xref: /openbmc/linux/drivers/net/ethernet/sfc/rx.c (revision 930beb5a)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/prefetch.h>
19 #include <linux/moduleparam.h>
20 #include <linux/iommu.h>
21 #include <net/ip.h>
22 #include <net/checksum.h>
23 #include "net_driver.h"
24 #include "efx.h"
25 #include "filter.h"
26 #include "nic.h"
27 #include "selftest.h"
28 #include "workarounds.h"
29 
30 /* Preferred number of descriptors to fill at once */
31 #define EFX_RX_PREFERRED_BATCH 8U
32 
33 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
34  * ring, this number is divided by the number of buffers per page to calculate
35  * the number of pages to store in the RX page recycle ring.
36  */
37 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
38 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
39 
40 /* Size of buffer allocated for skb header area. */
41 #define EFX_SKB_HEADERS  128u
42 
43 /* This is the percentage fill level below which new RX descriptors
44  * will be added to the RX descriptor ring.
45  */
46 static unsigned int rx_refill_threshold;
47 
48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
49 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
50 				      EFX_RX_USR_BUF_SIZE)
51 
52 /*
53  * RX maximum head room required.
54  *
55  * This must be at least 1 to prevent overflow, plus one packet-worth
56  * to allow pipelined receives.
57  */
58 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
59 
60 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
61 {
62 	return page_address(buf->page) + buf->page_offset;
63 }
64 
65 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
66 {
67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
68 	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
69 #else
70 	const u8 *data = eh + efx->rx_packet_hash_offset;
71 	return (u32)data[0]	  |
72 	       (u32)data[1] << 8  |
73 	       (u32)data[2] << 16 |
74 	       (u32)data[3] << 24;
75 #endif
76 }
77 
78 static inline struct efx_rx_buffer *
79 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
80 {
81 	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
82 		return efx_rx_buffer(rx_queue, 0);
83 	else
84 		return rx_buf + 1;
85 }
86 
87 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
88 				      struct efx_rx_buffer *rx_buf,
89 				      unsigned int len)
90 {
91 	dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
92 				DMA_FROM_DEVICE);
93 }
94 
95 void efx_rx_config_page_split(struct efx_nic *efx)
96 {
97 	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
98 				      EFX_RX_BUF_ALIGNMENT);
99 	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
100 		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
101 		 efx->rx_page_buf_step);
102 	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
103 		efx->rx_bufs_per_page;
104 	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
105 					       efx->rx_bufs_per_page);
106 }
107 
108 /* Check the RX page recycle ring for a page that can be reused. */
109 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
110 {
111 	struct efx_nic *efx = rx_queue->efx;
112 	struct page *page;
113 	struct efx_rx_page_state *state;
114 	unsigned index;
115 
116 	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
117 	page = rx_queue->page_ring[index];
118 	if (page == NULL)
119 		return NULL;
120 
121 	rx_queue->page_ring[index] = NULL;
122 	/* page_remove cannot exceed page_add. */
123 	if (rx_queue->page_remove != rx_queue->page_add)
124 		++rx_queue->page_remove;
125 
126 	/* If page_count is 1 then we hold the only reference to this page. */
127 	if (page_count(page) == 1) {
128 		++rx_queue->page_recycle_count;
129 		return page;
130 	} else {
131 		state = page_address(page);
132 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
133 			       PAGE_SIZE << efx->rx_buffer_order,
134 			       DMA_FROM_DEVICE);
135 		put_page(page);
136 		++rx_queue->page_recycle_failed;
137 	}
138 
139 	return NULL;
140 }
141 
142 /**
143  * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
144  *
145  * @rx_queue:		Efx RX queue
146  *
147  * This allocates a batch of pages, maps them for DMA, and populates
148  * struct efx_rx_buffers for each one. Return a negative error code or
149  * 0 on success. If a single page can be used for multiple buffers,
150  * then the page will either be inserted fully, or not at all.
