1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/socket.h> 9 #include <linux/in.h> 10 #include <linux/slab.h> 11 #include <linux/ip.h> 12 #include <linux/ipv6.h> 13 #include <linux/tcp.h> 14 #include <linux/udp.h> 15 #include <linux/prefetch.h> 16 #include <linux/moduleparam.h> 17 #include <linux/iommu.h> 18 #include <net/ip.h> 19 #include <net/checksum.h> 20 #include "net_driver.h" 21 #include "efx.h" 22 #include "filter.h" 23 #include "nic.h" 24 #include "selftest.h" 25 #include "workarounds.h" 26 27 /* Preferred number of descriptors to fill at once */ 28 #define EFX_RX_PREFERRED_BATCH 8U 29 30 /* Number of RX buffers to recycle pages for. When creating the RX page recycle 31 * ring, this number is divided by the number of buffers per page to calculate 32 * the number of pages to store in the RX page recycle ring. 33 */ 34 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 35 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) 36 37 /* Size of buffer allocated for skb header area. */ 38 #define EFX_SKB_HEADERS 128u 39 40 /* This is the percentage fill level below which new RX descriptors 41 * will be added to the RX descriptor ring. 42 */ 43 static unsigned int rx_refill_threshold; 44 45 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */ 46 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \ 47 EFX_RX_USR_BUF_SIZE) 48 49 /* 50 * RX maximum head room required. 51 * 52 * This must be at least 1 to prevent overflow, plus one packet-worth 53 * to allow pipelined receives. 54 */ 55 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) 56 57 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf) 58 { 59 return page_address(buf->page) + buf->page_offset; 60 } 61 62 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh) 63 { 64 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 65 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset)); 66 #else 67 const u8 *data = eh + efx->rx_packet_hash_offset; 68 return (u32)data[0] | 69 (u32)data[1] << 8 | 70 (u32)data[2] << 16 | 71 (u32)data[3] << 24; 72 #endif 73 } 74 75 static inline struct efx_rx_buffer * 76 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) 77 { 78 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) 79 return efx_rx_buffer(rx_queue, 0); 80 else 81 return rx_buf + 1; 82 } 83 84 static inline void efx_sync_rx_buffer(struct efx_nic *efx, 85 struct efx_rx_buffer *rx_buf, 86 unsigned int len) 87 { 88 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len, 89 DMA_FROM_DEVICE); 90 } 91 92 void efx_rx_config_page_split(struct efx_nic *efx) 93 { 94 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align, 95 EFX_RX_BUF_ALIGNMENT); 96 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : 97 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / 98 efx->rx_page_buf_step); 99 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / 100 efx->rx_bufs_per_page; 101 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, 102 efx->rx_bufs_per_page); 103 } 104 105 /* Check the RX page recycle ring for a page that can be reused. */ 106 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) 107 { 108 struct efx_nic *efx = rx_queue->efx; 109 struct page *page; 110 struct efx_rx_page_state *state; 111 unsigned index; 112 113 index = rx_queue->page_remove & rx_queue->page_ptr_mask; 114 page = rx_queue->page_ring[index]; 115 if (page == NULL) 116 return NULL; 117 118 rx_queue->page_ring[index] = NULL; 119 /* page_remove cannot exceed page_add. */ 120 if (rx_queue->page_remove != rx_queue->page_add) 121 ++rx_queue->page_remove; 122 123 /* If page_count is 1 then we hold the only reference to this page. */ 124 if (page_count(page) == 1) { 125 ++rx_queue->page_recycle_count; 126 return page; 127 } else { 128 state = page_address(page); 129 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 130 PAGE_SIZE << efx->rx_buffer_order, 131 DMA_FROM_DEVICE); 132 put_page(page); 133 ++rx_queue->page_recycle_failed; 134 } 135 136 return NULL; 137 } 138 139 /** 140 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers 141 * 142 * @rx_queue: Efx RX queue 143 * 144 * This allocates