xref: /openbmc/linux/drivers/net/ethernet/sfc/rx.c (revision 95e9fd10)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <net/ip.h>
20 #include <net/checksum.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26 
27 /* Number of RX descriptors pushed at once. */
28 #define EFX_RX_BATCH  8
29 
30 /* Maximum size of a buffer sharing a page */
31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
32 
33 /* Size of buffer allocated for skb header area. */
34 #define EFX_SKB_HEADERS  64u
35 
36 /*
37  * rx_alloc_method - RX buffer allocation method
38  *
39  * This driver supports two methods for allocating and using RX buffers:
40  * each RX buffer may be backed by an skb or by an order-n page.
41  *
42  * When GRO is in use then the second method has a lower overhead,
43  * since we don't have to allocate then free skbs on reassembled frames.
44  *
45  * Values:
46  *   - RX_ALLOC_METHOD_AUTO = 0
47  *   - RX_ALLOC_METHOD_SKB  = 1
48  *   - RX_ALLOC_METHOD_PAGE = 2
49  *
50  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
51  * controlled by the parameters below.
52  *
53  *   - Since pushing and popping descriptors are separated by the rx_queue
54  *     size, so the watermarks should be ~rxd_size.
55  *   - The performance win by using page-based allocation for GRO is less
56  *     than the performance hit of using page-based allocation of non-GRO,
57  *     so the watermarks should reflect this.
58  *
59  * Per channel we maintain a single variable, updated by each channel:
60  *
61  *   rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62  *                      RX_ALLOC_FACTOR_SKB)
63  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
64  * limits the hysteresis), and update the allocation strategy:
65  *
66  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
68  */
69 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
70 
71 #define RX_ALLOC_LEVEL_GRO 0x2000
72 #define RX_ALLOC_LEVEL_MAX 0x3000
73 #define RX_ALLOC_FACTOR_GRO 1
74 #define RX_ALLOC_FACTOR_SKB (-2)
75 
76 /* This is the percentage fill level below which new RX descriptors
77  * will be added to the RX descriptor ring.
78  */
79 static unsigned int rx_refill_threshold;
80 
81 /*
82  * RX maximum head room required.
83  *
84  * This must be at least 1 to prevent overflow and at least 2 to allow
85  * pipelined receives.
86  */
87 #define EFX_RXD_HEAD_ROOM 2
88 
89 /* Offset of ethernet header within page */
90 static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
91 					     struct efx_rx_buffer *buf)
92 {
93 	/* Offset is always within one page, so we don't need to consider
94 	 * the page order.
95 	 */
96 	return ((unsigned int) buf->dma_addr & (PAGE_SIZE - 1)) +
97 		efx->type->rx_buffer_hash_size;
98 }
99 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
100 {
101 	return PAGE_SIZE << efx->rx_buffer_order;
102 }
103 
104 static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
105 {
106 	if (buf->flags & EFX_RX_BUF_PAGE)
107 		return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
108 	else
109 		return (u8 *)buf->u.skb->data + efx->type->rx_buffer_hash_size;
110 }
111 
112 static inline u32 efx_rx_buf_hash(const u8 *eh)
113 {
114 	/* The ethernet header is always directly after any hash. */
115 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
116 	return __le32_to_cpup((const __le32 *)(eh - 4));
117 #else
118 	const u8 *data = eh - 4;
119 	return (u32)data[0]	  |
120 	       (u32)data[1] << 8  |
121 	       (u32)data[2] << 16 |
122 	       (u32)data[3] << 24;
123 #endif
124 }
125 
126 /**
127  * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
128  *
129  * @rx_queue:		Efx RX queue
130  *
131  * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
132  * struct efx_rx_buffer for each one. Return a negative error code or 0
133  * on success. May fail having only inserted fewer than EFX_RX_BATCH
134  * buffers.