151  */
152 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
153 {
154 	struct efx_nic *efx = rx_queue->efx;
155 	struct efx_rx_buffer *rx_buf;
156 	struct page *page;
157 	unsigned int page_offset;
158 	struct efx_rx_page_state *state;
159 	dma_addr_t dma_addr;
160 	unsigned index, count;
161 
162 	count = 0;
163 	do {
164 		page = efx_reuse_page(rx_queue);
165 		if (page == NULL) {
166 			page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
167 					   efx->rx_buffer_order);
168 			if (unlikely(page == NULL))
169 				return -ENOMEM;
170 			dma_addr =
171 				dma_map_page(&efx->pci_dev->dev, page, 0,
172 					     PAGE_SIZE << efx->rx_buffer_order,
173 					     DMA_FROM_DEVICE);
174 			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
175 						       dma_addr))) {
176 				__free_pages(page, efx->rx_buffer_order);
177 				return -EIO;
178 			}
179 			state = page_address(page);
180 			state->dma_addr = dma_addr;
181 		} else {
182 			state = page_address(page);
183 			dma_addr = state->dma_addr;
184 		}
185 
186 		dma_addr += sizeof(struct efx_rx_page_state);
187 		page_offset = sizeof(struct efx_rx_page_state);
188 
189 		do {
190 			index = rx_queue->added_count & rx_queue->ptr_mask;
191 			rx_buf = efx_rx_buffer(rx_queue, index);
192 			rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
193 			rx_buf->page = page;
194 			rx_buf->page_offset = page_offset + efx->rx_ip_align;
195 			rx_buf->len = efx->rx_dma_len;
196 			rx_buf->flags = 0;
197 			++rx_queue->added_count;
198 			get_page(page);
199 			dma_addr += efx->rx_page_buf_step;
200 			page_offset += efx->rx_page_buf_step;
201 		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
202 
203 		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
204 	} while (++count < efx->rx_pages_per_batch);
205 
206 	return 0;
207 }
208 
209 /* Unmap a DMA-mapped page.  This function is only called for the final RX
210  * buffer in a page.
211  */
212 static void efx_unmap_rx_buffer(struct efx_nic *efx,
213 				struct efx_rx_buffer *rx_buf)
214 {
215 	struct page *page = rx_buf->page;
216 
217 	if (page) {
218 		struct efx_rx_page_state *state = page_address(page);
219 		dma_unmap_page(&efx->pci_dev->dev,
220 			       state->dma_addr,
221 			       PAGE_SIZE << efx->rx_buffer_order,
222 			       DMA_FROM_DEVICE);
223 	}
224 }
225 
226 static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
227 {
228 	if (rx_buf->page) {
229 		put_page(rx_buf->page);
230 		rx_buf->page = NULL;
231 	}
232 }
233 
234 /* Attempt to recycle the page if there is an RX recycle ring; the page can
235  * only be added if this is the final RX buffer, to prevent pages being used in
236  * the descriptor ring and appearing in the recycle ring simultaneously.
237  */
238 static void efx_recycle_rx_page(struct efx_channel *channel,
239 				struct efx_rx_buffer *rx_buf)
240 {
241 	struct page *page = rx_buf->page;
242 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
243 	struct efx_nic *efx = rx_queue->efx;
244 	unsigned index;
245 
246 	/* Only recycle the page after processing the final buffer. */
247 	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
248 		return;
249 
250 	index = rx_queue->page_add & rx_queue->page_ptr_mask;
251 	if (rx_queue->page_ring[index] == NULL) {
252 		unsigned read_index = rx_queue->page_remove &
253 			rx_queue->page_ptr_mask;
254 
255 		/* The next slot in the recycle ring is available, but
256 		 * increment page_remove if the read pointer currently
257 		 * points here.