a batch of pages, maps them for DMA, and populates 145 * struct efx_rx_buffers for each one. Return a negative error code or 146 * 0 on success. If a single page can be used for multiple buffers, 147 * then the page will either be inserted fully, or not at all. 148 */ 149 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) 150 { 151 struct efx_nic *efx = rx_queue->efx; 152 struct efx_rx_buffer *rx_buf; 153 struct page *page; 154 unsigned int page_offset; 155 struct efx_rx_page_state *state; 156 dma_addr_t dma_addr; 157 unsigned index, count; 158 159 count = 0; 160 do { 161 page = efx_reuse_page(rx_queue); 162 if (page == NULL) { 163 page = alloc_pages(__GFP_COMP | 164 (atomic ? GFP_ATOMIC : GFP_KERNEL), 165 efx->rx_buffer_order); 166 if (unlikely(page == NULL)) 167 return -ENOMEM; 168 dma_addr = 169 dma_map_page(&efx->pci_dev->dev, page, 0, 170 PAGE_SIZE << efx->rx_buffer_order, 171 DMA_FROM_DEVICE); 172 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, 173 dma_addr))) { 174 __free_pages(page, efx->rx_buffer_order); 175 return -EIO; 176 } 177 state = page_address(page); 178 state->dma_addr = dma_addr; 179 } else { 180 state = page_address(page); 181 dma_addr = state->dma_addr; 182 } 183 184 dma_addr += sizeof(struct efx_rx_page_state); 185 page_offset = sizeof(struct efx_rx_page_state); 186 187 do { 188 index = rx_queue->added_count & rx_queue->ptr_mask; 189 rx_buf = efx_rx_buffer(rx_queue, index); 190 rx_buf->dma_addr = dma_addr + efx->rx_ip_align; 191 rx_buf->page = page; 192 rx_buf->page_offset = page_offset + efx->rx_ip_align; 193 rx_buf->len = efx->rx_dma_len; 194 rx_buf->flags = 0; 195 ++rx_queue->added_count; 196 get_page(page); 197 dma_addr += efx->rx_page_buf_step; 198 page_offset += efx->rx_page_buf_step; 199 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); 200 201 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; 202 } while (++count < efx->rx_pages_per_batch); 203 204 return 0; 205 } 206 207 /* Unmap a DMA-mapped page. This function is only called for the final RX 208 * buffer in a page. 209 */ 210 static void efx_unmap_rx_buffer(struct efx_nic *efx, 211 struct efx_rx_buffer *rx_buf) 212 { 213 struct page *page = rx_buf->page; 214 215 if (page) { 216 struct efx_rx_page_state *state = page_address(page); 217 dma_unmap_page(&efx->pci_dev->dev, 218 state->dma_addr, 219 PAGE_SIZE << efx->rx_buffer_order, 220 DMA_FROM_DEVICE); 221 } 222 } 223 224 static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, 225 struct efx_rx_buffer *rx_buf, 226 unsigned int num_bufs) 227 { 228 do { 229 if (rx_buf->page) { 230 put_page(rx_buf->page); 231 rx_buf->page = NULL; 232 } 233 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 234 } while (--num_bufs); 235 } 236 237 /* Attempt to recycle the page if there is an RX recycle ring; the page can 238 * only be added if this is the final RX buffer, to prevent pages being used in 239 * the descriptor ring and appearing in the recycle ring simultaneously. 240 */ 241 static void efx_recycle_rx_page(struct efx_channel *channel, 242 struct efx_rx_buffer *rx_buf) 243 { 244 struct page *page = rx_buf->page; 245 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 246 struct efx_nic *efx = rx_queue->efx; 247 unsigned index; 248 249 /* Only recycle the page after processing the final buffer. */ 250 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) 251 return; 252 253 index = rx_queue->page_add & rx_queue->page_ptr_mask; 254 if (rx_queue->page_ring[index] == NULL) { 255 unsigned read_index = rx_queue->page_remove & 256 rx_queue->page_ptr_mask; 257 258 /* The next slot in the recycle ring is available, but 259 * increment page_remove if the read pointer currently 260 * points here. 261 */ 262 if (read_index == index) 263 ++rx_queue->page_remove; 264 rx_queue->page_ring[index] = page; 265 ++rx_queue->page_add; 266 return; 267 } 268 ++rx_queue->page_recycle_full; 269 efx_unmap_rx_buffer(efx, rx_buf); 270 put_page(rx_buf->page); 271 } 272 273 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 274 struct efx_rx_buffer *rx_buf) 275 { 276 /* Release the page reference we hold