1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/socket.h> 9 #include <linux/in.h> 10 #include <linux/slab.h> 11 #include <linux/ip.h> 12 #include <linux/ipv6.h> 13 #include <linux/tcp.h> 14 #include <linux/udp.h> 15 #include <linux/prefetch.h> 16 #include <linux/moduleparam.h> 17 #include <linux/iommu.h> 18 #include <net/ip.h> 19 #include <net/checksum.h> 20 #include <net/xdp.h> 21 #include <linux/bpf_trace.h> 22 #include "net_driver.h" 23 #include "efx.h" 24 #include "filter.h" 25 #include "nic.h" 26 #include "selftest.h" 27 #include "workarounds.h" 28 29 /* Preferred number of descriptors to fill at once */ 30 #define EFX_RX_PREFERRED_BATCH 8U 31 32 /* Maximum rx prefix used by any architecture. */ 33 #define EFX_MAX_RX_PREFIX_SIZE 16 34 35 /* Number of RX buffers to recycle pages for. When creating the RX page recycle 36 * ring, this number is divided by the number of buffers per page to calculate 37 * the number of pages to store in the RX page recycle ring. 38 */ 39 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 40 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) 41 42 /* Size of buffer allocated for skb header area. */ 43 #define EFX_SKB_HEADERS 128u 44 45 /* This is the percentage fill level below which new RX descriptors 46 * will be added to the RX descriptor ring. 47 */ 48 static unsigned int rx_refill_threshold; 49 50 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */ 51 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \ 52 EFX_RX_USR_BUF_SIZE) 53 54 /* 55 * RX maximum head room required. 56 * 57 * This must be at least 1 to prevent overflow, plus one packet-worth 58 * to allow pipelined receives. 59 */ 60 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) 61 62 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf) 63 { 64 return page_address(buf->page) + buf->page_offset; 65 } 66 67 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh) 68 { 69 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 70 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset)); 71 #else 72 const u8 *data = eh + efx->rx_packet_hash_offset; 73 return (u32)data[0] | 74 (u32)data[1] << 8 | 75 (u32)data[2] << 16 | 76 (u32)data[3] << 24; 77 #endif 78 } 79 80 static inline struct efx_rx_buffer * 81 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) 82 { 83 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) 84 return efx_rx_buffer(rx_queue, 0); 85 else 86 return rx_buf + 1; 87 } 88 89 static inline void efx_sync_rx_buffer(struct efx_nic *efx, 90 struct efx_rx_buffer *rx_buf, 91 unsigned int len) 92 { 93 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len, 94 DMA_FROM_DEVICE); 95 } 96 97 void efx_rx_config_page_split(struct efx_nic *efx) 98 { 99 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align + 100 XDP_PACKET_HEADROOM, 101 EFX_RX_BUF_ALIGNMENT); 102 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : 103 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / 104 efx->rx_page_buf_step); 105 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / 106 efx->rx_bufs_per_page; 107 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, 108 efx->rx_bufs_per_page); 109 } 110 111 /* Check the RX page recycle ring for a page that can be reused. */ 112 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) 113 { 114 struct efx_nic *efx = rx_queue->efx; 115 struct page *page; 116 struct efx_rx_page_state *state; 117 unsigned index; 118 119 index = rx_queue->page_remove & rx_queue->page_ptr_mask; 120 page = rx_queue->page_ring[index]; 121 if (page == NULL) 122 return NULL; 123 124 rx_queue->page_ring[index] = NULL; 125 /* page_remove cannot exceed page_add. */ 126 if (rx_queue->page_remove != rx_queue->page_add) 127 ++rx_queue->page_remove; 128 129 /* If page_count is 1 then we hold the only reference to this page. */ 130 if (page_count(page) == 1) { 131 ++rx_queue->page_recycle_count; 132 return page; 133 } else { 134 state = page_address(page); 135 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 136 PAGE_SIZE << efx->rx_buffer_order, 137 DMA_FROM_DEVICE); 138 put_page(page); 139 ++rx_queue->page_recycle_failed; 140 } 141 142 return NULL; 143 } 144 145 /** 146 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers 147 * 148 * @rx_queue: Efx RX queue 149 * 150 * This allocates a batch of pages, maps them for DMA, and populates 151 * struct efx_rx_buffers for each one. Return a negative error code or 152 * 0 on success. If a single page can be used for multiple buffers, 153 * then the page will either be inserted fully, or not at all. 154 */ 155 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) 156 { 157 struct efx_nic *efx = rx_queue->efx; 158 struct efx_rx_buffer *rx_buf; 159 struct page *page; 160 unsigned int page_offset; 161 struct efx_rx_page_state *state; 162 dma_addr_t dma_addr; 