_descriptors - push new RX descriptors quickly 315 * @rx_queue: RX descriptor queue 316 * 317 * This will aim to fill the RX descriptor queue up to 318 * @rx_queue->@max_fill. If there is insufficient atomic 319 * memory to do so, a slow fill will be scheduled. 320 * 321 * The caller must provide serialisation (none is used here). In practise, 322 * this means this function must run from the NAPI handler, or be called 323 * when NAPI is disabled. 324 */ 325 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) 326 { 327 struct efx_nic *efx = rx_queue->efx; 328 unsigned int fill_level, batch_size; 329 int space, rc = 0; 330 331 if (!rx_queue->refill_enabled) 332 return; 333 334 /* Calculate current fill level, and exit if we don't need to fill */ 335 fill_level = (rx_queue->added_count - rx_queue->removed_count); 336 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); 337 if (fill_level >= rx_queue->fast_fill_trigger) 338 goto out; 339 340 /* Record minimum fill level */ 341 if (unlikely(fill_level < rx_queue->min_fill)) { 342 if (fill_level) 343 rx_queue->min_fill = fill_level; 344 } 345 346 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; 347 space = rx_queue->max_fill - fill_level; 348 EFX_BUG_ON_PARANOID(space < batch_size); 349 350 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 351 "RX queue %d fast-filling descriptor ring from" 352 " level %d to level %d\n", 353 efx_rx_queue_index(rx_queue), fill_level, 354 rx_queue->max_fill); 355 356 357 do { 358 rc = efx_init_rx_buffers(rx_queue, atomic); 359 if (unlikely(rc)) { 360 /* Ensure that we don't leave the rx queue empty */ 361 if (rx_queue->added_count == rx_queue->removed_count) 362 efx_schedule_slow_fill(rx_queue); 363 goto out; 364 } 365 } while ((space -= batch_size) >= batch_size); 366 367 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 368 "RX queue %d fast-filled descriptor ring " 369 "to level %d\n", efx_rx_queue_index(rx_queue), 370 rx_queue->added_count - rx_queue->removed_count); 371 372 out: 373 if (rx_queue->notified_count != rx_queue->added_count) 374 efx_nic_notify_rx_desc(rx_queue); 375 } 376 377 void efx_rx_slow_fill(unsigned long context) 378 { 379 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context; 380 381 /* Post an event to cause NAPI to run and refill the queue */ 382 efx_nic_generate_fill_event(rx_queue); 383 ++rx_queue->slow_fill_count; 384 } 385 386 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, 387 struct efx_rx_buffer *rx_buf, 388 int len) 389 { 390 struct efx_nic *efx = rx_queue->efx; 391 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; 392 393 if (likely(len <= max_len)) 394 return; 395 396 /* The packet must be discarded, but this is only a fatal error 397 * if the caller indicated it was 398 */ 399 rx_buf->flags |= EFX_RX_PKT_DISCARD; 400 401 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { 402 if (net_ratelimit()) 403 netif_err(efx, rx_err, efx->net_dev, 404 " RX queue %d seriously overlength " 405 "RX event (0x%x > 0x%x+0x%x). Leaking\n", 406 efx_rx_queue_index(rx_queue), len, max_len, 407 efx->type->rx_buffer_padding); 408 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); 409 } else { 410 if (net_ratelimit()) 411 netif_err(efx, rx_err, efx->net_dev, 412 " RX queue %d overlength RX event " 413 "(0x%x > 0x%x)\n", 414 efx_rx_queue_index(rx_queue), len, max_len); 415 } 416 417 efx_rx_queue_channel(rx_queue)->n_rx_overlength++; 418 } 419 420 /* Pass a received packet up through GRO. GRO can handle pages 421 * regardless of checksum state and skbs with a good checksum. 