for the buffer. */ 277 if (rx_buf->page) 278 put_page(rx_buf->page); 279 280 /* If this is the last buffer in a page, unmap and free it. */ 281 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { 282 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 283 efx_free_rx_buffers(rx_queue, rx_buf, 1); 284 } 285 rx_buf->page = NULL; 286 } 287 288 /* Recycle the pages that are used by buffers that have just been received. */ 289 static void efx_recycle_rx_pages(struct efx_channel *channel, 290 struct efx_rx_buffer *rx_buf, 291 unsigned int n_frags) 292 { 293 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 294 295 do { 296 efx_recycle_rx_page(channel, rx_buf); 297 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 298 } while (--n_frags); 299 } 300 301 static void efx_discard_rx_packet(struct efx_channel *channel, 302 struct efx_rx_buffer *rx_buf, 303 unsigned int n_frags) 304 { 305 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 306 307 efx_recycle_rx_pages(channel, rx_buf, n_frags); 308 309 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 310 } 311 312 /** 313 * efx_fast_push_rx_descriptors - push new RX descriptors quickly 314 * @rx_queue: RX descriptor queue 315 * 316 * This will aim to fill the RX descriptor queue up to 317 * @rx_queue->@max_fill. If there is insufficient atomic 318 * memory to do so, a slow fill will be scheduled. 319 * 320 * The caller must provide serialisation (none is used here). In practise, 321 * this means this function must run from the NAPI handler, or be called 322 * when NAPI is disabled. 323 */ 324 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) 325 { 326 struct efx_nic *efx = rx_queue->efx; 327 unsigned int fill_level, batch_size; 328 int space, rc = 0; 329 330 if (!rx_queue->refill_enabled) 331 return; 332 333 /* Calculate current fill level, and exit if we don't need to fill */ 334 fill_level = (rx_queue->added_count - rx_queue->removed_count); 335 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); 336 if (fill_level >= rx_queue->fast_fill_trigger) 337 goto out; 338 339 /* Record minimum fill level */ 340 if (unlikely(fill_level < rx_queue->min_fill)) { 341 if (fill_level) 342 rx_queue->min_fill = fill_level; 343 } 344 345 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; 346 space = rx_queue->max_fill - fill_level; 347 EFX_WARN_ON_ONCE_PARANOID(space < batch_size); 348 349 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 350 "RX queue %d fast-filling descriptor ring from" 351 " level %d to level %d\n", 352 efx_rx_queue_index(rx_queue), fill_level, 353 rx_queue->max_fill); 354 355 356 do { 357 rc = efx_init_rx_buffers(rx_queue, atomic); 358 if (unlikely(rc)) { 359 /* Ensure that we don't leave the rx queue empty */ 360 efx_schedule_slow_fill(rx_queue); 361 goto out; 362 } 363 } while ((space -= batch_size) >= batch_size); 364 365 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 366 "RX queue %d fast-filled descriptor ring " 367 "to level %d\n", efx_rx_queue_index(rx_queue), 368 rx_queue->added_count - rx_queue->removed_count); 369 370 out: 371 if (rx_queue->notified_count != rx_queue->added_count) 372 efx_nic_notify_rx_desc(rx_queue); 373 } 374 375 void efx_rx_slow_fill(struct timer_list *t) 376 { 377 struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); 378 379 /* Post an event to cause NAPI to run and refill the queue */ 380 efx_nic_generate_fill_event(rx_queue); 381 ++rx_queue->slow_fill_count; 382 } 383 384 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, 385 struct efx_rx_buffer *rx_buf, 386 int len) 387 { 388 struct efx_nic *efx = rx_queue->efx; 389 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; 390 391 if (likely(len <= max_len)) 392 return; 393 394 /* The packet must be discarded, but this is only a fatal error 395 * if the caller indicated it was 396 */ 397 rx_buf->flags |= EFX_RX_PKT_DISCARD; 398 399 if (net_ratelimit()) 400 netif_err(efx, rx_err, efx->net_dev, 401 "RX queue %d overlength RX event (%#x > %#x)\n", 402 efx_rx_queue_index(rx_queue), len, max_len); 403 404 efx_rx_queue_channel(rx_queue)->n_rx_overlength++; 405 } 406 407 /* Pass a received packet up through GRO. GRO can handle pages 408 * regardless of checksum state and skbs with a good checksum. 