258 		 */
259 		if (read_index == index)
260 			++rx_queue->page_remove;
261 		rx_queue->page_ring[index] = page;
262 		++rx_queue->page_add;
263 		return;
264 	}
265 	++rx_queue->page_recycle_full;
266 	efx_unmap_rx_buffer(efx, rx_buf);
267 	put_page(rx_buf->page);
268 }
269 
270 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
271 			       struct efx_rx_buffer *rx_buf)
272 {
273 	/* Release the page reference we hold for the buffer. */
274 	if (rx_buf->page)
275 		put_page(rx_buf->page);
276 
277 	/* If this is the last buffer in a page, unmap and free it. */
278 	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
279 		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
280 		efx_free_rx_buffer(rx_buf);
281 	}
282 	rx_buf->page = NULL;
283 }
284 
285 /* Recycle the pages that are used by buffers that have just been received. */
286 static void efx_recycle_rx_pages(struct efx_channel *channel,
287 				 struct efx_rx_buffer *rx_buf,
288 				 unsigned int n_frags)
289 {
290 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
291 
292 	do {
293 		efx_recycle_rx_page(channel, rx_buf);
294 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
295 	} while (--n_frags);
296 }
297 
298 static void efx_discard_rx_packet(struct efx_channel *channel,
299 				  struct efx_rx_buffer *rx_buf,
300 				  unsigned int n_frags)
301 {
302 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
303 
304 	efx_recycle_rx_pages(channel, rx_buf, n_frags);
305 
306 	do {
307 		efx_free_rx_buffer(rx_buf);
308 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
309 	} while (--n_frags);
310 }
311 
312 /**
313  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
314  * @rx_queue:		RX descriptor queue
315  *
316  * This will aim to fill the RX descriptor queue up to
317  * @rx_queue->@max_fill. If there is insufficient atomic
318  * memory to do so, a slow fill will be scheduled.
319  *
320  * The caller must provide serialisation (none is used here). In practise,
321  * this means this function must run from the NAPI handler, or be called
322  * when NAPI is disabled.
323  */
324 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
325 {
326 	struct efx_nic *efx = rx_queue->efx;
327 	unsigned int fill_level, batch_size;
328 	int space, rc = 0;
329 
330 	if (!rx_queue->refill_enabled)
331 		return;
332 
333 	/* Calculate current fill level, and exit if we don't need to fill */
334 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
335 	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
336 	if (fill_level >= rx_queue->fast_fill_trigger)
337 		goto out;
338 
339 	/* Record minimum fill level */
340 	if (unlikely(fill_level < rx_queue->min_fill)) {
341 		if (fill_level)
342 			rx_queue->min_fill = fill_level;
343 	}
344 
345 	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
346 	space = rx_queue->max_fill - fill_level;
347 	EFX_BUG_ON_PARANOID(space < batch_size);
348 
349 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
350 		   "RX queue %d fast-filling descriptor ring from"
351 		   " level %d to level %d\n",
352 		   efx_rx_queue_index(rx_queue), fill_level,
353 		   rx_queue->max_fill);
354 
355 
356 	do {
357 		rc = efx_init_rx_buffers(rx_queue);
358 		if (unlikely(rc)) {
359 			/* Ensure that we don't leave the rx queue empty */
360 			if (rx_queue->added_count == rx_queue->removed_count)
361 				efx_schedule_slow_fill(rx_queue);
362 			goto out;
363 		}
364 	} while ((space -= batch_size) >= batch_size);
365 
366 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
367 		   "RX queue %d fast-filled descriptor ring "
368 		   "to level %d\n", efx_rx_queue_index(rx_queue),
369 		   rx_queue->added_count - rx_queue->removed_count);
370 
371  out:
