xref: /openbmc/linux/drivers/net/ethernet/sfc/rx.c (revision 54cbac81)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <net/ip.h>
20 #include <net/checksum.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26 
27 /* Number of RX descriptors pushed at once. */
28 #define EFX_RX_BATCH  8
29 
30 /* Maximum size of a buffer sharing a page */
31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
32 
33 /* Size of buffer allocated for skb header area. */
34 #define EFX_SKB_HEADERS  64u
35 
36 /*
37  * rx_alloc_method - RX buffer allocation method
38  *
39  * This driver supports two methods for allocating and using RX buffers:
40  * each RX buffer may be backed by an skb or by an order-n page.
41  *
42  * When GRO is in use then the second method has a lower overhead,
43  * since we don't have to allocate then free skbs on reassembled frames.
44  *
45  * Values:
46  *   - RX_ALLOC_METHOD_AUTO = 0
47  *   - RX_ALLOC_METHOD_SKB  = 1
48  *   - RX_ALLOC_METHOD_PAGE = 2
49  *
50  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
51  * controlled by the parameters below.
52  *
53  *   - Since pushing and popping descriptors are separated by the rx_queue
54  *     size, so the watermarks should be ~rxd_size.
55  *   - The performance win by using page-based allocation for GRO is less
56  *     than the performance hit of using page-based allocation of non-GRO,
57  *     so the watermarks should reflect this.
58  *
59  * Per channel we maintain a single variable, updated by each channel:
60  *
61  *   rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62  *                      RX_ALLOC_FACTOR_SKB)
63  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
64  * limits the hysteresis), and update the allocation strategy:
65  *
66  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
68  */
69 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
70 
71 #define RX_ALLOC_LEVEL_GRO 0x2000
72 #define RX_ALLOC_LEVEL_MAX 0x3000
73 #define RX_ALLOC_FACTOR_GRO 1
74 #define RX_ALLOC_FACTOR_SKB (-2)
75 
76 /* This is the percentage fill level below which new RX descriptors
77  * will be added to the RX descriptor ring.
78  */
79 static unsigned int rx_refill_threshold;
80 
81 /*
82  * RX maximum head room required.
83  *
84  * This must be at least 1 to prevent overflow and at least 2 to allow
85  * pipelined receives.
86  */
87 #define EFX_RXD_HEAD_ROOM 2
88 
89 /* Offset of ethernet header within page */
90 static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
91 					     struct efx_rx_buffer *buf)
92 {
93 	/* Offset is always within one page, so we don't need to consider
94 	 * the page order.
95 	 */
96 	return ((unsigned int) buf->dma_addr & (PAGE_SIZE - 1)) +
97 		efx->type->rx_buffer_hash_size;
98 }
99 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
100 {
101 	return PAGE_SIZE << efx->rx_buffer_order;
102 }
103 
104 static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
105 {
106 	if (buf->flags & EFX_RX_BUF_PAGE)
107 		return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
108 	else
109 		return (u8 *)buf->u.skb->data + efx->type->rx_buffer_hash_size;
110 }
111 
112 static inline u32 efx_rx_buf_hash(const u8 *eh)
113 {
114 	/* The ethernet header is always directly after any hash. */
115 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
116 	return __le32_to_cpup((const __le32 *)(eh - 4));
117 #else
118 	const u8 *data = eh - 4;
119 	return (u32)data[0]	  |
120 	       (u32)data[1] << 8  |
121 	       (u32)data[2] << 16 |
122 	       (u32)data[3] << 24;
123 #endif
124 }
125 
126 /**
127  * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
128  *
129  * @rx_queue:		Efx RX queue
130  *
131  * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
132  * struct efx_rx_buffer for each one. Return a negative error code or 0
133  * on success. May fail having only inserted fewer than EFX_RX_BATCH
134  * buffers.