409 */ 410 static void 411 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, 412 unsigned int n_frags, u8 *eh) 413 { 414 struct napi_struct *napi = &channel->napi_str; 415 struct efx_nic *efx = channel->efx; 416 struct sk_buff *skb; 417 418 skb = napi_get_frags(napi); 419 if (unlikely(!skb)) { 420 struct efx_rx_queue *rx_queue; 421 422 rx_queue = efx_channel_get_rx_queue(channel); 423 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 424 return; 425 } 426 427 if (efx->net_dev->features & NETIF_F_RXHASH) 428 skb_set_hash(skb, efx_rx_buf_hash(efx, eh), 429 PKT_HASH_TYPE_L3); 430 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 431 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 432 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 433 434 for (;;) { 435 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 436 rx_buf->page, rx_buf->page_offset, 437 rx_buf->len); 438 rx_buf->page = NULL; 439 skb->len += rx_buf->len; 440 if (skb_shinfo(skb)->nr_frags == n_frags) 441 break; 442 443 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 444 } 445 446 skb->data_len = skb->len; 447 skb->truesize += n_frags * efx->rx_buffer_truesize; 448 449 skb_record_rx_queue(skb, channel->rx_queue.core_index); 450 451 napi_gro_frags(napi); 452 } 453 454 /* Allocate and construct an SKB around page fragments */ 455 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel, 456 struct efx_rx_buffer *rx_buf, 457 unsigned int n_frags, 458 u8 *eh, int hdr_len) 459 { 460 struct efx_nic *efx = channel->efx; 461 struct sk_buff *skb; 462 463 /* Allocate an SKB to store the headers */ 464 skb = netdev_alloc_skb(efx->net_dev, 465 efx->rx_ip_align + efx->rx_prefix_size + 466 hdr_len); 467 if (unlikely(skb == NULL)) { 468 atomic_inc(&efx->n_rx_noskb_drops); 469 return NULL; 470 } 471 472 EFX_WARN_ON_ONCE_PARANOID(rx_buf->len < hdr_len); 473 474 memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size, 475 efx->rx_prefix_size + hdr_len); 476 skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size); 477 __skb_put(skb, hdr_len); 478 479 /* Append the remaining page(s) onto the frag list */ 480 if (rx_buf->len > hdr_len) { 481 rx_buf->page_offset += hdr_len; 482 rx_buf->len -= hdr_len; 483 484 for (;;) { 485 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 486 rx_buf->page, rx_buf->page_offset, 487 rx_buf->len); 488 rx_buf->page = NULL; 489 skb->len += rx_buf->len; 490 skb->data_len += rx_buf->len; 491 if (skb_shinfo(skb)->nr_frags == n_frags) 492 break; 493 494 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 495 } 496 } else { 497 __free_pages(rx_buf->page, efx->rx_buffer_order); 498 rx_buf->page = NULL; 499 n_frags = 0; 500 } 501 502 skb->truesize += n_frags * efx->rx_buffer_truesize; 503 504 /* Move past the ethernet header */ 505 skb->protocol = eth_type_trans(skb, efx->net_dev); 506 507 skb_mark_napi_id(skb, &channel->napi_str); 508 509 return skb; 510 } 511 512 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, 513 unsigned int n_frags, unsigned int len, u16 flags) 514 { 515 struct efx_nic *efx = rx_queue->efx; 516 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 517 struct efx_rx_buffer *rx_buf; 518 519 rx_queue->rx_packets++; 520 521 rx_buf = efx_rx_buffer(rx_queue, index); 522 rx_buf->flags |= flags; 523 524 /* Validate the number of fragments and completed length */ 525 if (n_frags == 1) { 526 if (!(flags & EFX_RX_PKT_PREFIX_LEN)) 527 efx_rx_packet__check_len(rx_queue, rx_buf, len); 528 } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) || 529 unlikely(len <= (n_frags - 1) * efx->rx_dma_len) || 530 unlikely(len > n_frags * efx->rx_dma_len) || 531 unlikely(!efx->rx_scatter)) { 532 /* If this isn't an explicit discard request, either 533 * the hardware or the driver is broken. 