372 	if (rx_queue->notified_count != rx_queue->added_count)
373 		efx_nic_notify_rx_desc(rx_queue);
374 }
375 
376 void efx_rx_slow_fill(unsigned long context)
377 {
378 	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
379 
380 	/* Post an event to cause NAPI to run and refill the queue */
381 	efx_nic_generate_fill_event(rx_queue);
382 	++rx_queue->slow_fill_count;
383 }
384 
385 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
386 				     struct efx_rx_buffer *rx_buf,
387 				     int len)
388 {
389 	struct efx_nic *efx = rx_queue->efx;
390 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
391 
392 	if (likely(len <= max_len))
393 		return;
394 
395 	/* The packet must be discarded, but this is only a fatal error
396 	 * if the caller indicated it was
397 	 */
398 	rx_buf->flags |= EFX_RX_PKT_DISCARD;
399 
400 	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
401 		if (net_ratelimit())
402 			netif_err(efx, rx_err, efx->net_dev,
403 				  " RX queue %d seriously overlength "
404 				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
405 				  efx_rx_queue_index(rx_queue), len, max_len,
406 				  efx->type->rx_buffer_padding);
407 		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
408 	} else {
409 		if (net_ratelimit())
410 			netif_err(efx, rx_err, efx->net_dev,
411 				  " RX queue %d overlength RX event "
412 				  "(0x%x > 0x%x)\n",
413 				  efx_rx_queue_index(rx_queue), len, max_len);
414 	}
415 
416 	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
417 }
418 
419 /* Pass a received packet up through GRO.  GRO can handle pages
420  * regardless of checksum state and skbs with a good checksum.
421  */
422 static void
423 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
424 		  unsigned int n_frags, u8 *eh)
425 {
426 	struct napi_struct *napi = &channel->napi_str;
427 	gro_result_t gro_result;
428 	struct efx_nic *efx = channel->efx;
429 	struct sk_buff *skb;
430 
431 	skb = napi_get_frags(napi);
432 	if (unlikely(!skb)) {
433 		while (n_frags--) {
434 			put_page(rx_buf->page);
435 			rx_buf->page = NULL;
436 			rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
437 		}
438 		return;
439 	}
440 
441 	if (efx->net_dev->features & NETIF_F_RXHASH)
442 		skb->rxhash = efx_rx_buf_hash(efx, eh);
443 	skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
444 			  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
445 
446 	for (;;) {
447 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
448 				   rx_buf->page, rx_buf->page_offset,
449 				   rx_buf->len);
450 		rx_buf->page = NULL;
451 		skb->len += rx_buf->len;
452 		if (skb_shinfo(skb)->nr_frags == n_frags)
453 			break;
454 
455 		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
456 	}
457 
458 	skb->data_len = skb->len;
459 	skb->truesize += n_frags * efx->rx_buffer_truesize;
460 
461 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
462 
463 	gro_result = napi_gro_frags(napi);
464 	if (gro_result != GRO_DROP)
465 		channel->irq_mod_score += 2;
466 }
467 
468 /* Allocate and construct an SKB around page fragments */
469 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
470 				     struct efx_rx_buffer *rx_buf,
471 				     unsigned int n_frags,
472 				     u8 *eh, int hdr_len)
473 {
474 	struct efx_nic *efx = channel->efx;
475 	struct sk_buff *skb;
476 
477 	/* Allocate an SKB to store the headers */
478 	skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
479 	if (unlikely(skb == NULL))
480 		return NULL;
481 
482 	EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
483 
484 	skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
485 	memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
486 
487 	/* Append the remaining page(s) onto the frag list */
