1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2011 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/socket.h> 12 #include <linux/in.h> 13 #include <linux/slab.h> 14 #include <linux/ip.h> 15 #include <linux/tcp.h> 16 #include <linux/udp.h> 17 #include <linux/prefetch.h> 18 #include <linux/moduleparam.h> 19 #include <net/ip.h> 20 #include <net/checksum.h> 21 #include "net_driver.h" 22 #include "efx.h" 23 #include "nic.h" 24 #include "selftest.h" 25 #include "workarounds.h" 26 27 /* Number of RX descriptors pushed at once. */ 28 #define EFX_RX_BATCH 8 29 30 /* Maximum size of a buffer sharing a page */ 31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state)) 32 33 /* Size of buffer allocated for skb header area. */ 34 #define EFX_SKB_HEADERS 64u 35 36 /* 37 * rx_alloc_method - RX buffer allocation method 38 * 39 * This driver supports two methods for allocating and using RX buffers: 40 * each RX buffer may be backed by an skb or by an order-n page. 41 * 42 * When GRO is in use then the second method has a lower overhead, 43 * since we don't have to allocate then free skbs on reassembled frames. 44 * 45 * Values: 46 * - RX_ALLOC_METHOD_AUTO = 0 47 * - RX_ALLOC_METHOD_SKB = 1 48 * - RX_ALLOC_METHOD_PAGE = 2 49 * 50 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count 51 * controlled by the parameters below. 52 * 53 * - Since pushing and popping descriptors are separated by the rx_queue 54 * size, so the watermarks should be ~rxd_size. 55 * - The performance win by using page-based allocation for GRO is less 56 * than the performance hit of using page-based allocation of non-GRO, 57 * so the watermarks should reflect this. 58 * 59 * Per channel we maintain a single variable, updated by each channel: 60 * 61 * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO : 62 * RX_ALLOC_FACTOR_SKB) 63 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which 64 * limits the hysteresis), and update the allocation strategy: 65 * 66 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ? 67 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB) 68 */ 69 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO; 70 71 #define RX_ALLOC_LEVEL_GRO 0x2000 72 #define RX_ALLOC_LEVEL_MAX 0x3000 73 #define RX_ALLOC_FACTOR_GRO 1 74 #define RX_ALLOC_FACTOR_SKB (-2) 75 76 /* This is the percentage fill level below which new RX descriptors 77 * will be added to the RX descriptor ring. 78 */ 79 static unsigned int rx_refill_threshold = 90; 80 81 /* This is the percentage fill level to which an RX queue will be refilled 82 * when the "RX refill threshold" is reached. 83 */ 84 static unsigned int rx_refill_limit = 95; 85 86 /* 87 * RX maximum head room required. 88 * 89 * This must be at least 1 to prevent overflow and at least 2 to allow 90 * pipelined receives. 91 */ 92 #define EFX_RXD_HEAD_ROOM 2 93 94 /* Offset of ethernet header within page */ 95 static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx, 96 struct efx_rx_buffer *buf) 97 { 98 /* Offset is always within one page, so we don't need to consider 99 * the page order. 100 */ 101 return ((unsigned int) buf->dma_addr & (PAGE_SIZE - 1)) + 102 efx->type->rx_buffer_hash_size; 103 } 104 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx) 105 { 106 return PAGE_SIZE << efx->rx_buffer_order; 107 } 108 109 static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf) 110 { 111 if (buf->flags & EFX_RX_BUF_PAGE) 112 return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf); 113 else 114 return (u8 *)buf->u.skb->data + efx->type->rx_buffer_hash_size; 115 } 116 117 static inline u32 efx_rx_buf_hash(const u8 *eh) 118 { 119 /* The ethernet header is always directly after any hash. */ 120 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0 121 return __le32_to_cpup((const __le32 *)(eh - 4)); 122 #else 123 const u8 *data = eh - 4; 124 return (u32)data[0] | 125 (u32)data[1] << 8 | 126 (u32)data[2] << 16 | 127 (u32)data[3] << 24; 128 #endif 129 } 130 131 /** 132 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers 133 * 134 * @rx_queue: Efx RX queue 135 * 136 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a 137 * struct efx_rx_buffer for each one. Return a negative error code or 0 138 * on success. May fail having only inserted fewer than EFX_RX_BATCH 139 * buffers. 