422 */ 423 static void 424 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, 425 unsigned int n_frags, u8 *eh) 426 { 427 struct napi_struct *napi = &channel->napi_str; 428 gro_result_t gro_result; 429 struct efx_nic *efx = channel->efx; 430 struct sk_buff *skb; 431 432 skb = napi_get_frags(napi); 433 if (unlikely(!skb)) { 434 while (n_frags--) { 435 put_page(rx_buf->page); 436 rx_buf->page = NULL; 437 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 438 } 439 return; 440 } 441 442 if (efx->net_dev->features & NETIF_F_RXHASH) 443 skb_set_hash(skb, efx_rx_buf_hash(efx, eh), 444 PKT_HASH_TYPE_L3); 445 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 446 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 447 448 for (;;) { 449 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 450 rx_buf->page, rx_buf->page_offset, 451 rx_buf->len); 452 rx_buf->page = NULL; 453 skb->len += rx_buf->len; 454 if (skb_shinfo(skb)->nr_frags == n_frags) 455 break; 456 457 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 458 } 459 460 skb->data_len = skb->len; 461 skb->truesize += n_frags * efx->rx_buffer_truesize; 462 463 skb_record_rx_queue(skb, channel->rx_queue.core_index); 464 465 gro_result = napi_gro_frags(napi); 466 if (gro_result != GRO_DROP) 467 channel->irq_mod_score += 2; 468 } 469 470 /* Allocate and construct an SKB around page fragments */ 471 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel, 472 struct efx_rx_buffer *rx_buf, 473 unsigned int n_frags, 474 u8 *eh, int hdr_len) 475 { 476 struct efx_nic *efx = channel->efx; 477 struct sk_buff *skb; 478 479 /* Allocate an SKB to store the headers */ 480 skb = netdev_alloc_skb(efx->net_dev, 481 efx->rx_ip_align + efx->rx_prefix_size + 482 hdr_len); 483 if (unlikely(skb == NULL)) 484 return NULL; 485 486 EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len); 487 488 memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size, 489 efx->rx_prefix_size + hdr_len); 490 skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size); 491 __skb_put(skb, hdr_len); 492 493 /* Append the remaining page(s) onto the frag list */ 494 if (rx_buf->len > hdr_len) { 495 rx_buf->page_offset += hdr_len; 496 rx_buf->len -= hdr_len; 497 498 for (;;) { 499 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 500 rx_buf->page, rx_buf->page_offset, 501 rx_buf->len); 502 rx_buf->page = NULL; 503 skb->len += rx_buf->len; 504 skb->data_len += rx_buf->len; 505 if (skb_shinfo(skb)->nr_frags == n_frags) 506 break; 507 508 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 509 } 510 } else { 511 __free_pages(rx_buf->page, efx->rx_buffer_order); 512 rx_buf->page = NULL; 513 n_frags = 0; 514 } 515 516 skb->truesize += n_frags * efx->rx_buffer_truesize; 517 518 /* Move past the ethernet header */ 519 skb->protocol = eth_type_trans(skb, efx->net_dev); 520 521 return skb; 522 } 523 524 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, 525 unsigned int n_frags, unsigned int len, u16 flags) 526 { 527 struct efx_nic *efx = rx_queue->efx; 528 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 529 struct efx_rx_buffer *rx_buf; 530 531 rx_buf = efx_rx_buffer(rx_queue, index); 532 rx_buf->flags |= flags; 533 534 /* Validate the number of fragments and completed length */ 535 if (n_frags == 1) { 536 if (!(flags & EFX_RX_PKT_PREFIX_LEN)) 537 efx_rx_packet__check_len(rx_queue, rx_buf, len); 538 } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) || 539 unlikely(len <= (n_frags - 1) * efx->rx_dma_len) || 540 unlikely(len > n_frags * efx->rx_dma_len) || 541 unlikely(!efx->rx_scatter)) { 542 /* If this isn't an explicit discard request, either 543 * the hardware or the driver is broken. 544 */ 545 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD)); 546 rx_buf->flags |= EFX_RX_PKT_DISCARD; 547 } 548 549 netif_vdbg(efx, rx_status, efx->net_dev, 550 "RX queue %d received ids %x-%x len %d %s%s\n", 551 efx_rx_queue_index(rx_queue), index, 552 (index + n_frags - 1) & rx_queue->ptr_mask, len, 553 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "", 554 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : ""); 555 556 /* Discard packet, if instructed to do so. Process the 557 * previous receive first. 558 */ 559 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) { 560 efx_rx_flush_packet(channel); 561 efx_discard_rx_packet(channel, rx_buf, n_frags); 562 return; 563 } 564 565 if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN)) 566 rx_buf->len = len; 567 568 /* Release and/or sync the DMA mapping - assumes all RX buffers 569 * consumed in-order per RX queue. 570 */ 571 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); 572 573 /* Prefetch nice and early so data will (hopefully) be in cache by 574 * the time we look at it. 575 */ 576 prefetch(efx_rx_buf_va(rx_buf)); 577 578 rx_buf->page_offset += efx->rx_prefix_size; 579 rx_buf->len -= efx->rx_prefix_size; 580 581 if (n_frags > 1) { 582 /* Release/sync DMA mapping for additional fragments. 