135  */
136 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
137 {
138 	struct efx_nic *efx = rx_queue->efx;
139 	struct net_device *net_dev = efx->net_dev;
140 	struct efx_rx_buffer *rx_buf;
141 	struct sk_buff *skb;
142 	int skb_len = efx->rx_buffer_len;
143 	unsigned index, count;
144 
145 	for (count = 0; count < EFX_RX_BATCH; ++count) {
146 		index = rx_queue->added_count & rx_queue->ptr_mask;
147 		rx_buf = efx_rx_buffer(rx_queue, index);
148 
149 		rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
150 		if (unlikely(!skb))
151 			return -ENOMEM;
152 
153 		/* Adjust the SKB for padding */
154 		skb_reserve(skb, NET_IP_ALIGN);
155 		rx_buf->len = skb_len - NET_IP_ALIGN;
156 		rx_buf->flags = 0;
157 
158 		rx_buf->dma_addr = dma_map_single(&efx->pci_dev->dev,
159 						  skb->data, rx_buf->len,
160 						  DMA_FROM_DEVICE);
161 		if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
162 					       rx_buf->dma_addr))) {
163 			dev_kfree_skb_any(skb);
164 			rx_buf->u.skb = NULL;
165 			return -EIO;
166 		}
167 
168 		++rx_queue->added_count;
169 		++rx_queue->alloc_skb_count;
170 	}
171 
172 	return 0;
173 }
174 
175 /**
176  * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
177  *
178  * @rx_queue:		Efx RX queue
179  *
180  * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
181  * and populates struct efx_rx_buffers for each one. Return a negative error
182  * code or 0 on success. If a single page can be split between two buffers,
183  * then the page will either be inserted fully, or not at at all.
184  */
185 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
186 {
187 	struct efx_nic *efx = rx_queue->efx;
188 	struct efx_rx_buffer *rx_buf;
189 	struct page *page;
190 	void *page_addr;
191 	struct efx_rx_page_state *state;
192 	dma_addr_t dma_addr;
193 	unsigned index, count;
194 
195 	/* We can split a page between two buffers */
196 	BUILD_BUG_ON(EFX_RX_BATCH & 1);
197 
198 	for (count = 0; count < EFX_RX_BATCH; ++count) {
199 		page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
200 				   efx->rx_buffer_order);
201 		if (unlikely(page == NULL))
202 			return -ENOMEM;
203 		dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0,
204 					efx_rx_buf_size(efx),
205 					DMA_FROM_DEVICE);
206 		if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) {
207 			__free_pages(page, efx->rx_buffer_order);
208 			return -EIO;
209 		}
210 		page_addr = page_address(page);
211 		state = page_addr;
212 		state->refcnt = 0;
213 		state->dma_addr = dma_addr;
214 
215 		page_addr += sizeof(struct efx_rx_page_state);
216 		dma_addr += sizeof(struct efx_rx_page_state);
217 
218 	split:
219 		index = rx_queue->added_count & rx_queue->ptr_mask;
220 		rx_buf = efx_rx_buffer(rx_queue, index);
221 		rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
222 		rx_buf->u.page = page;
223 		rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
224 		rx_buf->flags = EFX_RX_BUF_PAGE;
225 		++rx_queue->added_count;
226 		++rx_queue->alloc_page_count;
227 		++state->refcnt;
228 
229 		if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
230 			/* Use the second half of the page */
231 			get_page(page);
232 			dma_addr += (PAGE_SIZE >> 1);
233 			page_addr += (PAGE_SIZE >> 1);
234 			++count;
235 			goto split;
236 		}
237 	}
238 
239 	return 0;
240 }
241 
242 static void efx_unmap_rx_buffer(struct efx_nic *efx,
243 				struct efx_rx_buffer *rx_buf)
244 {
245 	if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
246 		struct efx_rx_page_state *state;
247 
248 		state = page_address(rx_buf->u.page);
249 		if (--state->refcnt == 0) {