135  */
136 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
137 {
138 	struct efx_nic *efx = rx_queue->efx;
139 	struct net_device *net_dev = efx->net_dev;
140 	struct efx_rx_buffer *rx_buf;
141 	struct sk_buff *skb;
142 	int skb_len = efx->rx_buffer_len;
143 	unsigned index, count;
144 
145 	for (count = 0; count < EFX_RX_BATCH; ++count) {
146 		index = rx_queue->added_count & rx_queue->ptr_mask;
147 		rx_buf = efx_rx_buffer(rx_queue, index);
148 
149 		rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
150 		if (unlikely(!skb))
151 			return -ENOMEM;
152 
153 		/* Adjust the SKB for padding */
154 		skb_reserve(skb, NET_IP_ALIGN);
155 		rx_buf->len = skb_len - NET_IP_ALIGN;
156 		rx_buf->flags = 0;
157 
158 		rx_buf->dma_addr = dma_map_single(&efx->pci_dev->dev,
159 						  skb->data, rx_buf->len,
160 						  DMA_FROM_DEVICE);
161 		if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
162 					       rx_buf->dma_addr))) {
163 			dev_kfree_skb_any(skb);
164 			rx_buf->u.skb = NULL;
165 			return -EIO;
166 		}
167 
168 		++rx_queue->added_count;
169 		++rx_queue->alloc_skb_count;
170 	}
171 
172 	return 0;
173 }
174 
175 /**
176  * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
177  *
178  * @rx_queue:		Efx RX queue
179  *
180  * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
181  * and populates struct efx_rx_buffers for each one. Return a negative error
182  * code or 0 on success. If a single page can be split between two buffers,
183  * then the page will either be inserted fully, or not at at all.
184  */
185 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
186 {
187 	struct efx_nic *efx = rx_queue->efx;
188 	struct efx_rx_buffer *rx_buf;
189 	struct page *page;
190 	struct efx_rx_page_state *state;
191 	dma_addr_t dma_addr;
192 	unsigned index, count;
193 
194 	/* We can split a page between two buffers */
195 	BUILD_BUG_ON(EFX_RX_BATCH & 1);
196 
197 	for (count = 0; count < EFX_RX_BATCH; ++count) {
198 		page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
199 				   efx->rx_buffer_order);
200 		if (unlikely(page == NULL))
201 			return -ENOMEM;
202 		dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0,
203 					efx_rx_buf_size(efx),
204 					DMA_FROM_DEVICE);
205 		if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) {
206 			__free_pages(page, efx->rx_buffer_order);
207 			return -EIO;
208 		}
209 		state = page_address(page);
210 		state->refcnt = 0;
211 		state->dma_addr = dma_addr;
212 
213 		dma_addr += sizeof(struct efx_rx_page_state);
214 
215 	split:
216 		index = rx_queue->added_count & rx_queue->ptr_mask;
217 		rx_buf = efx_rx_buffer(rx_queue, index);
218 		rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
219 		rx_buf->u.page = page;
220 		rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
221 		rx_buf->flags = EFX_RX_BUF_PAGE;
222 		++rx_queue->added_count;
223 		++rx_queue->alloc_page_count;
224 		++state->refcnt;
225 
226 		if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
227 			/* Use the second half of the page */
228 			get_page(page);
229 			dma_addr += (PAGE_SIZE >> 1);
230 			++count;
231 			goto split;
232 		}
233 	}
234 
235 	return 0;
236 }
237 
238 static void efx_unmap_rx_buffer(struct efx_nic *efx,
239 				struct efx_rx_buffer *rx_buf)
240 {
241 	if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
242 		struct efx_rx_page_state *state;
243 
244 		state = page_address(rx_buf->u.page);
245 		if (--state->refcnt == 0) {
246 			dma_unmap_page(&efx->pci_dev->dev,
247 				       state->dma_addr,
248 				       efx_rx_buf_size(efx),
249 				       DMA_FROM_DEVICE);
250 		}
251 	} else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
252 		dma_unmap_single(&efx->pci_dev->dev, rx_buf->dma_addr,
253 				 rx_buf->len, DMA_FROM_DEVICE);
254 	}
255 }
256 
257 static void efx_free_rx_buffer(struct efx_nic *efx,
258 			       struct efx_rx_buffer *rx_buf)
259 {
260 	if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
261 		__free_pages(rx_buf->u.page, efx->rx_buffer_order);
262 		rx_buf->u.page = NULL;
263 	} else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
264 		dev_kfree_skb_any(rx_buf->u.skb);
265 		rx_buf->u.skb = NULL;
266 	}
267 }
268 