488 	if (rx_buf->len > hdr_len) {
489 		rx_buf->page_offset += hdr_len;
490 		rx_buf->len -= hdr_len;
491 
492 		for (;;) {
493 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
494 					   rx_buf->page, rx_buf->page_offset,
495 					   rx_buf->len);
496 			rx_buf->page = NULL;
497 			skb->len += rx_buf->len;
498 			skb->data_len += rx_buf->len;
499 			if (skb_shinfo(skb)->nr_frags == n_frags)
500 				break;
501 
502 			rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
503 		}
504 	} else {
505 		__free_pages(rx_buf->page, efx->rx_buffer_order);
506 		rx_buf->page = NULL;
507 		n_frags = 0;
508 	}
509 
510 	skb->truesize += n_frags * efx->rx_buffer_truesize;
511 
512 	/* Move past the ethernet header */
513 	skb->protocol = eth_type_trans(skb, efx->net_dev);
514 
515 	return skb;
516 }
517 
518 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
519 		   unsigned int n_frags, unsigned int len, u16 flags)
520 {
521 	struct efx_nic *efx = rx_queue->efx;
522 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
523 	struct efx_rx_buffer *rx_buf;
524 
525 	rx_buf = efx_rx_buffer(rx_queue, index);
526 	rx_buf->flags |= flags;
527 
528 	/* Validate the number of fragments and completed length */
529 	if (n_frags == 1) {
530 		if (!(flags & EFX_RX_PKT_PREFIX_LEN))
531 			efx_rx_packet__check_len(rx_queue, rx_buf, len);
532 	} else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
533 		   unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
534 		   unlikely(len > n_frags * efx->rx_dma_len) ||
535 		   unlikely(!efx->rx_scatter)) {
536 		/* If this isn't an explicit discard request, either
537 		 * the hardware or the driver is broken.
538 		 */
539 		WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
540 		rx_buf->flags |= EFX_RX_PKT_DISCARD;
541 	}
542 
543 	netif_vdbg(efx, rx_status, efx->net_dev,
544 		   "RX queue %d received ids %x-%x len %d %s%s\n",
545 		   efx_rx_queue_index(rx_queue), index,
546 		   (index + n_frags - 1) & rx_queue->ptr_mask, len,
547 		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
548 		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
549 
550 	/* Discard packet, if instructed to do so.  Process the
551 	 * previous receive first.
552 	 */
553 	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
554 		efx_rx_flush_packet(channel);
555 		efx_discard_rx_packet(channel, rx_buf, n_frags);
556 		return;
557 	}
558 
559 	if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
560 		rx_buf->len = len;
561 
562 	/* Release and/or sync the DMA mapping - assumes all RX buffers
563 	 * consumed in-order per RX queue.
564 	 */
565 	efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
566 
567 	/* Prefetch nice and early so data will (hopefully) be in cache by
568 	 * the time we look at it.
569 	 */
570 	prefetch(efx_rx_buf_va(rx_buf));
571 
572 	rx_buf->page_offset += efx->rx_prefix_size;
573 	rx_buf->len -= efx->rx_prefix_size;
574 
575 	if (n_frags > 1) {
576 		/* Release/sync DMA mapping for additional fragments.
577 		 * Fix length for last fragment.
578 		 */
579 		unsigned int tail_frags = n_frags - 1;
580 
581 		for (;;) {
582 			rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
583 			if (--tail_frags == 0)
584 				break;
585 			efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
586 		}
587 		rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
588 		efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
589 	}
590 
591 	/* All fragments have been DMA-synced, so recycle pages. */
592 	rx_buf = efx_rx_buffer(rx_queue, index);
593 	efx_recycle_rx_pages(channel, rx_buf, n_frags);
594 
595 	/* Pipeline receives so that we give time for packet headers to be
596 	 * prefetched into cache.