250 			dma_unmap_page(&efx->pci_dev->dev,
251 				       state->dma_addr,
252 				       efx_rx_buf_size(efx),
253 				       DMA_FROM_DEVICE);
254 		}
255 	} else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
256 		dma_unmap_single(&efx->pci_dev->dev, rx_buf->dma_addr,
257 				 rx_buf->len, DMA_FROM_DEVICE);
258 	}
259 }
260 
261 static void efx_free_rx_buffer(struct efx_nic *efx,
262 			       struct efx_rx_buffer *rx_buf)
263 {
264 	if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
265 		__free_pages(rx_buf->u.page, efx->rx_buffer_order);
266 		rx_buf->u.page = NULL;
267 	} else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
268 		dev_kfree_skb_any(rx_buf->u.skb);
269 		rx_buf->u.skb = NULL;
270 	}
271 }
272 
273 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
274 			       struct efx_rx_buffer *rx_buf)
275 {
276 	efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
277 	efx_free_rx_buffer(rx_queue->efx, rx_buf);
278 }
279 
280 /* Attempt to resurrect the other receive buffer that used to share this page,
281  * which had previously been passed up to the kernel and freed. */
282 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
283 				    struct efx_rx_buffer *rx_buf)
284 {
285 	struct efx_rx_page_state *state = page_address(rx_buf->u.page);
286 	struct efx_rx_buffer *new_buf;
287 	unsigned fill_level, index;
288 
289 	/* +1 because efx_rx_packet() incremented removed_count. +1 because
290 	 * we'd like to insert an additional descriptor whilst leaving
291 	 * EFX_RXD_HEAD_ROOM for the non-recycle path */
292 	fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
293 	if (unlikely(fill_level > rx_queue->max_fill)) {
294 		/* We could place "state" on a list, and drain the list in
295 		 * efx_fast_push_rx_descriptors(). For now, this will do. */
296 		return;
297 	}
298 
299 	++state->refcnt;
300 	get_page(rx_buf->u.page);
301 
302 	index = rx_queue->added_count & rx_queue->ptr_mask;
303 	new_buf = efx_rx_buffer(rx_queue, index);
304 	new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
305 	new_buf->u.page = rx_buf->u.page;
306 	new_buf->len = rx_buf->len;
307 	new_buf->flags = EFX_RX_BUF_PAGE;
308 	++rx_queue->added_count;
309 }
310 
311 /* Recycle the given rx buffer directly back into the rx_queue. There is
312  * always room to add this buffer, because we've just popped a buffer. */
313 static void efx_recycle_rx_buffer(struct efx_channel *channel,
314 				  struct efx_rx_buffer *rx_buf)
315 {
316 	struct efx_nic *efx = channel->efx;
317 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
318 	struct efx_rx_buffer *new_buf;
319 	unsigned index;
320 
321 	rx_buf->flags &= EFX_RX_BUF_PAGE;
322 
323 	if ((rx_buf->flags & EFX_RX_BUF_PAGE) &&
324 	    efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
325 	    page_count(rx_buf->u.page) == 1)
326 		efx_resurrect_rx_buffer(rx_queue, rx_buf);
327 
328 	index = rx_queue->added_count & rx_queue->ptr_mask;
329 	new_buf = efx_rx_buffer(rx_queue, index);
330 
331 	memcpy(new_buf, rx_buf, sizeof(*new_buf));
332 	rx_buf->u.page = NULL;
333 	++rx_queue->added_count;
334 }
335 
336 /**
337  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
338  * @rx_queue:		RX descriptor queue
339  *
340  * This will aim to fill the RX descriptor queue up to
341  * @rx_queue->@max_fill. If there is insufficient atomic
342  * memory to do so, a slow fill will be scheduled.
343  *
344  * The caller must provide serialisation (none is used here). In practise,
345  * this means this function must run from the NAPI handler, or be called
346  * when NAPI is disabled.