163 unsigned index, count; 164 165 count = 0; 166 do { 167 page = efx_reuse_page(rx_queue); 168 if (page == NULL) { 169 page = alloc_pages(__GFP_COMP | 170 (atomic ? GFP_ATOMIC : GFP_KERNEL), 171 efx->rx_buffer_order); 172 if (unlikely(page == NULL)) 173 return -ENOMEM; 174 dma_addr = 175 dma_map_page(&efx->pci_dev->dev, page, 0, 176 PAGE_SIZE << efx->rx_buffer_order, 177 DMA_FROM_DEVICE); 178 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, 179 dma_addr))) { 180 __free_pages(page, efx->rx_buffer_order); 181 return -EIO; 182 } 183 state = page_address(page); 184 state->dma_addr = dma_addr; 185 } else { 186 state = page_address(page); 187 dma_addr = state->dma_addr; 188 } 189 190 dma_addr += sizeof(struct efx_rx_page_state); 191 page_offset = sizeof(struct efx_rx_page_state); 192 193 do { 194 index = rx_queue->added_count & rx_queue->ptr_mask; 195 rx_buf = efx_rx_buffer(rx_queue, index); 196 rx_buf->dma_addr = dma_addr + efx->rx_ip_align + 197 XDP_PACKET_HEADROOM; 198 rx_buf->page = page; 199 rx_buf->page_offset = page_offset + efx->rx_ip_align + 200 XDP_PACKET_HEADROOM; 201 rx_buf->len = efx->rx_dma_len; 202 rx_buf->flags = 0; 203 ++rx_queue->added_count; 204 get_page(page); 205 dma_addr += efx->rx_page_buf_step; 206 page_offset += efx->rx_page_buf_step; 207 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); 208 209 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; 210 } while (++count < efx->rx_pages_per_batch); 211 212 return 0; 213 } 214 215 /* Unmap a DMA-mapped page. This function is only called for the final RX 216 * buffer in a page. 217 */ 218 static void efx_unmap_rx_buffer(struct efx_nic *efx, 219 struct efx_rx_buffer *rx_buf) 220 { 221 struct page *page = rx_buf->page; 222 223 if (page) { 224 struct efx_rx_page_state *state = page_address(page); 225 dma_unmap_page(&efx->pci_dev->dev, 226 state->dma_addr, 227 PAGE_SIZE << efx->rx_buffer_order, 228 DMA_FROM_DEVICE); 229 } 230 } 231 232 static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, 233 struct efx_rx_buffer *rx_buf, 234 unsigned int num_bufs) 235 { 236 do { 237 if (rx_buf->page) { 238 put_page(rx_buf->page); 239 rx_buf->page = NULL; 240 } 241 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 242 } while (--num_bufs); 243 } 244 245 /* Attempt to recycle the page if there is an RX recycle ring; the page can 246 * only be added if this is the final RX buffer, to prevent pages being used in 247 * the descriptor ring and appearing in the recycle ring simultaneously. 248 */ 249 static void efx_recycle_rx_page(struct efx_channel *channel, 250 struct efx_rx_buffer *rx_buf) 251 { 252 struct page *page = rx_buf->page; 253 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 254 struct efx_nic *efx = rx_queue->efx; 255 unsigned index; 256 257 /* Only recycle the page after processing the final buffer. */ 258 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) 259 return; 260 261 index = rx_queue->page_add & rx_queue->page_ptr_mask; 262 if (rx_queue->page_ring[index] == NULL) { 263 unsigned read_index = rx_queue->page_remove & 264 rx_queue->page_ptr_mask; 265 266 /* The next slot in the recycle ring is available, but 267 * increment page_remove if the read pointer currently 268 * points here. 269 */ 270 if (read_index == index) 271 ++rx_queue->page_remove; 272 rx_queue->page_ring[index] = page; 273 ++rx_queue->page_add; 274 return; 275 } 276 ++rx_queue->page_recycle_full; 277 efx_unmap_rx_buffer(efx, rx_buf); 278 put_page(rx_buf->page); 279 } 280 281 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 282 struct efx_rx_buffer *rx_buf) 283 { 284 /* Release the page reference we hold for the buffer. */ 285 if (rx_buf->page) 286 put_page(rx_buf->page); 287 288 /* If this is the last buffer in a page, unmap and free it. */ 289 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { 290 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 291 efx_free_rx_buffers(rx_queue, rx_buf, 1); 292 } 293 rx_buf->page = NULL; 294 } 295 296 /* Recycle the pages that are used by buffers that have just been received. */ 297 static void efx_recycle_rx_pages(struct efx_channel *channel, 298 struct efx_rx_buffer *rx_buf, 299 unsigned int n_frags) 300 { 301 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 302 303 do { 304 efx_recycle_rx_page(channel, rx_buf); 305 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 306 } while (--n_frags); 307 } 308 309 static void efx_discard_rx_packet(struct efx_channel *channel, 310 struct efx_rx_buffer *rx_buf, 311 unsigned int n_frags) 312 { 313 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 314 315 efx_recycle_rx_pages(channel, rx_buf, n_frags); 316 317 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 318 } 319 320 /** 321 * efx_fast_push_rx_descriptors - push new RX descriptors quickly 322 * @rx_queue: RX descriptor queue 323 * 324 * This will aim to fill the RX descriptor queue up to 325 * @rx_queue->@max_fill. If there is insufficient atomic 326 * memory to do so, a slow fill will be scheduled. 