597 	 */
598 	efx_rx_flush_packet(channel);
599 	channel->rx_pkt_n_frags = n_frags;
600 	channel->rx_pkt_index = index;
601 }
602 
603 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
604 			   struct efx_rx_buffer *rx_buf,
605 			   unsigned int n_frags)
606 {
607 	struct sk_buff *skb;
608 	u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
609 
610 	skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
611 	if (unlikely(skb == NULL)) {
612 		efx_free_rx_buffer(rx_buf);
613 		return;
614 	}
615 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
616 
617 	/* Set the SKB flags */
618 	skb_checksum_none_assert(skb);
619 	if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
620 		skb->ip_summed = CHECKSUM_UNNECESSARY;
621 
622 	if (channel->type->receive_skb)
623 		if (channel->type->receive_skb(channel, skb))
624 			return;
625 
626 	/* Pass the packet up */
627 	netif_receive_skb(skb);
628 }
629 
630 /* Handle a received packet.  Second half: Touches packet payload. */
631 void __efx_rx_packet(struct efx_channel *channel)
632 {
633 	struct efx_nic *efx = channel->efx;
634 	struct efx_rx_buffer *rx_buf =
635 		efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
636 	u8 *eh = efx_rx_buf_va(rx_buf);
637 
638 	/* Read length from the prefix if necessary.  This already
639 	 * excludes the length of the prefix itself.
640 	 */
641 	if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
642 		rx_buf->len = le16_to_cpup((__le16 *)
643 					   (eh + efx->rx_packet_len_offset));
644 
645 	/* If we're in loopback test, then pass the packet directly to the
646 	 * loopback layer, and free the rx_buf here
647 	 */
648 	if (unlikely(efx->loopback_selftest)) {
649 		efx_loopback_rx_packet(efx, eh, rx_buf->len);
650 		efx_free_rx_buffer(rx_buf);
651 		goto out;
652 	}
653 
654 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
655 		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
656 
657 	if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
658 		efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
659 	else
660 		efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
661 out:
662 	channel->rx_pkt_n_frags = 0;
663 }
664 
665 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
666 {
667 	struct efx_nic *efx = rx_queue->efx;
668 	unsigned int entries;
669 	int rc;
670 
671 	/* Create the smallest power-of-two aligned ring */
672 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
673 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
674 	rx_queue->ptr_mask = entries - 1;
675 
676 	netif_dbg(efx, probe, efx->net_dev,
677 		  "creating RX queue %d size %#x mask %#x\n",
678 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
679 		  rx_queue->ptr_mask);
680 
681 	/* Allocate RX buffers */
682 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
683 				   GFP_KERNEL);
684 	if (!rx_queue->buffer)
685 		return -ENOMEM;
686 
687 	rc = efx_nic_probe_rx(rx_queue);
688 	if (rc) {
689 		kfree(rx_queue->buffer);
690 		rx_queue->buffer = NULL;
691 	}
692 
693 	return rc;
694 }
695 
696 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
697 				     struct efx_rx_queue *rx_queue)
698 {
699 	unsigned int bufs_in_recycle_ring, page_ring_size;
700 
701 	/* Set the RX recycle ring size */
702 #ifdef CONFIG_PPC64
703 	bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
704 #else
705 	if (iommu_present(&pci_bus_type))
706 		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
707 	else
708 		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
709 #endif /* CONFIG_PPC64 */
710 
711 	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
712 					    efx->rx_bufs_per_page);
713 	rx_queue->page_ring = kcalloc(page_ring_size,
714 				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