347  */
348 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
349 {
350 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
351 	unsigned fill_level;
352 	int space, rc = 0;
353 
354 	/* Calculate current fill level, and exit if we don't need to fill */
355 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
356 	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
357 	if (fill_level >= rx_queue->fast_fill_trigger)
358 		goto out;
359 
360 	/* Record minimum fill level */
361 	if (unlikely(fill_level < rx_queue->min_fill)) {
362 		if (fill_level)
363 			rx_queue->min_fill = fill_level;
364 	}
365 
366 	space = rx_queue->max_fill - fill_level;
367 	EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH);
368 
369 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
370 		   "RX queue %d fast-filling descriptor ring from"
371 		   " level %d to level %d using %s allocation\n",
372 		   efx_rx_queue_index(rx_queue), fill_level,
373 		   rx_queue->max_fill,
374 		   channel->rx_alloc_push_pages ? "page" : "skb");
375 
376 	do {
377 		if (channel->rx_alloc_push_pages)
378 			rc = efx_init_rx_buffers_page(rx_queue);
379 		else
380 			rc = efx_init_rx_buffers_skb(rx_queue);
381 		if (unlikely(rc)) {
382 			/* Ensure that we don't leave the rx queue empty */
383 			if (rx_queue->added_count == rx_queue->removed_count)
384 				efx_schedule_slow_fill(rx_queue);
385 			goto out;
386 		}
387 	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
388 
389 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
390 		   "RX queue %d fast-filled descriptor ring "
391 		   "to level %d\n", efx_rx_queue_index(rx_queue),
392 		   rx_queue->added_count - rx_queue->removed_count);
393 
394  out:
395 	if (rx_queue->notified_count != rx_queue->added_count)
396 		efx_nic_notify_rx_desc(rx_queue);
397 }
398 
399 void efx_rx_slow_fill(unsigned long context)
400 {
401 	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
402 
403 	/* Post an event to cause NAPI to run and refill the queue */
404 	efx_nic_generate_fill_event(rx_queue);
405 	++rx_queue->slow_fill_count;
406 }
407 
408 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
409 				     struct efx_rx_buffer *rx_buf,
410 				     int len, bool *leak_packet)
411 {
412 	struct efx_nic *efx = rx_queue->efx;
413 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
414 
415 	if (likely(len <= max_len))
416 		return;
417 
418 	/* The packet must be discarded, but this is only a fatal error
419 	 * if the caller indicated it was
420 	 */
421 	rx_buf->flags |= EFX_RX_PKT_DISCARD;
422 
423 	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
424 		if (net_ratelimit())
425 			netif_err(efx, rx_err, efx->net_dev,
426 				  " RX queue %d seriously overlength "
427 				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
428 				  efx_rx_queue_index(rx_queue), len, max_len,
429 				  efx->type->rx_buffer_padding);
430 		/* If this buffer was skb-allocated, then the meta
431 		 * data at the end of the skb will be trashed. So
432 		 * we have no choice but to leak the fragment.
433 		 */
434 		*leak_packet = !(rx_buf->flags & EFX_RX_BUF_PAGE);
435 		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
436 	} else {
437 		if (net_ratelimit())
438 			netif_err(efx, rx_err, efx->net_dev,
439 				  " RX queue %d overlength RX event "
440 				  "(0x%x > 0x%x)\n",
441 				  efx_rx_queue_index(rx_queue), len, max_len);
442 	}
443 
444 	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
445 }
446 
447 /* Pass a received packet up through GRO.  GRO can handle pages
448  * regardless of checksum state and skbs with a good checksum.
449  */
450 static void efx_rx_packet_gro(struct efx_channel *channel,
451 			      struct efx_rx_buffer *rx_buf,
452 			      const u8 *eh)
453 {
454 	struct napi_struct *napi = &channel->napi_str;
455 	gro_result_t gro_result;
456 
457 	if (rx_buf->flags & EFX_RX_BUF_PAGE) {
458 		struct efx_nic *efx = channel->efx;
459 		struct page *page = rx_buf->u.page;
460 		struct sk_buff *skb;
461 
462 		rx_buf->u.page = NULL;
463 
464 		skb = napi_get_frags(napi);
465 		if (!skb) {
466 			put_page(page);
467 			return;
468 		}
469 
470 		if (efx->net_dev->features & NETIF_F_RXHASH)
471 			skb->rxhash = efx_rx_buf_hash(eh);
472 
473 		skb_fill_page_desc(skb, 0, page,
474 				   efx_rx_buf_offset(efx, rx_buf), rx_buf->len);
475 
476 		skb->len = rx_buf->len;
477 		skb->data_len = rx_buf->len;
478 		skb->truesize += rx_buf->len;
479 		skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
480 				  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
481 
482 		skb_record_rx_queue(skb, channel->channel);
483 
484 		gro_result = napi_gro_frags(napi);
485 	} else {
486 		struct sk_buff *skb = rx_buf->u.skb;
487 
488 		EFX_BUG_ON_PARANOID(!(rx_buf->flags & EFX_RX_PKT_CSUMMED));
489 		rx_buf->u.skb = NULL;
490 		skb->ip_summed = CHECKSUM_UNNECESSARY;
491 
492 		gro_result = napi_gro_receive(napi, skb);
493 	}
494 
495 	if (gro_result == GRO_NORMAL) {
496 		channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
497 	} else if (gro_result != GRO_DROP) {
498 		channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
499 		channel->irq_mod_score += 2;
500 	}
501 }
502 
503 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
504 		   unsigned int len, u16 flags)
505 {
506 	struct efx_nic *efx = rx_queue->efx;
507 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
508 	struct efx_rx_buffer *rx_buf;
509 	bool leak_packet = false;
510 
511 	rx_buf = efx_rx_buffer(rx_queue, index);
512 	rx_buf->flags |= flags;
513 
514 	/* This allows the refill path to post another buffer.