269 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
270 			       struct efx_rx_buffer *rx_buf)
271 {
272 	efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
273 	efx_free_rx_buffer(rx_queue->efx, rx_buf);
274 }
275 
276 /* Attempt to resurrect the other receive buffer that used to share this page,
277  * which had previously been passed up to the kernel and freed. */
278 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
279 				    struct efx_rx_buffer *rx_buf)
280 {
281 	struct efx_rx_page_state *state = page_address(rx_buf->u.page);
282 	struct efx_rx_buffer *new_buf;
283 	unsigned fill_level, index;
284 
285 	/* +1 because efx_rx_packet() incremented removed_count. +1 because
286 	 * we'd like to insert an additional descriptor whilst leaving
287 	 * EFX_RXD_HEAD_ROOM for the non-recycle path */
288 	fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
289 	if (unlikely(fill_level > rx_queue->max_fill)) {
290 		/* We could place "state" on a list, and drain the list in
291 		 * efx_fast_push_rx_descriptors(). For now, this will do. */
292 		return;
293 	}
294 
295 	++state->refcnt;
296 	get_page(rx_buf->u.page);
297 
298 	index = rx_queue->added_count & rx_queue->ptr_mask;
299 	new_buf = efx_rx_buffer(rx_queue, index);
300 	new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
301 	new_buf->u.page = rx_buf->u.page;
302 	new_buf->len = rx_buf->len;
303 	new_buf->flags = EFX_RX_BUF_PAGE;
304 	++rx_queue->added_count;
305 }
306 
307 /* Recycle the given rx buffer directly back into the rx_queue. There is
308  * always room to add this buffer, because we've just popped a buffer. */
309 static void efx_recycle_rx_buffer(struct efx_channel *channel,
310 				  struct efx_rx_buffer *rx_buf)
311 {
312 	struct efx_nic *efx = channel->efx;
313 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
314 	struct efx_rx_buffer *new_buf;
315 	unsigned index;
316 
317 	rx_buf->flags &= EFX_RX_BUF_PAGE;
318 
319 	if ((rx_buf->flags & EFX_RX_BUF_PAGE) &&
320 	    efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
321 	    page_count(rx_buf->u.page) == 1)
322 		efx_resurrect_rx_buffer(rx_queue, rx_buf);
323 
324 	index = rx_queue->added_count & rx_queue->ptr_mask;
325 	new_buf = efx_rx_buffer(rx_queue, index);
326 
327 	memcpy(new_buf, rx_buf, sizeof(*new_buf));
328 	rx_buf->u.page = NULL;
329 	++rx_queue->added_count;
330 }
331 
332 /**
333  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
334  * @rx_queue:		RX descriptor queue
335  *
336  * This will aim to fill the RX descriptor queue up to
337  * @rx_queue->@max_fill. If there is insufficient atomic
338  * memory to do so, a slow fill will be scheduled.
339  *
340  * The caller must provide serialisation (none is used here). In practise,
341  * this means this function must run from the NAPI handler, or be called
342  * when NAPI is disabled.
343  */
344 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
345 {
346 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
347 	unsigned fill_level;
348 	int space, rc = 0;
349 
350 	/* Calculate current fill level, and exit if we don't need to fill */
351 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
352 	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
353 	if (fill_level >= rx_queue->fast_fill_trigger)
354 		goto out;
355 
356 	/* Record minimum fill level */
357 	if (unlikely(fill_level < rx_queue->min_fill)) {
358 		if (fill_level)
359 			rx_queue->min_fill = fill_level;
360 	}
361 
362 	space = rx_queue->max_fill - fill_level;
363 	EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH);
364 
365 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
366 		   "RX queue %d fast-filling descriptor ring from"
367 		   " level %d to level %d using %s allocation\n",
368 		   efx_rx_queue_index(rx_queue), fill_level,
369 		   rx_queue->max_fill,
370 		   channel->rx_alloc_push_pages ? "page" : "skb");
371 
372 	do {
373 		if (channel->rx_alloc_push_pages)
374 			rc = efx_init_rx_buffers_page(rx_queue);
375 		else
376 			rc = efx_init_rx_buffers_skb(rx_queue);
377 		if (unlikely(rc)) {
378 			/* Ensure that we don't leave the rx queue empty */
379 			if (rx_queue->added_count == rx_queue->removed_count)
380 				efx_schedule_slow_fill(rx_queue);
381 			goto out;