715 	rx_queue->page_ptr_mask = page_ring_size - 1;
716 }
717 
718 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
719 {
720 	struct efx_nic *efx = rx_queue->efx;
721 	unsigned int max_fill, trigger, max_trigger;
722 
723 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
724 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
725 
726 	/* Initialise ptr fields */
727 	rx_queue->added_count = 0;
728 	rx_queue->notified_count = 0;
729 	rx_queue->removed_count = 0;
730 	rx_queue->min_fill = -1U;
731 	efx_init_rx_recycle_ring(efx, rx_queue);
732 
733 	rx_queue->page_remove = 0;
734 	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
735 	rx_queue->page_recycle_count = 0;
736 	rx_queue->page_recycle_failed = 0;
737 	rx_queue->page_recycle_full = 0;
738 
739 	/* Initialise limit fields */
740 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
741 	max_trigger =
742 		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
743 	if (rx_refill_threshold != 0) {
744 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
745 		if (trigger > max_trigger)
746 			trigger = max_trigger;
747 	} else {
748 		trigger = max_trigger;
749 	}
750 
751 	rx_queue->max_fill = max_fill;
752 	rx_queue->fast_fill_trigger = trigger;
753 	rx_queue->refill_enabled = true;
754 
755 	/* Set up RX descriptor ring */
756 	efx_nic_init_rx(rx_queue);
757 }
758 
759 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
760 {
761 	int i;
762 	struct efx_nic *efx = rx_queue->efx;
763 	struct efx_rx_buffer *rx_buf;
764 
765 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
766 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
767 
768 	del_timer_sync(&rx_queue->slow_fill);
769 
770 	/* Release RX buffers from the current read ptr to the write ptr */
771 	if (rx_queue->buffer) {
772 		for (i = rx_queue->removed_count; i < rx_queue->added_count;
773 		     i++) {
774 			unsigned index = i & rx_queue->ptr_mask;
775 			rx_buf = efx_rx_buffer(rx_queue, index);
776 			efx_fini_rx_buffer(rx_queue, rx_buf);
777 		}
778 	}
779 
780 	/* Unmap and release the pages in the recycle ring. Remove the ring. */
781 	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
782 		struct page *page = rx_queue->page_ring[i];
783 		struct efx_rx_page_state *state;
784 
785 		if (page == NULL)
786 			continue;
787 
788 		state = page_address(page);
789 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
790 			       PAGE_SIZE << efx->rx_buffer_order,
791 			       DMA_FROM_DEVICE);
792 		put_page(page);
793 	}
794 	kfree(rx_queue->page_ring);
795 	rx_queue->page_ring = NULL;
796 }
797 
798 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
799 {
800 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
801 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
802 
803 	efx_nic_remove_rx(rx_queue);
804 
805 	kfree(rx_queue->buffer);
806 	rx_queue->buffer = NULL;
807 }
808 
809 
810 module_param(rx_refill_threshold, uint, 0444);
811 MODULE_PARM_DESC(rx_refill_threshold,
812 		 "RX descriptor ring refill threshold (%)");
813 
814 #ifdef CONFIG_RFS_ACCEL
815 
816 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
817 		   u16 rxq_index, u32 flow_id)
818 {
819 	struct efx_nic *efx = netdev_priv(net_dev);
820 	struct efx_channel *channel;
821 	struct efx_filter_spec spec;
822 	const __be16 *ports;
823 	__be16 ether_type;
824 	int nhoff;
825 	int rc;
826 
827 	/* The core RPS/RFS code has already parsed and validated
828 	 * VLAN, IP and transport headers.  We assume they are in the
829 	 * header area.
830 	 */
831 
832 	if (skb->protocol == htons(ETH_P_8021Q)) {
833 		const struct vlan_hdr *vh =
834 			(const struct vlan_hdr *)skb->data;
835 
836 		/* We can't filter on the IP 5-tuple and the vlan
837 		 * together, so just strip the vlan header and filter
838 		 * on the IP part.