515 	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
516 	 * isn't overwritten yet.
517 	 */
518 	rx_queue->removed_count++;
519 
520 	/* Validate the length encoded in the event vs the descriptor pushed */
521 	efx_rx_packet__check_len(rx_queue, rx_buf, len, &leak_packet);
522 
523 	netif_vdbg(efx, rx_status, efx->net_dev,
524 		   "RX queue %d received id %x at %llx+%x %s%s\n",
525 		   efx_rx_queue_index(rx_queue), index,
526 		   (unsigned long long)rx_buf->dma_addr, len,
527 		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
528 		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
529 
530 	/* Discard packet, if instructed to do so */
531 	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
532 		if (unlikely(leak_packet))
533 			channel->n_skbuff_leaks++;
534 		else
535 			efx_recycle_rx_buffer(channel, rx_buf);
536 
537 		/* Don't hold off the previous receive */
538 		rx_buf = NULL;
539 		goto out;
540 	}
541 
542 	/* Release card resources - assumes all RX buffers consumed in-order
543 	 * per RX queue
544 	 */
545 	efx_unmap_rx_buffer(efx, rx_buf);
546 
547 	/* Prefetch nice and early so data will (hopefully) be in cache by
548 	 * the time we look at it.
549 	 */
550 	prefetch(efx_rx_buf_eh(efx, rx_buf));
551 
552 	/* Pipeline receives so that we give time for packet headers to be
553 	 * prefetched into cache.
554 	 */
555 	rx_buf->len = len - efx->type->rx_buffer_hash_size;
556 out:
557 	if (channel->rx_pkt)
558 		__efx_rx_packet(channel, channel->rx_pkt);
559 	channel->rx_pkt = rx_buf;
560 }
561 
562 static void efx_rx_deliver(struct efx_channel *channel,
563 			   struct efx_rx_buffer *rx_buf)
564 {
565 	struct sk_buff *skb;
566 
567 	/* We now own the SKB */
568 	skb = rx_buf->u.skb;
569 	rx_buf->u.skb = NULL;
570 
571 	/* Set the SKB flags */
572 	skb_checksum_none_assert(skb);
573 
574 	/* Pass the packet up */
575 	netif_receive_skb(skb);
576 
577 	/* Update allocation strategy method */
578 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
579 }
580 
581 /* Handle a received packet.  Second half: Touches packet payload. */
582 void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf)
583 {
584 	struct efx_nic *efx = channel->efx;
585 	u8 *eh = efx_rx_buf_eh(efx, rx_buf);
586 
587 	/* If we're in loopback test, then pass the packet directly to the
588 	 * loopback layer, and free the rx_buf here
589 	 */
590 	if (unlikely(efx->loopback_selftest)) {
591 		efx_loopback_rx_packet(efx, eh, rx_buf->len);
592 		efx_free_rx_buffer(efx, rx_buf);
593 		return;
594 	}
595 
596 	if (!(rx_buf->flags & EFX_RX_BUF_PAGE)) {
597 		struct sk_buff *skb = rx_buf->u.skb;
598 
599 		prefetch(skb_shinfo(skb));
600 
601 		skb_reserve(skb, efx->type->rx_buffer_hash_size);
602 		skb_put(skb, rx_buf->len);
603 
604 		if (efx->net_dev->features & NETIF_F_RXHASH)
605 			skb->rxhash = efx_rx_buf_hash(eh);
606 
607 		/* Move past the ethernet header. rx_buf->data still points
608 		 * at the ethernet header */
609 		skb->protocol = eth_type_trans(skb, efx->net_dev);
610 
611 		skb_record_rx_queue(skb, channel->channel);
612 	}
613 
614 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
615 		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
616 
617 	if (likely(rx_buf->flags & (EFX_RX_BUF_PAGE | EFX_RX_PKT_CSUMMED)))
618 		efx_rx_packet_gro(channel, rx_buf, eh);
619 	else
620 		efx_rx_deliver(channel, rx_buf);
621 }
622 
623 void efx_rx_strategy(struct efx_channel *channel)
624 {
625 	enum efx_rx_alloc_method method = rx_alloc_method;
626 
627 	/* Only makes sense to use page based allocation if GRO is enabled */
628 	if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
629 		method = RX_ALLOC_METHOD_SKB;