382 		}
383 	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
384 
385 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
386 		   "RX queue %d fast-filled descriptor ring "
387 		   "to level %d\n", efx_rx_queue_index(rx_queue),
388 		   rx_queue->added_count - rx_queue->removed_count);
389 
390  out:
391 	if (rx_queue->notified_count != rx_queue->added_count)
392 		efx_nic_notify_rx_desc(rx_queue);
393 }
394 
395 void efx_rx_slow_fill(unsigned long context)
396 {
397 	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
398 
399 	/* Post an event to cause NAPI to run and refill the queue */
400 	efx_nic_generate_fill_event(rx_queue);
401 	++rx_queue->slow_fill_count;
402 }
403 
404 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
405 				     struct efx_rx_buffer *rx_buf,
406 				     int len, bool *leak_packet)
407 {
408 	struct efx_nic *efx = rx_queue->efx;
409 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
410 
411 	if (likely(len <= max_len))
412 		return;
413 
414 	/* The packet must be discarded, but this is only a fatal error
415 	 * if the caller indicated it was
416 	 */
417 	rx_buf->flags |= EFX_RX_PKT_DISCARD;
418 
419 	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
420 		if (net_ratelimit())
421 			netif_err(efx, rx_err, efx->net_dev,
422 				  " RX queue %d seriously overlength "
423 				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
424 				  efx_rx_queue_index(rx_queue), len, max_len,
425 				  efx->type->rx_buffer_padding);
426 		/* If this buffer was skb-allocated, then the meta
427 		 * data at the end of the skb will be trashed. So
428 		 * we have no choice but to leak the fragment.
429 		 */
430 		*leak_packet = !(rx_buf->flags & EFX_RX_BUF_PAGE);
431 		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
432 	} else {
433 		if (net_ratelimit())
434 			netif_err(efx, rx_err, efx->net_dev,
435 				  " RX queue %d overlength RX event "
436 				  "(0x%x > 0x%x)\n",
437 				  efx_rx_queue_index(rx_queue), len, max_len);
438 	}
439 
440 	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
441 }
442 
443 /* Pass a received packet up through GRO.  GRO can handle pages
444  * regardless of checksum state and skbs with a good checksum.
445  */
446 static void efx_rx_packet_gro(struct efx_channel *channel,
447 			      struct efx_rx_buffer *rx_buf,
448 			      const u8 *eh)
449 {
450 	struct napi_struct *napi = &channel->napi_str;
451 	gro_result_t gro_result;
452 
453 	if (rx_buf->flags & EFX_RX_BUF_PAGE) {
454 		struct efx_nic *efx = channel->efx;
455 		struct page *page = rx_buf->u.page;
456 		struct sk_buff *skb;
457 
458 		rx_buf->u.page = NULL;
459 
460 		skb = napi_get_frags(napi);
461 		if (!skb) {
462 			put_page(page);
463 			return;
464 		}
465 
466 		if (efx->net_dev->features & NETIF_F_RXHASH)
467 			skb->rxhash = efx_rx_buf_hash(eh);
468 
469 		skb_fill_page_desc(skb, 0, page,
470 				   efx_rx_buf_offset(efx, rx_buf), rx_buf->len);
471 
472 		skb->len = rx_buf->len;
473 		skb->data_len = rx_buf->len;
474 		skb->truesize += rx_buf->len;
475 		skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
476 				  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
477 
478 		skb_record_rx_queue(skb, channel->rx_queue.core_index);
479 
480 		gro_result = napi_gro_frags(napi);
481 	} else {
482 		struct sk_buff *skb = rx_buf->u.skb;
483 
484 		EFX_BUG_ON_PARANOID(!(rx_buf->flags & EFX_RX_PKT_CSUMMED));
485 		rx_buf->u.skb = NULL;
486 		skb->ip_summed = CHECKSUM_UNNECESSARY;
487 
488 		gro_result = napi_gro_receive(napi, skb);
489 	}
490 
491 	if (gro_result == GRO_NORMAL) {
492 		channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
493 	} else if (gro_result != GRO_DROP) {
494 		channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
495 		channel->irq_mod_score += 2;
496 	}
497 }
498 
499 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
500 		   unsigned int len, u16 flags)
501 {
502 	struct efx_nic *efx = rx_queue->efx;
503 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
504 	struct efx_rx_buffer *rx_buf;
505 	bool leak_packet = false;
506 
507 	rx_buf = efx_rx_buffer(rx_queue, index);
508 	rx_buf->flags |= flags;
509 
510 	/* This allows the refill path to post another buffer.