534 */ 535 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD)); 536 rx_buf->flags |= EFX_RX_PKT_DISCARD; 537 } 538 539 netif_vdbg(efx, rx_status, efx->net_dev, 540 "RX queue %d received ids %x-%x len %d %s%s\n", 541 efx_rx_queue_index(rx_queue), index, 542 (index + n_frags - 1) & rx_queue->ptr_mask, len, 543 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "", 544 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : ""); 545 546 /* Discard packet, if instructed to do so. Process the 547 * previous receive first. 548 */ 549 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) { 550 efx_rx_flush_packet(channel); 551 efx_discard_rx_packet(channel, rx_buf, n_frags); 552 return; 553 } 554 555 if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN)) 556 rx_buf->len = len; 557 558 /* Release and/or sync the DMA mapping - assumes all RX buffers 559 * consumed in-order per RX queue. 560 */ 561 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); 562 563 /* Prefetch nice and early so data will (hopefully) be in cache by 564 * the time we look at it. 565 */ 566 prefetch(efx_rx_buf_va(rx_buf)); 567 568 rx_buf->page_offset += efx->rx_prefix_size; 569 rx_buf->len -= efx->rx_prefix_size; 570 571 if (n_frags > 1) { 572 /* Release/sync DMA mapping for additional fragments. 573 * Fix length for last fragment. 574 */ 575 unsigned int tail_frags = n_frags - 1; 576 577 for (;;) { 578 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 579 if (--tail_frags == 0) 580 break; 581 efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len); 582 } 583 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len; 584 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); 585 } 586 587 /* All fragments have been DMA-synced, so recycle pages. */ 588 rx_buf = efx_rx_buffer(rx_queue, index); 589 efx_recycle_rx_pages(channel, rx_buf, n_frags); 590 591 /* Pipeline receives so that we give time for packet headers to be 592 * prefetched into cache. 593 */ 594 efx_rx_flush_packet(channel); 595 channel->rx_pkt_n_frags = n_frags; 596 channel->rx_pkt_index = index; 597 } 598 599 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh, 600 struct efx_rx_buffer *rx_buf, 601 unsigned int n_frags) 602 { 603 struct sk_buff *skb; 604 u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS); 605 606 skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len); 607 if (unlikely(skb == NULL)) { 608 struct efx_rx_queue *rx_queue; 609 610 rx_queue = efx_channel_get_rx_queue(channel); 611 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 612 return; 613 } 614 skb_record_rx_queue(skb, channel->rx_queue.core_index); 615 616 /* Set the SKB flags */ 617 skb_checksum_none_assert(skb); 618 if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) { 619 skb->ip_summed = CHECKSUM_UNNECESSARY; 620 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 621 } 622 623 efx_rx_skb_attach_timestamp(channel, skb); 624 625 if (channel->type->receive_skb) 626 if (channel->type->receive_skb(channel, skb)) 627 return; 628 629 /* Pass the packet up */ 630 if (channel->rx_list != NULL) 631 /* Add to list, will pass up later */ 632 list_add_tail(&skb->list, channel->rx_list); 633 else 634 /* No list, so pass it up now */ 635 netif_receive_skb(skb); 636 } 637 638 /* Handle a received packet. Second half: Touches packet payload. */ 639 void __efx_rx_packet(struct efx_channel *channel) 640 { 641 struct efx_nic *efx = channel->efx; 642 struct efx_rx_buffer *rx_buf = 643 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index); 644 u8 *eh = efx_rx_buf_va(rx_buf); 645 646 /* Read length from the prefix if necessary. This already 647 * excludes the length of the prefix itself. 648 */ 649 if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN) 650 rx_buf->len = le16_to_cpup((__le16 *) 651 (eh + efx->rx_packet_len_offset)); 652 653 /* If we're in loopback test, then pass the packet directly to the 654 * loopback layer, and free the rx_buf here 655 */ 656 if (unlikely(efx->loopback_selftest)) { 657 struct efx_rx_queue *rx_queue; 658 659 efx_loopback_rx_packet(efx, eh, rx_buf->len); 660 rx_queue = efx_channel_get_rx_queue(channel); 661 efx_free_rx_buffers(rx_queue, rx_buf, 662 channel->rx_pkt_n_frags); 663 goto out; 664 } 665 666 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) 667 