140 */ 141 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue) 142 { 143 struct efx_nic *efx = rx_queue->efx; 144 struct net_device *net_dev = efx->net_dev; 145 struct efx_rx_buffer *rx_buf; 146 struct sk_buff *skb; 147 int skb_len = efx->rx_buffer_len; 148 unsigned index, count; 149 150 for (count = 0; count < EFX_RX_BATCH; ++count) { 151 index = rx_queue->added_count & rx_queue->ptr_mask; 152 rx_buf = efx_rx_buffer(rx_queue, index); 153 154 rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len); 155 if (unlikely(!skb)) 156 return -ENOMEM; 157 158 /* Adjust the SKB for padding */ 159 skb_reserve(skb, NET_IP_ALIGN); 160 rx_buf->len = skb_len - NET_IP_ALIGN; 161 rx_buf->flags = 0; 162 163 rx_buf->dma_addr = pci_map_single(efx->pci_dev, 164 skb->data, rx_buf->len, 165 PCI_DMA_FROMDEVICE); 166 if (unlikely(pci_dma_mapping_error(efx->pci_dev, 167 rx_buf->dma_addr))) { 168 dev_kfree_skb_any(skb); 169 rx_buf->u.skb = NULL; 170 return -EIO; 171 } 172 173 ++rx_queue->added_count; 174 ++rx_queue->alloc_skb_count; 175 } 176 177 return 0; 178 } 179 180 /** 181 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers 182 * 183 * @rx_queue: Efx RX queue 184 * 185 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA, 186 * and populates struct efx_rx_buffers for each one. Return a negative error 187 * code or 0 on success. If a single page can be split between two buffers, 188 * then the page will either be inserted fully, or not at at all. 189 */ 190 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue) 191 { 192 struct efx_nic *efx = rx_queue->efx; 193 struct efx_rx_buffer *rx_buf; 194 struct page *page; 195 void *page_addr; 196 struct efx_rx_page_state *state; 197 dma_addr_t dma_addr; 198 unsigned index, count; 199 200 /* We can split a page between two buffers */ 201 BUILD_BUG_ON(EFX_RX_BATCH & 1); 202 203 for (count = 0; count < EFX_RX_BATCH; ++count) { 204 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, 205 efx->rx_buffer_order); 206 if (unlikely(page == NULL)) 207 return -ENOMEM; 208 dma_addr = pci_map_page(efx->pci_dev, page, 0, 209 efx_rx_buf_size(efx), 210 PCI_DMA_FROMDEVICE); 211 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) { 212 __free_pages(page, efx->rx_buffer_order); 213 return -EIO; 214 } 215 page_addr = page_address(page); 216 state = page_addr; 217 state->refcnt = 0; 218 state->dma_addr = dma_addr; 219 220 page_addr += sizeof(struct efx_rx_page_state); 221 dma_addr += sizeof(struct efx_rx_page_state); 222 223 split: 224 index = rx_queue->added_count & rx_queue->ptr_mask; 225 rx_buf = efx_rx_buffer(rx_queue, index); 226 rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN; 227 rx_buf->u.page = page; 228 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN; 229 rx_buf->flags = EFX_RX_BUF_PAGE; 230 ++rx_queue->added_count; 231 ++rx_queue->alloc_page_count; 232 ++state->refcnt; 233 234 if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) { 235 /* Use the second half of the page */ 236 get_page(page); 237 dma_addr += (PAGE_SIZE >> 1); 238 page_addr += (PAGE_SIZE >> 1); 239 ++count; 240 goto split; 241 } 242 } 243 244 return 0; 245 } 246 247 static void efx_unmap_rx_buffer(struct efx_nic *efx, 248 struct efx_rx_buffer *rx_buf) 249 { 250 if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) { 251 struct efx_rx_page_state *state; 252 253 state = page_address(rx_buf->u.page); 254 if (--state->refcnt == 0) { 255 pci_unmap_page(efx->pci_dev, 256 state->dma_addr, 257 efx_rx_buf_size(efx), 258 PCI_DMA_FROMDEVICE); 259 } 260 } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) { 261 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr, 262 rx_buf->len, PCI_DMA_FROMDEVICE); 263 } 264 } 265 266 static void efx_free_rx_buffer(struct efx_nic *efx, 267 struct efx_rx_buffer *rx_buf) 268 { 269 if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) { 270 __free_pages(rx_buf->u.page, efx->rx_buffer_order); 271 rx_buf->u.page = NULL; 272 } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) { 273 dev_kfree_skb_any(rx_buf->u.skb); 274 rx_buf->u.skb = NULL; 275 } 276 } 277 278 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 279 struct efx_rx_buffer *rx_buf) 280 { 281 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 282 efx_free_rx_buffer(rx_queue->efx, rx_buf); 283 } 284 285 /* Attempt to resurrect the other receive buffer that used to share this page, 286 * which had previously been passed up to the kernel and freed. */ 287 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue, 288 struct efx_rx_buffer *rx_buf) 289 { 290 struct efx_rx_page_state *state = page_address(rx_buf->u.page); 291 struct efx_rx_buffer *new_buf; 292 unsigned fill_level, index; 293 294 /* +1 because efx_rx_packet() incremented removed_count. +1 because 295 * we'd like to insert an additional descriptor whilst leaving 296 * EFX_RXD_HEAD_ROOM for the non-recycle path */ 297 fill_level = (rx_queue->added_count - rx_queue->removed_count + 2); 298 if (unlikely(fill_level > rx_queue->max_fill)) { 299 /* We could place "state" on a list, and drain the list in 300 * efx_fast_push_rx_descriptors(). For now, this will do. */ 301 return; 302 } 303 304 ++state->refcnt; 305 get_page(rx_buf->u.page); 306 307 index = rx_queue->added_count & rx_queue->ptr_mask; 308 new_buf = efx_rx_buffer(rx_queue, index); 309 new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1); 310 new_buf->u.page = rx_buf->u.page; 311 new_buf->len = rx_buf->len; 312 new_buf->flags = EFX_RX_BUF_PAGE; 313 ++rx_queue->added_count; 314 } 315 316 /* Recycle the given rx buffer directly back into the rx_queue. There is 317 * always room to add this buffer, because we've just popped a buffer. */ 318 static void efx_recycle_rx_buffer(struct efx_channel *channel, 319 struct efx_rx_buffer *rx_buf) 320 { 321 struct efx_nic *efx = channel->efx; 322 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 323 struct efx_rx_buffer *new_buf; 324 unsigned index; 325 326 rx_buf->flags &= EFX_RX_BUF_PAGE; 327 328 if ((rx_buf->flags & EFX_RX_BUF_PAGE) && 329 efx->rx_buffer_len <= EFX_RX_HALF_PAGE && 330 page_count(rx_buf->u.page) == 1) 331 efx_resurrect_rx_buffer(rx_queue, rx_buf); 332 333 index = rx_queue->added_count & rx_queue->ptr_mask; 334 new_buf = efx_rx_buffer(rx_queue, index); 335 336 memcpy(new_buf, rx_buf, sizeof(*new_buf)); 337 rx_buf->u.page = NULL; 338 ++rx_queue->added_count; 339 } 340 341 /** 342 * efx_fast_push_rx_descriptors - push new RX descriptors quickly 343 * @rx_queue: RX descriptor queue 344 * This will aim to fill the RX descriptor queue up to 345 * @rx_queue->@fast_fill_limit. If there is insufficient atomic 346 * memory to do so, a slow fill will be scheduled. 347 * 348 * The caller must provide serialisation (none is used here). In practise, 349 * this means this function must run from the NAPI handler, or be called 350 * when NAPI is disabled. 