511 	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
512 	 * isn't overwritten yet.
513 	 */
514 	rx_queue->removed_count++;
515 
516 	/* Validate the length encoded in the event vs the descriptor pushed */
517 	efx_rx_packet__check_len(rx_queue, rx_buf, len, &leak_packet);
518 
519 	netif_vdbg(efx, rx_status, efx->net_dev,
520 		   "RX queue %d received id %x at %llx+%x %s%s\n",
521 		   efx_rx_queue_index(rx_queue), index,
522 		   (unsigned long long)rx_buf->dma_addr, len,
523 		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
524 		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
525 
526 	/* Discard packet, if instructed to do so */
527 	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
528 		if (unlikely(leak_packet))
529 			channel->n_skbuff_leaks++;
530 		else
531 			efx_recycle_rx_buffer(channel, rx_buf);
532 
533 		/* Don't hold off the previous receive */
534 		rx_buf = NULL;
535 		goto out;
536 	}
537 
538 	/* Release card resources - assumes all RX buffers consumed in-order
539 	 * per RX queue
540 	 */
541 	efx_unmap_rx_buffer(efx, rx_buf);
542 
543 	/* Prefetch nice and early so data will (hopefully) be in cache by
544 	 * the time we look at it.
545 	 */
546 	prefetch(efx_rx_buf_eh(efx, rx_buf));
547 
548 	/* Pipeline receives so that we give time for packet headers to be
549 	 * prefetched into cache.
550 	 */
551 	rx_buf->len = len - efx->type->rx_buffer_hash_size;
552 out:
553 	if (channel->rx_pkt)
554 		__efx_rx_packet(channel, channel->rx_pkt);
555 	channel->rx_pkt = rx_buf;
556 }
557 
558 static void efx_rx_deliver(struct efx_channel *channel,
559 			   struct efx_rx_buffer *rx_buf)
560 {
561 	struct sk_buff *skb;
562 
563 	/* We now own the SKB */
564 	skb = rx_buf->u.skb;
565 	rx_buf->u.skb = NULL;
566 
567 	/* Set the SKB flags */
568 	skb_checksum_none_assert(skb);
569 
570 	/* Record the rx_queue */
571 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
572 
573 	/* Pass the packet up */
574 	if (channel->type->receive_skb)
575 		channel->type->receive_skb(channel, skb);
576 	else
577 		netif_receive_skb(skb);
578 
579 	/* Update allocation strategy method */
580 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
581 }
582 
583 /* Handle a received packet.  Second half: Touches packet payload. */
584 void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf)
585 {
586 	struct efx_nic *efx = channel->efx;
587 	u8 *eh = efx_rx_buf_eh(efx, rx_buf);
588 
589 	/* If we're in loopback test, then pass the packet directly to the
590 	 * loopback layer, and free the rx_buf here
591 	 */
592 	if (unlikely(efx->loopback_selftest)) {
593 		efx_loopback_rx_packet(efx, eh, rx_buf->len);
594 		efx_free_rx_buffer(efx, rx_buf);
595 		return;
596 	}
597 
598 	if (!(rx_buf->flags & EFX_RX_BUF_PAGE)) {
599 		struct sk_buff *skb = rx_buf->u.skb;
600 
601 		prefetch(skb_shinfo(skb));
602 
603 		skb_reserve(skb, efx->type->rx_buffer_hash_size);
604 		skb_put(skb, rx_buf->len);
605 
606 		if (efx->net_dev->features & NETIF_F_RXHASH)
607 			skb->rxhash = efx_rx_buf_hash(eh);
608 
609 		/* Move past the ethernet header. rx_buf->data still points
610 		 * at the ethernet header */
611 		skb->protocol = eth_type_trans(skb, efx->net_dev);
612 
613 		skb_record_rx_queue(skb, channel->rx_queue.core_index);
614 	}
615 
616 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
617 		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
618 
619 	if (likely(rx_buf->flags & (EFX_RX_BUF_PAGE | EFX_RX_PKT_CSUMMED)) &&
620 	    !channel->type->receive_skb)
621 		efx_rx_packet_gro(channel, rx_buf, eh);
622 	else
623 		efx_rx_deliver(channel, rx_buf);
624 }
625 
626 void efx_rx_strategy(struct efx_channel *channel)
627 {
628 	enum efx_rx_alloc_method method = rx_alloc_method;
629 
630 	if (channel->type->receive_skb) {
631 		channel->rx_alloc_push_pages = false;
632 		return;
633 	}