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED; 668 669 if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb) 670 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh); 671 else 672 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags); 673 out: 674 channel->rx_pkt_n_frags = 0; 675 } 676 677 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 678 { 679 struct efx_nic *efx = rx_queue->efx; 680 unsigned int entries; 681 int rc; 682 683 /* Create the smallest power-of-two aligned ring */ 684 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 685 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 686 rx_queue->ptr_mask = entries - 1; 687 688 netif_dbg(efx, probe, efx->net_dev, 689 "creating RX queue %d size %#x mask %#x\n", 690 efx_rx_queue_index(rx_queue), efx->rxq_entries, 691 rx_queue->ptr_mask); 692 693 /* Allocate RX buffers */ 694 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 695 GFP_KERNEL); 696 if (!rx_queue->buffer) 697 return -ENOMEM; 698 699 rc = efx_nic_probe_rx(rx_queue); 700 if (rc) { 701 kfree(rx_queue->buffer); 702 rx_queue->buffer = NULL; 703 } 704 705 return rc; 706 } 707 708 static void efx_init_rx_recycle_ring(struct efx_nic *efx, 709 struct efx_rx_queue *rx_queue) 710 { 711 unsigned int bufs_in_recycle_ring, page_ring_size; 712 713 /* Set the RX recycle ring size */ 714 #ifdef CONFIG_PPC64 715 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 716 #else 717 if (iommu_present(&pci_bus_type)) 718 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 719 else 720 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; 721 #endif /* CONFIG_PPC64 */ 722 723 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / 724 efx->rx_bufs_per_page); 725 rx_queue->page_ring = kcalloc(page_ring_size, 726 sizeof(*rx_queue->page_ring), GFP_KERNEL); 727 rx_queue->page_ptr_mask = page_ring_size - 1; 728 } 729 730 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 731 { 732 struct efx_nic *efx = rx_queue->efx; 733 unsigned int max_fill, trigger, max_trigger; 734 735 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 736 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 737 738 /* Initialise ptr fields */ 739 rx_queue->added_count = 0; 740 rx_queue->notified_count = 0; 741 rx_queue->removed_count = 0; 742 rx_queue->min_fill = -1U; 743 efx_init_rx_recycle_ring(efx, rx_queue); 744 745 rx_queue->page_remove = 0; 746 rx_queue->page_add = rx_queue->page_ptr_mask + 1; 747 rx_queue->page_recycle_count = 0; 748 rx_queue->page_recycle_failed = 0; 749 rx_queue->page_recycle_full = 0; 750 751 /* Initialise limit fields */ 752 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 753 max_trigger = 754 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; 755 if (rx_refill_threshold != 0) { 756 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 757 if (trigger > max_trigger) 758 trigger = max_trigger; 759 } else { 760 trigger = max_trigger; 761 } 762 763 rx_queue->max_fill = max_fill; 764 rx_queue->fast_fill_trigger = trigger; 765 rx_queue->refill_enabled = true; 766 767 /* Set up RX descriptor ring */ 768 efx_nic_init_rx(rx_queue); 769 } 770 771 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 772 { 773 int i; 774 struct efx_nic *efx = rx_queue->efx; 775 struct efx_rx_buffer *rx_buf; 776 777 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 778 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 779 780 del_timer_sync(&rx_queue->slow_fill); 781 782 /* Release RX buffers from the current read ptr to the write ptr */ 783 if (rx_queue->buffer) { 784 for (i = rx_queue->removed_count; i < rx_queue->added_count; 785 i++) { 786 unsigned index = i & rx_queue->ptr_mask; 787 rx_buf = efx_rx_buffer(rx_queue, index); 788 efx_fini_rx_buffer(rx_queue, rx_buf); 789 } 790 } 791 792 /* Unmap and release the pages in the recycle ring. Remove the ring. */ 793 for (i = 0; i <= rx_queue->page_ptr_mask; i++) { 794 struct page *page = rx_queue->page_ring[i]; 795 struct efx_rx_page_state *state; 796 797 if (page == NULL) 798 continue; 799 800 state = page_address(page); 801 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 802 