351 */ 352 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) 353 { 354 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 355 unsigned fill_level; 356 int space, rc = 0; 357 358 /* Calculate current fill level, and exit if we don't need to fill */ 359 fill_level = (rx_queue->added_count - rx_queue->removed_count); 360 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); 361 if (fill_level >= rx_queue->fast_fill_trigger) 362 goto out; 363 364 /* Record minimum fill level */ 365 if (unlikely(fill_level < rx_queue->min_fill)) { 366 if (fill_level) 367 rx_queue->min_fill = fill_level; 368 } 369 370 space = rx_queue->fast_fill_limit - fill_level; 371 if (space < EFX_RX_BATCH) 372 goto out; 373 374 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 375 "RX queue %d fast-filling descriptor ring from" 376 " level %d to level %d using %s allocation\n", 377 efx_rx_queue_index(rx_queue), fill_level, 378 rx_queue->fast_fill_limit, 379 channel->rx_alloc_push_pages ? "page" : "skb"); 380 381 do { 382 if (channel->rx_alloc_push_pages) 383 rc = efx_init_rx_buffers_page(rx_queue); 384 else 385 rc = efx_init_rx_buffers_skb(rx_queue); 386 if (unlikely(rc)) { 387 /* Ensure that we don't leave the rx queue empty */ 388 if (rx_queue->added_count == rx_queue->removed_count) 389 efx_schedule_slow_fill(rx_queue); 390 goto out; 391 } 392 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH); 393 394 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 395 "RX queue %d fast-filled descriptor ring " 396 "to level %d\n", efx_rx_queue_index(rx_queue), 397 rx_queue->added_count - rx_queue->removed_count); 398 399 out: 400 if (rx_queue->notified_count != rx_queue->added_count) 401 efx_nic_notify_rx_desc(rx_queue); 402 } 403 404 void efx_rx_slow_fill(unsigned long context) 405 { 406 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context; 407 408 /* Post an event to cause NAPI to run and refill the queue */ 409 efx_nic_generate_fill_event(rx_queue); 410 ++rx_queue->slow_fill_count; 411 } 412 413 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, 414 struct efx_rx_buffer *rx_buf, 415 int len, bool *leak_packet) 416 { 417 struct efx_nic *efx = rx_queue->efx; 418 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; 419 420 if (likely(len <= max_len)) 421 return; 422 423 /* The packet must be discarded, but this is only a fatal error 424 * if the caller indicated it was 425 */ 426 rx_buf->flags |= EFX_RX_PKT_DISCARD; 427 428 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { 429 if (net_ratelimit()) 430 netif_err(efx, rx_err, efx->net_dev, 431 " RX queue %d seriously overlength " 432 "RX event (0x%x > 0x%x+0x%x). Leaking\n", 433 efx_rx_queue_index(rx_queue), len, max_len, 434 efx->type->rx_buffer_padding); 435 /* If this buffer was skb-allocated, then the meta 436 * data at the end of the skb will be trashed. So 437 * we have no choice but to leak the fragment. 438 */ 439 *leak_packet = !(rx_buf->flags & EFX_RX_BUF_PAGE); 440 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); 441 } else { 442 if (net_ratelimit()) 443 netif_err(efx, rx_err, efx->net_dev, 444 " RX queue %d overlength RX event " 445 "(0x%x > 0x%x)\n", 446 efx_rx_queue_index(rx_queue), len, max_len); 447 } 448 449 efx_rx_queue_channel(rx_queue)->n_rx_overlength++; 450 } 451 452 /* Pass a received packet up through GRO. GRO can handle pages 453 * regardless of checksum state and skbs with a good checksum. 454 */ 455 static void efx_rx_packet_gro(struct efx_channel *channel, 456 struct efx_rx_buffer *rx_buf, 457 const u8 *eh) 458 { 459 struct napi_struct *napi = &channel->napi_str; 460 gro_result_t gro_result; 461 462 if (rx_buf->flags & EFX_RX_BUF_PAGE) { 463 struct efx_nic *efx = channel->efx; 464 struct page *page = rx_buf->u.page; 465 struct sk_buff *skb; 466 467 rx_buf->u.page = NULL; 468 469 skb = napi_get_frags(napi); 470 if (!skb) { 471 put_page(page); 472 return; 473 } 474 475 if (efx->net_dev->features & NETIF_F_RXHASH) 476 skb->rxhash = efx_rx_buf_hash(eh); 477 478 skb_fill_page_desc(skb, 0, page, 479 efx_rx_buf_offset(efx, rx_buf), rx_buf->len); 480 481 skb->len = rx_buf->len; 482 skb->data_len = rx_buf->len; 483 skb->truesize += rx_buf->len; 484 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 485 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 486 487 skb_record_rx_queue(skb, channel->channel); 488 489 gro_result = napi_gro_frags(napi); 490 } else { 491 struct sk_buff *skb = rx_buf->u.skb; 492 493 EFX_BUG_ON_PARANOID(!