327 * 328 * The caller must provide serialisation (none is used here). In practise, 329 * this means this function must run from the NAPI handler, or be called 330 * when NAPI is disabled. 331 */ 332 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) 333 { 334 struct efx_nic *efx = rx_queue->efx; 335 unsigned int fill_level, batch_size; 336 int space, rc = 0; 337 338 if (!rx_queue->refill_enabled) 339 return; 340 341 /* Calculate current fill level, and exit if we don't need to fill */ 342 fill_level = (rx_queue->added_count - rx_queue->removed_count); 343 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); 344 if (fill_level >= rx_queue->fast_fill_trigger) 345 goto out; 346 347 /* Record minimum fill level */ 348 if (unlikely(fill_level < rx_queue->min_fill)) { 349 if (fill_level) 350 rx_queue->min_fill = fill_level; 351 } 352 353 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; 354 space = rx_queue->max_fill - fill_level; 355 EFX_WARN_ON_ONCE_PARANOID(space < batch_size); 356 357 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 358 "RX queue %d fast-filling descriptor ring from" 359 " level %d to level %d\n", 360 efx_rx_queue_index(rx_queue), fill_level, 361 rx_queue->max_fill); 362 363 364 do { 365 rc = efx_init_rx_buffers(rx_queue, atomic); 366 if (unlikely(rc)) { 367 /* Ensure that we don't leave the rx queue empty */ 368 efx_schedule_slow_fill(rx_queue); 369 goto out; 370 } 371 } while ((space -= batch_size) >= batch_size); 372 373 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 374 "RX queue %d fast-filled descriptor ring " 375 "to level %d\n", efx_rx_queue_index(rx_queue), 376 rx_queue->added_count - rx_queue->removed_count); 377 378 out: 379 if (rx_queue->notified_count != rx_queue->added_count) 380 efx_nic_notify_rx_desc(rx_queue); 381 } 382 383 void efx_rx_slow_fill(struct timer_list *t) 384 { 385 struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); 386 387 /* Post an event to cause NAPI to run and refill the queue */ 388 efx_nic_generate_fill_event(rx_queue); 389 ++rx_queue->slow_fill_count; 390 } 391 392 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, 393 struct efx_rx_buffer *rx_buf, 394 int len) 395 { 396 struct efx_nic *efx = rx_queue->efx; 397 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; 398 399 if (likely(len <= max_len)) 400 return; 401 402 /* The packet must be discarded, but this is only a fatal error 403 * if the caller indicated it was 404 */ 405 rx_buf->flags |= EFX_RX_PKT_DISCARD; 406 407 if (net_ratelimit()) 408 netif_err(efx, rx_err, efx->net_dev, 409 "RX queue %d overlength RX event (%#x > %#x)\n", 410 efx_rx_queue_index(rx_queue), len, max_len); 411 412 efx_rx_queue_channel(rx_queue)->n_rx_overlength++; 413 } 414 415 /* Pass a received packet up through GRO. GRO can handle pages 416 * regardless of checksum state and skbs with a good checksum. 417 */ 418 static void 419 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, 420 unsigned int n_frags, u8 *eh) 421 { 422 struct napi_struct *napi = &channel->napi_str; 423 struct efx_nic *efx = channel->efx; 424 struct sk_buff *skb; 425 426 skb = napi_get_frags(napi); 427 if (unlikely(!skb)) { 428 struct efx_rx_queue *rx_queue; 429 430 rx_queue = efx_channel_get_rx_queue(channel); 431 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 432 return; 433 } 434 435 if (efx->net_dev->features & NETIF_F_RXHASH) 436 skb_set_hash(skb, efx_rx_buf_hash(efx, eh), 437 PKT_HASH_TYPE_L3); 438 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 439 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 440 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 441 442 for (;;) { 443 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 444 rx_buf->page, rx_buf->page_offset, 445 rx_buf->len); 446 rx_buf->page = NULL; 447 skb->len += rx_buf->len; 448 if (skb_shinfo(skb)->nr_frags == n_frags) 449 break; 450 451 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 452 } 453 454 skb->data_len = skb->len; 455 skb->truesize += n_frags * efx->rx_buffer_truesize; 456 457 skb_record_rx_queue(skb, channel->rx_queue.core_index); 458 459 napi_gro_frags(napi); 460 } 461 462 /* Allocate and construct an SKB around page fragments */ 463 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel, 464 struct efx_rx_buffer *rx_buf, 465 unsigned int n_frags, 466 u8 *eh, int hdr_len) 467 { 468 struct efx_nic *efx = channel->efx; 469 struct sk_buff *skb; 470 471 /* Allocate an SKB to store the headers */ 472 skb = netdev_alloc_skb(efx->net_dev, 473 efx->rx_ip_align + efx->rx_prefix_size + 474 hdr_len); 475 if (unlikely(skb == NULL)) { 476 atomic_inc(&efx->n_rx_noskb_drops); 