583 * Fix length for last fragment. 584 */ 585 unsigned int tail_frags = n_frags - 1; 586 587 for (;;) { 588 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 589 if (--tail_frags == 0) 590 break; 591 efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len); 592 } 593 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len; 594 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); 595 } 596 597 /* All fragments have been DMA-synced, so recycle pages. */ 598 rx_buf = efx_rx_buffer(rx_queue, index); 599 efx_recycle_rx_pages(channel, rx_buf, n_frags); 600 601 /* Pipeline receives so that we give time for packet headers to be 602 * prefetched into cache. 603 */ 604 efx_rx_flush_packet(channel); 605 channel->rx_pkt_n_frags = n_frags; 606 channel->rx_pkt_index = index; 607 } 608 609 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh, 610 struct efx_rx_buffer *rx_buf, 611 unsigned int n_frags) 612 { 613 struct sk_buff *skb; 614 u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS); 615 616 skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len); 617 if (unlikely(skb == NULL)) { 618 efx_free_rx_buffer(rx_buf); 619 return; 620 } 621 skb_record_rx_queue(skb, channel->rx_queue.core_index); 622 623 /* Set the SKB flags */ 624 skb_checksum_none_assert(skb); 625 if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) 626 skb->ip_summed = CHECKSUM_UNNECESSARY; 627 628 efx_rx_skb_attach_timestamp(channel, skb); 629 630 if (channel->type->receive_skb) 631 if (channel->type->receive_skb(channel, skb)) 632 return; 633 634 /* Pass the packet up */ 635 netif_receive_skb(skb); 636 } 637 638 /* Handle a received packet. Second half: Touches packet payload. */ 639 void __efx_rx_packet(struct efx_channel *channel) 640 { 641 struct efx_nic *efx = channel->efx; 642 struct efx_rx_buffer *rx_buf = 643 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index); 644 u8 *eh = efx_rx_buf_va(rx_buf); 645 646 /* Read length from the prefix if necessary. This already 647 * excludes the length of the prefix itself. 648 */ 649 if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN) 650 rx_buf->len = le16_to_cpup((__le16 *) 651 (eh + efx->rx_packet_len_offset)); 652 653 /* If we're in loopback test, then pass the packet directly to the 654 * loopback layer, and free the rx_buf here 655 */ 656 if (unlikely(efx->loopback_selftest)) { 657 efx_loopback_rx_packet(efx, eh, rx_buf->len); 658 efx_free_rx_buffer(rx_buf); 659 goto out; 660 } 661 662 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) 663 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED; 664 665 if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb) 666 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh); 667 else 668 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags); 669 out: 670 channel->rx_pkt_n_frags = 0; 671 } 672 673 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 674 { 675 struct efx_nic *efx = rx_queue->efx; 676 unsigned int entries; 677 int rc; 678 679 /* Create the smallest power-of-two aligned ring */ 680 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 681 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 682 rx_queue->ptr_mask = entries - 1; 683 684 netif_dbg(efx, probe, efx->net_dev, 685 "creating RX queue %d size %#x mask %#x\n", 686 efx_rx_queue_index(rx_queue), efx->rxq_entries, 687 rx_queue->ptr_mask); 688 689 /* Allocate RX buffers */ 690 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 691 GFP_KERNEL); 692 if (!rx_queue->buffer) 693 return -ENOMEM; 694 695 rc = efx_nic_probe_rx(rx_queue); 696 if (rc) { 697 kfree(rx_queue->buffer); 698 rx_queue->buffer = NULL; 699 } 700 701 return rc; 702 } 703 704 static void efx_init_rx_recycle_ring(struct efx_nic *efx, 705 struct efx_rx_queue *rx_queue) 706 { 707 unsigned int bufs_in_recycle_ring, page_ring_size; 708 709 /* Set the RX recycle ring size */ 710 #ifdef CONFIG_PPC64 711 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 712 #else 713 if (iommu_present(&pci_bus_type)) 