(rx_buf->flags & EFX_RX_PKT_CSUMMED)); 494 rx_buf->u.skb = NULL; 495 skb->ip_summed = CHECKSUM_UNNECESSARY; 496 497 gro_result = napi_gro_receive(napi, skb); 498 } 499 500 if (gro_result == GRO_NORMAL) { 501 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; 502 } else if (gro_result != GRO_DROP) { 503 channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO; 504 channel->irq_mod_score += 2; 505 } 506 } 507 508 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, 509 unsigned int len, u16 flags) 510 { 511 struct efx_nic *efx = rx_queue->efx; 512 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 513 struct efx_rx_buffer *rx_buf; 514 bool leak_packet = false; 515 516 rx_buf = efx_rx_buffer(rx_queue, index); 517 rx_buf->flags |= flags; 518 519 /* This allows the refill path to post another buffer. 520 * EFX_RXD_HEAD_ROOM ensures that the slot we are using 521 * isn't overwritten yet. 522 */ 523 rx_queue->removed_count++; 524 525 /* Validate the length encoded in the event vs the descriptor pushed */ 526 efx_rx_packet__check_len(rx_queue, rx_buf, len, &leak_packet); 527 528 netif_vdbg(efx, rx_status, efx->net_dev, 529 "RX queue %d received id %x at %llx+%x %s%s\n", 530 efx_rx_queue_index(rx_queue), index, 531 (unsigned long long)rx_buf->dma_addr, len, 532 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "", 533 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : ""); 534 535 /* Discard packet, if instructed to do so */ 536 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) { 537 if (unlikely(leak_packet)) 538 channel->n_skbuff_leaks++; 539 else 540 efx_recycle_rx_buffer(channel, rx_buf); 541 542 /* Don't hold off the previous receive */ 543 rx_buf = NULL; 544 goto out; 545 } 546 547 /* Release card resources - assumes all RX buffers consumed in-order 548 * per RX queue 549 */ 550 efx_unmap_rx_buffer(efx, rx_buf); 551 552 /* Prefetch nice and early so data will (hopefully) be in cache by 553 * the time we look at it. 554 */ 555 prefetch(efx_rx_buf_eh(efx, rx_buf)); 556 557 /* Pipeline receives so that we give time for packet headers to be 558 * prefetched into cache. 559 */ 560 rx_buf->len = len - efx->type->rx_buffer_hash_size; 561 out: 562 if (channel->rx_pkt) 563 __efx_rx_packet(channel, channel->rx_pkt); 564 channel->rx_pkt = rx_buf; 565 } 566 567 static void efx_rx_deliver(struct efx_channel *channel, 568 struct efx_rx_buffer *rx_buf) 569 { 570 struct sk_buff *skb; 571 572 /* We now own the SKB */ 573 skb = rx_buf->u.skb; 574 rx_buf->u.skb = NULL; 575 576 /* Set the SKB flags */ 577 skb_checksum_none_assert(skb); 578 579 /* Pass the packet up */ 580 netif_receive_skb(skb); 581 582 /* Update allocation strategy method */ 583 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; 584 } 585 586 /* Handle a received packet. Second half: Touches packet payload. */ 587 void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf) 588 { 589 struct efx_nic *efx = channel->efx; 590 u8 *eh = efx_rx_buf_eh(efx, rx_buf); 591 592 /* If we're in loopback test, then pass the packet directly to the 593 * loopback layer, and free the rx_buf here 594 */ 595 if (unlikely(efx->loopback_selftest)) { 596 efx_loopback_rx_packet(efx, eh, rx_buf->len); 597 efx_free_rx_buffer(efx, rx_buf); 598 return; 599 } 600 601 if (!(rx_buf->flags & EFX_RX_BUF_PAGE)) { 602 struct sk_buff *skb = rx_buf->u.skb; 603 604 prefetch(skb_shinfo(skb)); 605 606 skb_reserve(skb, efx->type->rx_buffer_hash_size); 607 skb_put(skb, rx_buf->len); 608 609 if (efx->net_dev->features & NETIF_F_RXHASH) 610 skb->rxhash = efx_rx_buf_hash(eh); 611 612 /* Move past the ethernet header. rx_buf->data still points 613 * at the ethernet header */ 614 skb->protocol = eth_type_trans(skb, efx->net_dev); 615 616 skb_record_rx_queue(skb, channel->channel); 617 } 618 619 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) 620 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED; 621 622 if (likely(rx_buf->flags & (EFX_RX_BUF_PAGE | EFX_RX_PKT_CSUMMED))) 623 efx_rx_packet_gro(channel, rx_buf, eh); 624 else 625 efx_rx_deliver(channel, rx_buf); 626 } 627 628 void efx_rx_strategy(struct efx_channel *channel) 629 { 630 enum efx_rx_alloc_method method = rx_alloc_method; 631 632 /* Only makes sense to use page based allocation if GRO is enabled */ 633 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) { 634 method = RX_ALLOC_METHOD_SKB; 635 } else if (method == RX_ALLOC_METHOD_AUTO) { 636 /* Constrain the rx_alloc_level */ 637 if (channel->rx_alloc_level < 0) 638 channel->rx_alloc_level = 0; 639 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX) 640 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX; 641 642 /* Decide on the allocation method */ 643 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ? 644 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB); 645 } 646 647 /* Push the option */ 648 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE); 649 } 650 651 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 652 { 653 struct efx_nic *efx = rx_queue->efx; 654 unsigned int entries; 655 int rc; 656 657 /* Create the smallest power-of-two aligned ring */ 658 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 659 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 660 rx_queue->ptr_mask = entries - 1; 661 662 netif_dbg(efx, probe, efx->net_dev, 663 "creating RX queue %d size %#x mask %#x\n", 664 efx_rx_queue_index(rx_queue), efx->rxq_entries, 665 rx_queue->ptr_mask); 666 667 /* Allocate RX buffers */ 668 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 669 GFP_KERNEL); 670 if (!rx_queue->buffer) 671 return -ENOMEM; 672 673 rc = efx_nic_probe_rx(rx_queue); 674 if (rc) { 675 kfree(rx_queue->buffer); 676 rx_queue->buffer = NULL; 677 } 678 return rc; 679 } 680 681 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 682 { 683 struct efx_nic *efx = rx_queue->efx; 684 unsigned int max_fill, trigger, limit; 685 686 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 687 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 688 689 /* Initialise ptr fields */ 690 rx_queue->added_count = 0; 691 rx_queue->notified_count = 0; 692 rx_queue->removed_count = 0; 693 rx_queue->min_fill = -1U; 694 695 /* Initialise limit fields */ 696 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 697 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 698 limit = max_fill * min(rx_refill_limit, 100U) / 100U; 699 700 rx_queue->max_fill = max_fill; 701 rx_queue->fast_fill_trigger = trigger; 702 rx_queue->fast_fill_limit = limit; 703 704 /* Set up RX descriptor ring */ 705 rx_queue->enabled = true; 706 efx_nic_init_rx(rx_queue); 707 } 708 709 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 710 { 711 int i; 712 struct efx_rx_buffer *rx_buf; 713 714 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 715 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 716 717 /* A flush failure might have left rx_queue->enabled */ 718 rx_queue->enabled = false; 719 720 del_timer_sync(&rx_queue->slow_fill); 721 efx_nic_fini_rx(rx_queue); 722 723 /* Release RX buffers NB start at index 0 not current HW ptr */ 724 if (rx_queue->buffer) { 725 for (i = 0; i <= rx_queue->ptr_mask; i++) { 726 rx_buf = efx_rx_buffer(rx_queue, i); 727 efx_fini_rx_buffer(rx_queue, rx_buf); 728 } 729 } 730 } 731 732 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 733 { 734 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 735 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 736 737 efx_nic_remove_rx(rx_queue); 738 739 kfree(rx_queue->buffer); 740 rx_queue->buffer = NULL; 741 } 742 743 744 module_param(rx_alloc_method, int, 0644); 745 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers"); 746 747 module_param(rx_refill_threshold, uint, 0444); 748 MODULE_PARM_DESC(rx_refill_threshold, 749 "RX descriptor ring fast/slow fill threshold (%)"); 750 751