477 return NULL; 478 } 479 480 EFX_WARN_ON_ONCE_PARANOID(rx_buf->len < hdr_len); 481 482 memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size, 483 efx->rx_prefix_size + hdr_len); 484 skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size); 485 __skb_put(skb, hdr_len); 486 487 /* Append the remaining page(s) onto the frag list */ 488 if (rx_buf->len > hdr_len) { 489 rx_buf->page_offset += hdr_len; 490 rx_buf->len -= hdr_len; 491 492 for (;;) { 493 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 494 rx_buf->page, rx_buf->page_offset, 495 rx_buf->len); 496 rx_buf->page = NULL; 497 skb->len += rx_buf->len; 498 skb->data_len += rx_buf->len; 499 if (skb_shinfo(skb)->nr_frags == n_frags) 500 break; 501 502 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 503 } 504 } else { 505 __free_pages(rx_buf->page, efx->rx_buffer_order); 506 rx_buf->page = NULL; 507 n_frags = 0; 508 } 509 510 skb->truesize += n_frags * efx->rx_buffer_truesize; 511 512 /* Move past the ethernet header */ 513 skb->protocol = eth_type_trans(skb, efx->net_dev); 514 515 skb_mark_napi_id(skb, &channel->napi_str); 516 517 return skb; 518 } 519 520 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, 521 unsigned int n_frags, unsigned int len, u16 flags) 522 { 523 struct efx_nic *efx = rx_queue->efx; 524 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 525 struct efx_rx_buffer *rx_buf; 526 527 rx_queue->rx_packets++; 528 529 rx_buf = efx_rx_buffer(rx_queue, index); 530 rx_buf->flags |= flags; 531 532 /* Validate the number of fragments and completed length */ 533 if (n_frags == 1) { 534 if (!(flags & EFX_RX_PKT_PREFIX_LEN)) 535 efx_rx_packet__check_len(rx_queue, rx_buf, len); 536 } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) || 537 unlikely(len <= (n_frags - 1) * efx->rx_dma_len) || 538 unlikely(len > n_frags * efx->rx_dma_len) || 539 unlikely(!efx->rx_scatter)) { 540 /* If this isn't an explicit discard request, either 541 * the hardware or the driver is broken. 542 */ 543 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD)); 544 rx_buf->flags |= EFX_RX_PKT_DISCARD; 545 } 546 547 netif_vdbg(efx, rx_status, efx->net_dev, 548 "RX queue %d received ids %x-%x len %d %s%s\n", 549 efx_rx_queue_index(rx_queue), index, 550 (index + n_frags - 1) & rx_queue->ptr_mask, len, 551 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "", 552 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : ""); 553 554 /* Discard packet, if instructed to do so. Process the 555 * previous receive first. 556 */ 557 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) { 558 efx_rx_flush_packet(channel); 559 efx_discard_rx_packet(channel, rx_buf, n_frags); 560 return; 561 } 562 563 if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN)) 564 rx_buf->len = len; 565 566 /* Release and/or sync the DMA mapping - assumes all RX buffers 567 * consumed in-order per RX queue. 568 */ 569 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); 570 571 /* Prefetch nice and early so data will (hopefully) be in cache by 572 * the time we look at it. 573 */ 574 prefetch(efx_rx_buf_va(rx_buf)); 575 576 rx_buf->page_offset += efx->rx_prefix_size; 577 rx_buf->len -= efx->rx_prefix_size; 578 579 if (n_frags > 1) { 580 /* Release/sync DMA mapping for additional fragments. 581 * Fix length for last fragment. 582 */ 583 unsigned int tail_frags = n_frags - 1; 584 585 for (;;) { 586 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 587 if (--tail_frags == 0) 588 break; 589 efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len); 590 } 591 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len; 592 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); 593 } 594 595 /* All fragments have been DMA-synced, so recycle pages. */ 596 rx_buf = efx_rx_buffer(rx_queue, index); 597 efx_recycle_rx_pages(channel, rx_buf, n_frags); 598 599 /* Pipeline receives so that we give time for packet headers to be 600 * prefetched into cache. 601 */ 602 efx_rx_flush_packet(channel); 603 channel->rx_pkt_n_frags = n_frags; 604 channel->rx_pkt_index = index; 605 } 606 607 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh, 608 struct efx_rx_buffer *rx_buf, 609 unsigned int n_frags) 610 { 611 struct sk_buff *skb; 612 u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS); 613 614 skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len); 615 if (unlikely(skb == NULL)) { 616 struct efx_rx_queue *rx_queue; 617 618 rx_queue = efx_channel_get_rx_queue(channel); 619 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 620 return; 621 } 622 skb_record_rx_queue(skb, channel->rx_queue.core_index); 623 624 /* Set the SKB flags */ 625 skb_checksum_none_assert(skb); 626 if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) { 627 skb->ip_summed = CHECKSUM_UNNECESSARY; 628 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); 629 } 630 631 efx_rx_skb_attach_timestamp(channel, skb); 632 633 if (channel->type->receive_skb) 634 if (channel->type->receive_skb(channel, skb)) 635 return; 636 637 /* Pass the packet up */ 638 if (channel->rx_list != NULL) 639 /* Add to list, will pass up later */ 640 list_add_tail(&skb->list, channel->rx_list); 641 else 642 /* No list, so pass it up now */ 643 netif_receive_skb(skb); 644 } 645 646 /** efx_do_xdp: perform XDP processing on a received packet 647 * 648 * Returns true if packet should still be delivered. 