714 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 715 else 716 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; 717 #endif /* CONFIG_PPC64 */ 718 719 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / 720 efx->rx_bufs_per_page); 721 rx_queue->page_ring = kcalloc(page_ring_size, 722 sizeof(*rx_queue->page_ring), GFP_KERNEL); 723 rx_queue->page_ptr_mask = page_ring_size - 1; 724 } 725 726 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 727 { 728 struct efx_nic *efx = rx_queue->efx; 729 unsigned int max_fill, trigger, max_trigger; 730 731 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 732 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 733 734 /* Initialise ptr fields */ 735 rx_queue->added_count = 0; 736 rx_queue->notified_count = 0; 737 rx_queue->removed_count = 0; 738 rx_queue->min_fill = -1U; 739 efx_init_rx_recycle_ring(efx, rx_queue); 740 741 rx_queue->page_remove = 0; 742 rx_queue->page_add = rx_queue->page_ptr_mask + 1; 743 rx_queue->page_recycle_count = 0; 744 rx_queue->page_recycle_failed = 0; 745 rx_queue->page_recycle_full = 0; 746 747 /* Initialise limit fields */ 748 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 749 max_trigger = 750 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; 751 if (rx_refill_threshold != 0) { 752 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 753 if (trigger > max_trigger) 754 trigger = max_trigger; 755 } else { 756 trigger = max_trigger; 757 } 758 759 rx_queue->max_fill = max_fill; 760 rx_queue->fast_fill_trigger = trigger; 761 rx_queue->refill_enabled = true; 762 763 /* Set up RX descriptor ring */ 764 efx_nic_init_rx(rx_queue); 765 } 766 767 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 768 { 769 int i; 770 struct efx_nic *efx = rx_queue->efx; 771 struct efx_rx_buffer *rx_buf; 772 773 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 774 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 775 776 del_timer_sync(&rx_queue->slow_fill); 777 778 /* Release RX buffers from the current read ptr to the write ptr */ 779 if (rx_queue->buffer) { 780 for (i = rx_queue->removed_count; i < rx_queue->added_count; 781 i++) { 782 unsigned index = i & rx_queue->ptr_mask; 783 rx_buf = efx_rx_buffer(rx_queue, index); 784 efx_fini_rx_buffer(rx_queue, rx_buf); 785 } 786 } 787 788 /* Unmap and release the pages in the recycle ring. Remove the ring. */ 789 for (i = 0; i <= rx_queue->page_ptr_mask; i++) { 790 struct page *page = rx_queue->page_ring[i]; 791 struct efx_rx_page_state *state; 792 793 if (page == NULL) 794 continue; 795 796 state = page_address(page); 797 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 798 PAGE_SIZE << efx->rx_buffer_order, 799 DMA_FROM_DEVICE); 800 put_page(page); 801 } 802 kfree(rx_queue->page_ring); 803 rx_queue->page_ring = NULL; 804 } 805 806 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 807 { 808 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 809 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 810 811 efx_nic_remove_rx(rx_queue); 812 813 kfree(rx_queue->buffer); 814 rx_queue->buffer = NULL; 815 } 816 817 818 module_param(rx_refill_threshold, uint, 0444); 819 MODULE_PARM_DESC(rx_refill_threshold, 820 "RX descriptor ring refill threshold (%)"); 821 822 #ifdef CONFIG_RFS_ACCEL 823 824 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, 825 u16 rxq_index, u32 flow_id) 826 { 827 struct efx_nic *efx = netdev_priv(net_dev); 828 struct efx_channel *channel; 829 struct efx_filter_spec spec; 830 const __be16 *ports; 831 __be16 ether_type; 832 int nhoff; 833 int rc; 834 835 /* The core RPS/RFS code has already parsed and validated 836 * VLAN, IP and transport headers. We assume they are in the 837 * header area. 838 */ 839 840 if (skb->protocol == htons(ETH_P_8021Q)) { 841 const struct vlan_hdr *vh = 842 (const struct vlan_hdr *)skb->data; 843 844 /* We can't filter on the IP 5-tuple and the vlan 845 * together, so just strip the vlan header and filter 846 * on the IP part. 847 */ 848 EFX_BUG_ON_PARANOID(skb_headlen(skb) < sizeof(*vh)); 849 ether_type = vh->h_vlan_encapsulated_proto; 850 nhoff = sizeof(struct vlan_hdr); 851 } else { 852 ether_type = skb->protocol; 