PAGE_SIZE << efx->rx_buffer_order, 803 DMA_FROM_DEVICE); 804 put_page(page); 805 } 806 kfree(rx_queue->page_ring); 807 rx_queue->page_ring = NULL; 808 } 809 810 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 811 { 812 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 813 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 814 815 efx_nic_remove_rx(rx_queue); 816 817 kfree(rx_queue->buffer); 818 rx_queue->buffer = NULL; 819 } 820 821 822 module_param(rx_refill_threshold, uint, 0444); 823 MODULE_PARM_DESC(rx_refill_threshold, 824 "RX descriptor ring refill threshold (%)"); 825 826 #ifdef CONFIG_RFS_ACCEL 827 828 static void efx_filter_rfs_work(struct work_struct *data) 829 { 830 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, 831 work); 832 struct efx_nic *efx = netdev_priv(req->net_dev); 833 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); 834 int slot_idx = req - efx->rps_slot; 835 struct efx_arfs_rule *rule; 836 u16 arfs_id = 0; 837 int rc; 838 839 rc = efx->type->filter_insert(efx, &req->spec, true); 840 if (rc >= 0) 841 rc %= efx->type->max_rx_ip_filters; 842 if (efx->rps_hash_table) { 843 spin_lock_bh(&efx->rps_hash_lock); 844 rule = efx_rps_hash_find(efx, &req->spec); 845 /* The rule might have already gone, if someone else's request 846 * for the same spec was already worked and then expired before 847 * we got around to our work. In that case we have nothing 848 * tying us to an arfs_id, meaning that as soon as the filter 849 * is considered for expiry it will be removed. 850 */ 851 if (rule) { 852 if (rc < 0) 853 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; 854 else 855 rule->filter_id = rc; 856 arfs_id = rule->arfs_id; 857 } 858 spin_unlock_bh(&efx->rps_hash_lock); 859 } 860 if (rc >= 0) { 861 /* Remember this so we can check whether to expire the filter 862 * later. 863 */ 864 mutex_lock(&efx->rps_mutex); 865 channel->rps_flow_id[rc] = req->flow_id; 866 ++channel->rfs_filters_added; 867 mutex_unlock(&efx->rps_mutex); 868 869 if (req->spec.ether_type == htons(ETH_P_IP)) 870 netif_info(efx, rx_status, efx->net_dev, 871 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", 872 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 873 req->spec.rem_host, ntohs(req->spec.rem_port), 874 req->spec.loc_host, ntohs(req->spec.loc_port), 875 req->rxq_index, req->flow_id, rc, arfs_id); 876 else 877 netif_info(efx, rx_status, efx->net_dev, 878 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", 879 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 880 req->spec.rem_host, ntohs(req->spec.rem_port), 881 req->spec.loc_host, ntohs(req->spec.loc_port), 882 req->rxq_index, req->flow_id, rc, arfs_id); 883 } 884 885 /* Release references */ 886 clear_bit(slot_idx, &efx->rps_slot_map); 887 dev_put(req->net_dev); 888 } 889 890 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, 891 u16 rxq_index, u32 flow_id) 892 { 893 struct efx_nic *efx = netdev_priv(net_dev); 894 struct efx_async_filter_insertion *req; 895 struct efx_arfs_rule *rule; 896 struct flow_keys fk; 897 int slot_idx; 898 bool new; 899 int rc; 900 901 /* find a free slot */ 902 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) 903 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) 904 break; 905 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) 906 return -EBUSY; 907 908 if (flow_id == RPS_FLOW_ID_INVALID) { 909 rc = -EINVAL; 910 goto out_clear; 911 } 912 913 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { 914 rc = -EPROTONOSUPPORT; 915 goto out_clear; 916 } 917 918 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { 919 rc = -EPROTONOSUPPORT; 920 goto out_clear; 921 } 922 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { 923 rc = -EPROTONOSUPPORT; 924 goto out_clear; 925 } 926 927 req = efx->rps_slot + slot_idx; 928 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, 929 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, 930 rxq_index); 931 req->spec.match_flags = 932 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 933 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 934 