649 */ 650 static bool efx_do_xdp(struct efx_nic *efx, struct efx_channel *channel, 651 struct efx_rx_buffer *rx_buf, u8 **ehp) 652 { 653 u8 rx_prefix[EFX_MAX_RX_PREFIX_SIZE]; 654 struct efx_rx_queue *rx_queue; 655 struct bpf_prog *xdp_prog; 656 struct xdp_frame *xdpf; 657 struct xdp_buff xdp; 658 u32 xdp_act; 659 s16 offset; 660 int err; 661 662 rcu_read_lock(); 663 xdp_prog = rcu_dereference(efx->xdp_prog); 664 if (!xdp_prog) { 665 rcu_read_unlock(); 666 return true; 667 } 668 669 rx_queue = efx_channel_get_rx_queue(channel); 670 671 if (unlikely(channel->rx_pkt_n_frags > 1)) { 672 /* We can't do XDP on fragmented packets - drop. */ 673 rcu_read_unlock(); 674 efx_free_rx_buffers(rx_queue, rx_buf, 675 channel->rx_pkt_n_frags); 676 if (net_ratelimit()) 677 netif_err(efx, rx_err, efx->net_dev, 678 "XDP is not possible with multiple receive fragments (%d)\n", 679 channel->rx_pkt_n_frags); 680 channel->n_rx_xdp_bad_drops++; 681 return false; 682 } 683 684 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, 685 rx_buf->len, DMA_FROM_DEVICE); 686 687 /* Save the rx prefix. */ 688 EFX_WARN_ON_PARANOID(efx->rx_prefix_size > EFX_MAX_RX_PREFIX_SIZE); 689 memcpy(rx_prefix, *ehp - efx->rx_prefix_size, 690 efx->rx_prefix_size); 691 692 xdp.data = *ehp; 693 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 694 695 /* No support yet for XDP metadata */ 696 xdp_set_data_meta_invalid(&xdp); 697 xdp.data_end = xdp.data + rx_buf->len; 698 xdp.rxq = &rx_queue->xdp_rxq_info; 699 700 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 701 rcu_read_unlock(); 702 703 offset = (u8 *)xdp.data - *ehp; 704 705 switch (xdp_act) { 706 case XDP_PASS: 707 /* Fix up rx prefix. */ 708 if (offset) { 709 *ehp += offset; 710 rx_buf->page_offset += offset; 711 rx_buf->len -= offset; 712 memcpy(*ehp - efx->rx_prefix_size, rx_prefix, 713 efx->rx_prefix_size); 714 } 715 break; 716 717 case XDP_TX: 718 /* Buffer ownership passes to tx on success. */ 719 xdpf = convert_to_xdp_frame(&xdp); 720 err = efx_xdp_tx_buffers(efx, 1, &xdpf, true); 721 if (unlikely(err != 1)) { 722 efx_free_rx_buffers(rx_queue, rx_buf, 1); 723 if (net_ratelimit()) 724 netif_err(efx, rx_err, efx->net_dev, 725 "XDP TX failed (%d)\n", err); 726 channel->n_rx_xdp_bad_drops++; 727 trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act); 728 } else { 729 channel->n_rx_xdp_tx++; 730 } 731 break; 732 733 case XDP_REDIRECT: 734 err = xdp_do_redirect(efx->net_dev, &xdp, xdp_prog); 735 if (unlikely(err)) { 736 efx_free_rx_buffers(rx_queue, rx_buf, 1); 737 if (net_ratelimit()) 738 netif_err(efx, rx_err, efx->net_dev, 739 "XDP redirect failed (%d)\n", err); 740 channel->n_rx_xdp_bad_drops++; 741 trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act); 742 } else { 743 channel->n_rx_xdp_redirect++; 744 } 745 break; 746 747 default: 748 bpf_warn_invalid_xdp_action(xdp_act); 749 efx_free_rx_buffers(rx_queue, rx_buf, 1); 750 channel->n_rx_xdp_bad_drops++; 751 trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act); 752 break; 753 754 case XDP_ABORTED: 755 trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act); 756 /* Fall through */ 757 case XDP_DROP: 758 efx_free_rx_buffers(rx_queue, rx_buf, 1); 759 channel->n_rx_xdp_drops++; 760 break; 761 } 762 763 return xdp_act == XDP_PASS; 764 } 765 766 /* Handle a received packet. Second half: Touches packet payload. */ 767 void __efx_rx_packet(struct efx_channel *channel) 768 { 769 struct efx_nic *efx = channel->efx; 770 struct efx_rx_buffer *rx_buf = 771 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index); 772 u8 *eh = efx_rx_buf_va(rx_buf); 773 774 /* Read length from the prefix if necessary. This already 775 * excludes the length of the prefix itself. 