634 
635 	/* Only makes sense to use page based allocation if GRO is enabled */
636 	if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
637 		method = RX_ALLOC_METHOD_SKB;
638 	} else if (method == RX_ALLOC_METHOD_AUTO) {
639 		/* Constrain the rx_alloc_level */
640 		if (channel->rx_alloc_level < 0)
641 			channel->rx_alloc_level = 0;
642 		else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
643 			channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
644 
645 		/* Decide on the allocation method */
646 		method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
647 			  RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
648 	}
649 
650 	/* Push the option */
651 	channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
652 }
653 
654 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
655 {
656 	struct efx_nic *efx = rx_queue->efx;
657 	unsigned int entries;
658 	int rc;
659 
660 	/* Create the smallest power-of-two aligned ring */
661 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
662 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
663 	rx_queue->ptr_mask = entries - 1;
664 
665 	netif_dbg(efx, probe, efx->net_dev,
666 		  "creating RX queue %d size %#x mask %#x\n",
667 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
668 		  rx_queue->ptr_mask);
669 
670 	/* Allocate RX buffers */
671 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
672 				   GFP_KERNEL);
673 	if (!rx_queue->buffer)
674 		return -ENOMEM;
675 
676 	rc = efx_nic_probe_rx(rx_queue);
677 	if (rc) {
678 		kfree(rx_queue->buffer);
679 		rx_queue->buffer = NULL;
680 	}
681 	return rc;
682 }
683 
684 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
685 {
686 	struct efx_nic *efx = rx_queue->efx;
687 	unsigned int max_fill, trigger, max_trigger;
688 
689 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
690 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
691 
692 	/* Initialise ptr fields */
693 	rx_queue->added_count = 0;
694 	rx_queue->notified_count = 0;
695 	rx_queue->removed_count = 0;
696 	rx_queue->min_fill = -1U;
697 
698 	/* Initialise limit fields */
699 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
700 	max_trigger = max_fill - EFX_RX_BATCH;
701 	if (rx_refill_threshold != 0) {
702 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
703 		if (trigger > max_trigger)
704 			trigger = max_trigger;
705 	} else {
706 		trigger = max_trigger;
707 	}
708 
709 	rx_queue->max_fill = max_fill;
710 	rx_queue->fast_fill_trigger = trigger;
711 
712 	/* Set up RX descriptor ring */
713 	rx_queue->enabled = true;
714 	efx_nic_init_rx(rx_queue);
715 }
716 
717 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
718 {
719 	int i;
720 	struct efx_rx_buffer *rx_buf;
721 
722 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
723 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
724 
725 	/* A flush failure might have left rx_queue->enabled */
726 	rx_queue->enabled = false;
727 
728 	del_timer_sync(&rx_queue->slow_fill);
729 	efx_nic_fini_rx(rx_queue);
730 
731 	/* Release RX buffers NB start at index 0 not current HW ptr */
732 	if (rx_queue->buffer) {
733 		for (i = 0; i <= rx_queue->ptr_mask; i++) {
734 			rx_buf = efx_rx_buffer(rx_queue, i);
735 			efx_fini_rx_buffer(rx_queue, rx_buf);
736 		}
737 	}
738 }
739 
740 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
741 {
742 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
743 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
744 
745 	efx_nic_remove_rx(rx_queue);
746 
747 	kfree(rx_queue->buffer);
748 	rx_queue->buffer = NULL;
749 }
750 
751 
752 module_param(rx_alloc_method, int, 0644);
753 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
754 
755 module_param(rx_refill_threshold, uint, 0444);
756 MODULE_PARM_DESC(rx_refill_threshold,
757 		 "RX descriptor ring refill threshold (%)");
758 
759