853 nhoff = 0; 854 } 855 856 if (ether_type != htons(ETH_P_IP) && ether_type != htons(ETH_P_IPV6)) 857 return -EPROTONOSUPPORT; 858 859 efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT, 860 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, 861 rxq_index); 862 spec.match_flags = 863 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 864 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 865 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; 866 spec.ether_type = ether_type; 867 868 if (ether_type == htons(ETH_P_IP)) { 869 const struct iphdr *ip = 870 (const struct iphdr *)(skb->data + nhoff); 871 872 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip)); 873 if (ip_is_fragment(ip)) 874 return -EPROTONOSUPPORT; 875 spec.ip_proto = ip->protocol; 876 spec.rem_host[0] = ip->saddr; 877 spec.loc_host[0] = ip->daddr; 878 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4); 879 ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl); 880 } else { 881 const struct ipv6hdr *ip6 = 882 (const struct ipv6hdr *)(skb->data + nhoff); 883 884 EFX_BUG_ON_PARANOID(skb_headlen(skb) < 885 nhoff + sizeof(*ip6) + 4); 886 spec.ip_proto = ip6->nexthdr; 887 memcpy(spec.rem_host, &ip6->saddr, sizeof(ip6->saddr)); 888 memcpy(spec.loc_host, &ip6->daddr, sizeof(ip6->daddr)); 889 ports = (const __be16 *)(ip6 + 1); 890 } 891 892 spec.rem_port = ports[0]; 893 spec.loc_port = ports[1]; 894 895 rc = efx->type->filter_rfs_insert(efx, &spec); 896 if (rc < 0) 897 return rc; 898 899 /* Remember this so we can check whether to expire the filter later */ 900 efx->rps_flow_id[rc] = flow_id; 901 channel = efx_get_channel(efx, skb_get_rx_queue(skb)); 902 ++channel->rfs_filters_added; 903 904 if (ether_type == htons(ETH_P_IP)) 905 netif_info(efx, rx_status, efx->net_dev, 906 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n", 907 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 908 spec.rem_host, ntohs(ports[0]), spec.loc_host, 909 ntohs(ports[1]), rxq_index, flow_id, rc); 910 else 911 netif_info(efx, rx_status, efx->net_dev, 912 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n", 913 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 914 spec.rem_host, ntohs(ports[0]), spec.loc_host, 915 ntohs(ports[1]), rxq_index, flow_id, rc); 916 917 return rc; 918 } 919 920 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota) 921 { 922 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); 923 unsigned int index, size; 924 u32 flow_id; 925 926 if (!spin_trylock_bh(&efx->filter_lock)) 927 return false; 928 929 expire_one = efx->type->filter_rfs_expire_one; 930 index = efx->rps_expire_index; 931 size = efx->type->max_rx_ip_filters; 932 while (quota--) { 933 flow_id = efx->rps_flow_id[index]; 934 if (expire_one(efx, flow_id, index)) 935 netif_info(efx, rx_status, efx->net_dev, 936 "expired filter %d [flow %u]\n", 937 index, flow_id); 938 if (++index == size) 939 index = 0; 940 } 941 efx->rps_expire_index = index; 942 943 spin_unlock_bh(&efx->filter_lock); 944 return true; 945 } 946 947 #endif /* CONFIG_RFS_ACCEL */ 948 949 /** 950 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient 951 * @spec: Specification to test 952 * 953 * Return: %true if the specification is a non-drop RX filter that 954 * matches a local MAC address I/G bit value of 1 or matches a local 955 * IPv4 or IPv6 address value in the respective multicast address 956 * range. Otherwise %false. 957 */ 958 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) 959 { 960 if (!(spec->flags & EFX_FILTER_FLAG_RX) || 961 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) 962 return false; 963 964 if (spec->match_flags & 965 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && 966 is_multicast_ether_addr(spec->loc_mac)) 967 return true; 968 969 if ((spec->match_flags & 970 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 971 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 972 if (spec->ether_type == htons(ETH_P_IP) && 973 ipv4_is_multicast(spec->loc_host[0])) 974 return true; 975 if (spec->ether_type == htons(ETH_P_IPV6) && 976 ((const u8 *)spec->loc_host)[0] == 0xff) 977 return true; 978 } 979 980 return false; 981 } 982