776 */ 777 if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN) 778 rx_buf->len = le16_to_cpup((__le16 *) 779 (eh + efx->rx_packet_len_offset)); 780 781 /* If we're in loopback test, then pass the packet directly to the 782 * loopback layer, and free the rx_buf here 783 */ 784 if (unlikely(efx->loopback_selftest)) { 785 struct efx_rx_queue *rx_queue; 786 787 efx_loopback_rx_packet(efx, eh, rx_buf->len); 788 rx_queue = efx_channel_get_rx_queue(channel); 789 efx_free_rx_buffers(rx_queue, rx_buf, 790 channel->rx_pkt_n_frags); 791 goto out; 792 } 793 794 if (!efx_do_xdp(efx, channel, rx_buf, &eh)) 795 goto out; 796 797 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) 798 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED; 799 800 if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb) 801 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh); 802 else 803 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags); 804 out: 805 channel->rx_pkt_n_frags = 0; 806 } 807 808 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 809 { 810 struct efx_nic *efx = rx_queue->efx; 811 unsigned int entries; 812 int rc; 813 814 /* Create the smallest power-of-two aligned ring */ 815 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 816 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 817 rx_queue->ptr_mask = entries - 1; 818 819 netif_dbg(efx, probe, efx->net_dev, 820 "creating RX queue %d size %#x mask %#x\n", 821 efx_rx_queue_index(rx_queue), efx->rxq_entries, 822 rx_queue->ptr_mask); 823 824 /* Allocate RX buffers */ 825 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 826 GFP_KERNEL); 827 if (!rx_queue->buffer) 828 return -ENOMEM; 829 830 rc = efx_nic_probe_rx(rx_queue); 831 if (rc) { 832 kfree(rx_queue->buffer); 833 rx_queue->buffer = NULL; 834 } 835 836 return rc; 837 } 838 839 static void efx_init_rx_recycle_ring(struct efx_nic *efx, 840 struct efx_rx_queue *rx_queue) 841 { 842 unsigned int bufs_in_recycle_ring, page_ring_size; 843 844 /* Set the RX recycle ring size */ 845 #ifdef CONFIG_PPC64 846 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 847 #else 848 if (iommu_present(&pci_bus_type)) 849 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 850 else 851 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; 852 #endif /* CONFIG_PPC64 */ 853 854 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / 855 efx->rx_bufs_per_page); 856 rx_queue->page_ring = kcalloc(page_ring_size, 857 sizeof(*rx_queue->page_ring), GFP_KERNEL); 858 rx_queue->page_ptr_mask = page_ring_size - 1; 859 } 860 861 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 862 { 863 struct efx_nic *efx = rx_queue->efx; 864 unsigned int max_fill, trigger, max_trigger; 865 int rc = 0; 866 867 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 868 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 869 870 /* Initialise ptr fields */ 871 rx_queue->added_count = 0; 872 rx_queue->notified_count = 0; 873 rx_queue->removed_count = 0; 874 rx_queue->min_fill = -1U; 875 efx_init_rx_recycle_ring(efx, rx_queue); 876 877 rx_queue->page_remove = 0; 878 rx_queue->page_add = rx_queue->page_ptr_mask + 1; 879 rx_queue->page_recycle_count = 0; 880 rx_queue->page_recycle_failed = 0; 881 rx_queue->page_recycle_full = 0; 882 883 /* Initialise limit fields */ 884 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 885 max_trigger = 886 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; 887 if (rx_refill_threshold != 0) { 888 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 889 if (trigger > max_trigger) 890 trigger = max_trigger; 891 } else { 892 trigger = max_trigger; 893 } 894 895 rx_queue->max_fill = max_fill; 896 rx_queue->fast_fill_trigger = trigger; 897 rx_queue->refill_enabled = true; 898 899 /* Initialise XDP queue information */ 900 rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev, 901 rx_queue->core_index); 902 903 if (rc) { 904 netif_err(efx, rx_err, efx->net_dev, 905 "Failure to initialise XDP queue information rc=%d\n", 906 rc); 907 efx->xdp_rxq_info_failed = true; 908 } else { 909 rx_queue->xdp_rxq_info_valid = true; 910 } 911 912 /* Set up RX descriptor ring */ 913 efx_nic_init_rx(rx_queue); 914 } 915 916 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 917 { 918 int i; 919 struct efx_nic *efx = rx_queue->efx; 920 struct efx_rx_buffer *rx_buf; 921 922 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 923 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 924 925 del_timer_sync(&rx_queue->slow_fill); 926 927 /* Release RX buffers from the current read ptr to the write ptr */ 928 if (rx_queue->buffer) { 929 for (i = rx_queue->removed_count; i < rx_queue->added_count; 930 i++) { 931 unsigned index = i & rx_queue->ptr_mask; 932 rx_buf = efx_rx_buffer(rx_queue, index); 933 efx_fini_rx_buffer(rx_queue, rx_buf); 934 } 935 } 936 937 /* Unmap and release the pages in the recycle ring. Remove the ring. */ 938 for (i = 0; i <= rx_queue->page_ptr_mask; i++) { 939 struct page *page = rx_queue->page_ring[i]; 940 struct efx_rx_page_state *state; 941 942 if (page == NULL) 943 continue; 944 945 state = page_address(page); 946 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 947 PAGE_SIZE << efx->rx_buffer_order, 948 DMA_FROM_DEVICE); 949 put_page(page); 950 } 951 kfree(rx_queue->page_ring); 952 rx_queue->page_ring = NULL; 953 954 if (rx_queue->xdp_rxq_info_valid) 955 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info); 956 957 rx_queue->xdp_rxq_info_valid = false; 958 } 959 960 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 961 { 962 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 963 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 964 965 efx_nic_remove_rx(rx_queue); 966 967 kfree(rx_queue->buffer); 968 rx_queue->buffer = NULL; 969 } 970 971 972 module_param(rx_refill_threshold, uint, 0444); 973 MODULE_PARM_DESC(rx_refill_threshold, 974 "RX descriptor ring refill threshold (%)"); 975 976 #ifdef CONFIG_RFS_ACCEL 977 978 static void efx_filter_rfs_work(struct work_struct *data) 979 { 980 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, 981 work); 982 struct efx_nic *efx = netdev_priv(req->net_dev); 983 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); 984 int slot_idx = req - efx->rps_slot; 985 struct efx_arfs_rule *rule; 986 u16 arfs_id = 0; 987 int rc; 988 989 rc = efx->type->filter_insert(efx, &req->spec, true); 990 if (rc >= 0) 991 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */ 992 rc %= efx->type->max_rx_ip_filters; 993 if (efx->rps_hash_table) { 994 spin_lock_bh(&efx->rps_hash_lock); 995 rule = efx_rps_hash_find(efx, &req->spec); 996 /* The rule might have already gone, if someone else's request 997 * for the same spec was already worked and then expired before 998 * we got around to our work. In that case we have nothing 999 * tying us to an arfs_id, meaning that as soon as the filter 1000 * is considered for expiry it will be removed. 1001 */ 1002 if (rule) { 1003 if (rc < 0) 1004 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; 1005 else 1006 rule->filter_id = rc; 1007 arfs_id = rule->arfs_id; 1008 } 1009 spin_unlock_bh(&efx->rps_hash_lock); 1010 } 1011 if (rc >= 0) { 1012 /* Remember this so we can check whether to expire the filter 1013 * later. 1014 */ 1015 mutex_lock(&efx->rps_mutex); 1016 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID) 1017 channel->rfs_filter_count++; 1018 channel->rps_flow_id[rc] = req->flow_id; 1019 mutex_unlock(&efx->rps_mutex); 1020 1021 if (req->spec.ether_type == htons(ETH_P_IP)) 1022 netif_info(efx, rx_status, efx->net_dev, 1023 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", 1024 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 1025 req->spec.rem_host, ntohs(req->spec.rem_port), 1026 req->spec.loc_host, ntohs(req->spec.loc_port), 1027 req->rxq_index, req->flow_id, rc, arfs_id); 1028 else 1029 netif_info(efx, rx_status, efx->net_dev, 1030 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", 1031 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 1032 req->spec.rem_host, ntohs(req->spec.rem_port), 1033 req->spec.loc_host, ntohs(req->spec.loc_port), 1034 req->rxq_index, req->flow_id, rc, arfs_id); 1035 channel->n_rfs_succeeded++; 1036 } else { 1037 if (req->spec.ether_type == htons(ETH_P_IP)) 1038 netif_dbg(efx, rx_status, efx->net_dev, 1039 "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n", 1040 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 1041 req->spec.rem_host, ntohs(req->spec.rem_port), 1042 req->spec.loc_host, ntohs(req->spec.loc_port), 1043 req->rxq_index, req->flow_id, rc, arfs_id); 1044 else 1045 netif_dbg(efx, rx_status, efx->net_dev, 1046 "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n", 1047 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 1048 req->spec.rem_host, ntohs(req->spec.rem_port), 1049 req->spec.loc_host, ntohs(req->spec.loc_port), 1050 req->rxq_index, req->flow_id, rc, arfs_id); 1051 channel->n_rfs_failed++; 1052 /* We're overloading the NIC's filter tables, so let's do a 1053 * chunk of extra expiry work. 1054 */ 1055 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, 1056 100u)); 1057 } 1058 1059 /* Release references */ 1060 clear_bit(slot_idx, &efx->rps_slot_map); 1061 dev_put(req->net_dev); 1062 } 1063 1064 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, 1065 u16 rxq_index, u32 flow_id) 1066 { 1067 struct efx_nic *efx = netdev_priv(net_dev); 1068 struct efx_async_filter_insertion *req; 1069 struct efx_arfs_rule *rule; 1070 struct flow_keys fk; 1071 int slot_idx; 1072 bool new; 1073 int rc; 1074 1075 /* find a free slot */ 1076 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) 1077 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) 1078 break; 1079 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) 1080 return -EBUSY; 1081 1082 if (flow_id == RPS_FLOW_ID_INVALID) { 1083 rc = -EINVAL; 1084 goto out_clear; 1085 } 1086 1087 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { 1088 rc = -EPROTONOSUPPORT; 1089 goto out_clear; 1090 } 1091 1092 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { 1093 rc = -EPROTONOSUPPORT; 1094 goto out_clear; 1095 } 1096 