839 		 */
840 		EFX_BUG_ON_PARANOID(skb_headlen(skb) < sizeof(*vh));
841 		ether_type = vh->h_vlan_encapsulated_proto;
842 		nhoff = sizeof(struct vlan_hdr);
843 	} else {
844 		ether_type = skb->protocol;
845 		nhoff = 0;
846 	}
847 
848 	if (ether_type != htons(ETH_P_IP) && ether_type != htons(ETH_P_IPV6))
849 		return -EPROTONOSUPPORT;
850 
851 	efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT,
852 			   efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
853 			   rxq_index);
854 	spec.match_flags =
855 		EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
856 		EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
857 		EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
858 	spec.ether_type = ether_type;
859 
860 	if (ether_type == htons(ETH_P_IP)) {
861 		const struct iphdr *ip =
862 			(const struct iphdr *)(skb->data + nhoff);
863 
864 		EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip));
865 		if (ip_is_fragment(ip))
866 			return -EPROTONOSUPPORT;
867 		spec.ip_proto = ip->protocol;
868 		spec.rem_host[0] = ip->saddr;
869 		spec.loc_host[0] = ip->daddr;
870 		EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4);
871 		ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl);
872 	} else {
873 		const struct ipv6hdr *ip6 =
874 			(const struct ipv6hdr *)(skb->data + nhoff);
875 
876 		EFX_BUG_ON_PARANOID(skb_headlen(skb) <
877 				    nhoff + sizeof(*ip6) + 4);
878 		spec.ip_proto = ip6->nexthdr;
879 		memcpy(spec.rem_host, &ip6->saddr, sizeof(ip6->saddr));
880 		memcpy(spec.loc_host, &ip6->daddr, sizeof(ip6->daddr));
881 		ports = (const __be16 *)(ip6 + 1);
882 	}
883 
884 	spec.rem_port = ports[0];
885 	spec.loc_port = ports[1];
886 
887 	rc = efx->type->filter_rfs_insert(efx, &spec);
888 	if (rc < 0)
889 		return rc;
890 
891 	/* Remember this so we can check whether to expire the filter later */
892 	efx->rps_flow_id[rc] = flow_id;
893 	channel = efx_get_channel(efx, skb_get_rx_queue(skb));
894 	++channel->rfs_filters_added;
895 
896 	if (ether_type == htons(ETH_P_IP))
897 		netif_info(efx, rx_status, efx->net_dev,
898 			   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
899 			   (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
900 			   spec.rem_host, ntohs(ports[0]), spec.loc_host,
901 			   ntohs(ports[1]), rxq_index, flow_id, rc);
902 	else
903 		netif_info(efx, rx_status, efx->net_dev,
904 			   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
905 			   (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
906 			   spec.rem_host, ntohs(ports[0]), spec.loc_host,
907 			   ntohs(ports[1]), rxq_index, flow_id, rc);
908 
909 	return rc;
910 }
911 
912 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
913 {
914 	bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
915 	unsigned int index, size;
916 	u32 flow_id;
917 
918 	if (!spin_trylock_bh(&efx->filter_lock))
919 		return false;
920 
921 	expire_one = efx->type->filter_rfs_expire_one;
922 	index = efx->rps_expire_index;
923 	size = efx->type->max_rx_ip_filters;
924 	while (quota--) {
925 		flow_id = efx->rps_flow_id[index];
926 		if (expire_one(efx, flow_id, index))
927 			netif_info(efx, rx_status, efx->net_dev,
928 				   "expired filter %d [flow %u]\n",
929 				   index, flow_id);
930 		if (++index == size)
931 			index = 0;
932 	}
933 	efx->rps_expire_index = index;
934 
935 	spin_unlock_bh(&efx->filter_lock);
936 	return true;
937 }
938 
939 #endif /* CONFIG_RFS_ACCEL */
940 
941 /**
942  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
943  * @spec: Specification to test
944  *
945  * Return: %true if the specification is a non-drop RX filter that
946  * matches a local MAC address I/G bit value of 1 or matches a local
947  * IPv4 or IPv6 address value in the respective multicast address
948  * range.  Otherwise %false.
949  */
950 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
951 {
952 	if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
953 	    spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
954 		return false;
955 
956 	if (spec->match_flags &
957 	    (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
958 	    is_multicast_ether_addr(spec->loc_mac))
959 		return true;
960 
961 	if ((spec->match_flags &
962 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
963 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
964 		if (spec->ether_type == htons(ETH_P_IP) &&
965 		    ipv4_is_multicast(spec->loc_host[0]))
966 			return true;
967 		if (spec->ether_type == htons(ETH_P_IPV6) &&
968 		    ((const u8 *)spec->loc_host)[0] == 0xff)
969 			return true;
970 	}
971 
972 	return false;
973 }
974