630 	} else if (method == RX_ALLOC_METHOD_AUTO) {
631 		/* Constrain the rx_alloc_level */
632 		if (channel->rx_alloc_level < 0)
633 			channel->rx_alloc_level = 0;
634 		else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
635 			channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
636 
637 		/* Decide on the allocation method */
638 		method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
639 			  RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
640 	}
641 
642 	/* Push the option */
643 	channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
644 }
645 
646 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
647 {
648 	struct efx_nic *efx = rx_queue->efx;
649 	unsigned int entries;
650 	int rc;
651 
652 	/* Create the smallest power-of-two aligned ring */
653 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
654 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
655 	rx_queue->ptr_mask = entries - 1;
656 
657 	netif_dbg(efx, probe, efx->net_dev,
658 		  "creating RX queue %d size %#x mask %#x\n",
659 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
660 		  rx_queue->ptr_mask);
661 
662 	/* Allocate RX buffers */
663 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
664 				   GFP_KERNEL);
665 	if (!rx_queue->buffer)
666 		return -ENOMEM;
667 
668 	rc = efx_nic_probe_rx(rx_queue);
669 	if (rc) {
670 		kfree(rx_queue->buffer);
671 		rx_queue->buffer = NULL;
672 	}
673 	return rc;
674 }
675 
676 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
677 {
678 	struct efx_nic *efx = rx_queue->efx;
679 	unsigned int max_fill, trigger, max_trigger;
680 
681 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
682 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
683 
684 	/* Initialise ptr fields */
685 	rx_queue->added_count = 0;
686 	rx_queue->notified_count = 0;
687 	rx_queue->removed_count = 0;
688 	rx_queue->min_fill = -1U;
689 
690 	/* Initialise limit fields */
691 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
692 	max_trigger = max_fill - EFX_RX_BATCH;
693 	if (rx_refill_threshold != 0) {
694 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
695 		if (trigger > max_trigger)
696 			trigger = max_trigger;
697 	} else {
698 		trigger = max_trigger;
699 	}
700 
701 	rx_queue->max_fill = max_fill;
702 	rx_queue->fast_fill_trigger = trigger;
703 
704 	/* Set up RX descriptor ring */
705 	rx_queue->enabled = true;
706 	efx_nic_init_rx(rx_queue);
707 }
708 
709 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
710 {
711 	int i;
712 	struct efx_rx_buffer *rx_buf;
713 
714 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
715 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
716 
717 	/* A flush failure might have left rx_queue->enabled */
718 	rx_queue->enabled = false;
719 
720 	del_timer_sync(&rx_queue->slow_fill);
721 	efx_nic_fini_rx(rx_queue);
722 
723 	/* Release RX buffers NB start at index 0 not current HW ptr */
724 	if (rx_queue->buffer) {
725 		for (i = 0; i <= rx_queue->ptr_mask; i++) {
726 			rx_buf = efx_rx_buffer(rx_queue, i);
727 			efx_fini_rx_buffer(rx_queue, rx_buf);
728 		}
729 	}
730 }
731 
732 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
733 {
734 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
735 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
736 
737 	efx_nic_remove_rx(rx_queue);
738 
739 	kfree(rx_queue->buffer);
740 	rx_queue->buffer = NULL;
741 }
742 
743 
744 module_param(rx_alloc_method, int, 0644);
745 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
746 
747 module_param(rx_refill_threshold, uint, 0444);
748 MODULE_PARM_DESC(rx_refill_threshold,
749 		 "RX descriptor ring refill threshold (%)");
750 
751