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; 935 req->spec.ether_type = fk.basic.n_proto; 936 req->spec.ip_proto = fk.basic.ip_proto; 937 938 if (fk.basic.n_proto == htons(ETH_P_IP)) { 939 req->spec.rem_host[0] = fk.addrs.v4addrs.src; 940 req->spec.loc_host[0] = fk.addrs.v4addrs.dst; 941 } else { 942 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, 943 sizeof(struct in6_addr)); 944 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, 945 sizeof(struct in6_addr)); 946 } 947 948 req->spec.rem_port = fk.ports.src; 949 req->spec.loc_port = fk.ports.dst; 950 951 if (efx->rps_hash_table) { 952 /* Add it to ARFS hash table */ 953 spin_lock(&efx->rps_hash_lock); 954 rule = efx_rps_hash_add(efx, &req->spec, &new); 955 if (!rule) { 956 rc = -ENOMEM; 957 goto out_unlock; 958 } 959 if (new) 960 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; 961 rc = rule->arfs_id; 962 /* Skip if existing or pending filter already does the right thing */ 963 if (!new && rule->rxq_index == rxq_index && 964 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) 965 goto out_unlock; 966 rule->rxq_index = rxq_index; 967 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; 968 spin_unlock(&efx->rps_hash_lock); 969 } else { 970 /* Without an ARFS hash table, we just use arfs_id 0 for all 971 * filters. This means if multiple flows hash to the same 972 * flow_id, all but the most recently touched will be eligible 973 * for expiry. 974 */ 975 rc = 0; 976 } 977 978 /* Queue the request */ 979 dev_hold(req->net_dev = net_dev); 980 INIT_WORK(&req->work, efx_filter_rfs_work); 981 req->rxq_index = rxq_index; 982 req->flow_id = flow_id; 983 schedule_work(&req->work); 984 return rc; 985 out_unlock: 986 spin_unlock(&efx->rps_hash_lock); 987 out_clear: 988 clear_bit(slot_idx, &efx->rps_slot_map); 989 return rc; 990 } 991 992 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota) 993 { 994 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); 995 unsigned int channel_idx, index, size; 996 u32 flow_id; 997 998 if (!mutex_trylock(&efx->rps_mutex)) 999 return false; 1000 expire_one = efx->type->filter_rfs_expire_one; 1001 channel_idx = efx->rps_expire_channel; 1002 index = efx->rps_expire_index; 1003 size = efx->type->max_rx_ip_filters; 1004 while (quota--) { 1005 struct efx_channel *channel = efx_get_channel(efx, channel_idx); 1006 flow_id = channel->rps_flow_id[index]; 1007 1008 if (flow_id != RPS_FLOW_ID_INVALID && 1009 expire_one(efx, flow_id, index)) { 1010 netif_info(efx, rx_status, efx->net_dev, 1011 "expired filter %d [queue %u flow %u]\n", 1012 index, channel_idx, flow_id); 1013 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; 1014 } 1015 if (++index == size) { 1016 if (++channel_idx == efx->n_channels) 1017 channel_idx = 0; 1018 index = 0; 1019 } 1020 } 1021 efx->rps_expire_channel = channel_idx; 1022 efx->rps_expire_index = index; 1023 1024 mutex_unlock(&efx->rps_mutex); 1025 return true; 1026 } 1027 1028 #endif /* CONFIG_RFS_ACCEL */ 1029 1030 /** 1031 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient 1032 * @spec: Specification to test 1033 * 1034 * Return: %true if the specification is a non-drop RX filter that 1035 * matches a local MAC address I/G bit value of 1 or matches a local 1036 * IPv4 or IPv6 address value in the respective multicast address 1037 * range. Otherwise %false. 1038 */ 1039 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) 1040 { 1041 if (!(spec->flags & EFX_FILTER_FLAG_RX) || 1042 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) 1043 return false; 1044 1045 if (spec->match_flags & 1046 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && 1047 is_multicast_ether_addr(spec->loc_mac)) 1048 return true; 1049 1050 if ((spec->match_flags & 1051 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 1052 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 1053 if (spec->ether_type == htons(ETH_P_IP) && 1054 ipv4_is_multicast(spec->loc_host[0])) 1055 return true; 1056 if (spec->ether_type == htons(ETH_P_IPV6) && 1057 ((const u8 *)spec->loc_host)[0] == 0xff) 1058 return true; 1059 } 1060 1061 return false; 1062 } 1063