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { 1097 rc = -EPROTONOSUPPORT; 1098 goto out_clear; 1099 } 1100 1101 req = efx->rps_slot + slot_idx; 1102 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, 1103 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, 1104 rxq_index); 1105 req->spec.match_flags = 1106 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 1107 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 1108 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; 1109 req->spec.ether_type = fk.basic.n_proto; 1110 req->spec.ip_proto = fk.basic.ip_proto; 1111 1112 if (fk.basic.n_proto == htons(ETH_P_IP)) { 1113 req->spec.rem_host[0] = fk.addrs.v4addrs.src; 1114 req->spec.loc_host[0] = fk.addrs.v4addrs.dst; 1115 } else { 1116 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, 1117 sizeof(struct in6_addr)); 1118 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, 1119 sizeof(struct in6_addr)); 1120 } 1121 1122 req->spec.rem_port = fk.ports.src; 1123 req->spec.loc_port = fk.ports.dst; 1124 1125 if (efx->rps_hash_table) { 1126 /* Add it to ARFS hash table */ 1127 spin_lock(&efx->rps_hash_lock); 1128 rule = efx_rps_hash_add(efx, &req->spec, &new); 1129 if (!rule) { 1130 rc = -ENOMEM; 1131 goto out_unlock; 1132 } 1133 if (new) 1134 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; 1135 rc = rule->arfs_id; 1136 /* Skip if existing or pending filter already does the right thing */ 1137 if (!new && rule->rxq_index == rxq_index && 1138 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) 1139 goto out_unlock; 1140 rule->rxq_index = rxq_index; 1141 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; 1142 spin_unlock(&efx->rps_hash_lock); 1143 } else { 1144 /* Without an ARFS hash table, we just use arfs_id 0 for all 1145 * filters. This means if multiple flows hash to the same 1146 * flow_id, all but the most recently touched will be eligible 1147 * for expiry. 1148 */ 1149 rc = 0; 1150 } 1151 1152 /* Queue the request */ 1153 dev_hold(req->net_dev = net_dev); 1154 INIT_WORK(&req->work, efx_filter_rfs_work); 1155 req->rxq_index = rxq_index; 1156 req->flow_id = flow_id; 1157 schedule_work(&req->work); 1158 return rc; 1159 out_unlock: 1160 spin_unlock(&efx->rps_hash_lock); 1161 out_clear: 1162 clear_bit(slot_idx, &efx->rps_slot_map); 1163 return rc; 1164 } 1165 1166 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota) 1167 { 1168 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); 1169 struct efx_nic *efx = channel->efx; 1170 unsigned int index, size, start; 1171 u32 flow_id; 1172 1173 if (!mutex_trylock(&efx->rps_mutex)) 1174 return false; 1175 expire_one = efx->type->filter_rfs_expire_one; 1176 index = channel->rfs_expire_index; 1177 start = index; 1178 size = efx->type->max_rx_ip_filters; 1179 while (quota) { 1180 flow_id = channel->rps_flow_id[index]; 1181 1182 if (flow_id != RPS_FLOW_ID_INVALID) { 1183 quota--; 1184 if (expire_one(efx, flow_id, index)) { 1185 netif_info(efx, rx_status, efx->net_dev, 1186 "expired filter %d [channel %u flow %u]\n", 1187 index, channel->channel, flow_id); 1188 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; 1189 channel->rfs_filter_count--; 1190 } 1191 } 1192 if (++index == size) 1193 index = 0; 1194 /* If we were called with a quota that exceeds the total number 1195 * of filters in the table (which shouldn't happen, but could 1196 * if two callers race), ensure that we don't loop forever - 1197 * stop when we've examined every row of the table. 1198 */ 1199 if (index == start) 1200 break; 1201 } 1202 1203 channel->rfs_expire_index = index; 1204 mutex_unlock(&efx->rps_mutex); 1205 return true; 1206 } 1207 1208 #endif /* CONFIG_RFS_ACCEL */ 1209 1210 /** 1211 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient 1212 * @spec: Specification to test 1213 * 1214 * Return: %true if the specification is a non-drop RX filter that 1215 * matches a local MAC address I/G bit value of 1 or matches a local 1216 * IPv4 or IPv6 address value in the respective multicast address 1217 * range. Otherwise %false. 1218 */ 1219 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) 1220 { 1221 if (!(spec->flags & EFX_FILTER_FLAG_RX) || 1222 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) 1223 return false; 1224 1225 if (spec->match_flags & 1226 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && 1227 is_multicast_ether_addr(spec->loc_mac)) 1228 return true; 1229 1230 if ((spec->match_flags & 1231 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 1232 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 1233 if (spec->ether_type == htons(ETH_P_IP) && 1234 ipv4_is_multicast(spec->loc_host[0])) 1235 return true; 1236 if (spec->ether_type == htons(ETH_P_IPV6) && 1237 ((const u8 *)spec->loc_host)[0] == 0xff) 1238 return true; 1239 } 1240 1241 return false; 1242 } 1243