xref: /openbmc/linux/drivers/net/ethernet/sfc/rx.c (revision 39b6f3aa)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <linux/iommu.h>
20 #include <net/ip.h>
21 #include <net/checksum.h>
22 #include "net_driver.h"
23 #include "efx.h"
24 #include "nic.h"
25 #include "selftest.h"
26 #include "workarounds.h"
27 
28 /* Preferred number of descriptors to fill at once */
29 #define EFX_RX_PREFERRED_BATCH 8U
30 
31 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
32  * ring, this number is divided by the number of buffers per page to calculate
33  * the number of pages to store in the RX page recycle ring.
34  */
35 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
36 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
37 
38 /* Size of buffer allocated for skb header area. */
39 #define EFX_SKB_HEADERS  64u
40 
41 /* This is the percentage fill level below which new RX descriptors
42  * will be added to the RX descriptor ring.
43  */
44 static unsigned int rx_refill_threshold;
45 
46 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
47 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
48 				      EFX_RX_USR_BUF_SIZE)
49 
50 /*
51  * RX maximum head room required.
52  *
53  * This must be at least 1 to prevent overflow, plus one packet-worth
54  * to allow pipelined receives.
55  */
56 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
57 
58 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
59 {
60 	return page_address(buf->page) + buf->page_offset;
61 }
62 
63 static inline u32 efx_rx_buf_hash(const u8 *eh)
64 {
65 	/* The ethernet header is always directly after any hash. */
66 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
67 	return __le32_to_cpup((const __le32 *)(eh - 4));
68 #else
69 	const u8 *data = eh - 4;
70 	return (u32)data[0]	  |
71 	       (u32)data[1] << 8  |
72 	       (u32)data[2] << 16 |
73 	       (u32)data[3] << 24;
74 #endif
75 }
76 
77 static inline struct efx_rx_buffer *
78 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
79 {
80 	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
81 		return efx_rx_buffer(rx_queue, 0);
82 	else
83 		return rx_buf + 1;
84 }
85 
86 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
87 				      struct efx_rx_buffer *rx_buf,
88 				      unsigned int len)
89 {
90 	dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
91 				DMA_FROM_DEVICE);
92 }
93 
94 void efx_rx_config_page_split(struct efx_nic *efx)
95 {
96 	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + NET_IP_ALIGN,
97 				      EFX_RX_BUF_ALIGNMENT);
98 	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
99 		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
100 		 efx->rx_page_buf_step);
101 	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
102 		efx->rx_bufs_per_page;
103 	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
104 					       efx->rx_bufs_per_page);
105 }
106 
107 /* Check the RX page recycle ring for a page that can be reused. */
108 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
109 {
110 	struct efx_nic *efx = rx_queue->efx;
111 	struct page *page;
112 	struct efx_rx_page_state *state;
113 	unsigned index;
114 
115 	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
116 	page = rx_queue->page_ring[index];
117 	if (page == NULL)
118 		return NULL;
119 
120 	rx_queue->page_ring[index] = NULL;
121 	/* page_remove cannot exceed page_add. */
122 	if (rx_queue->page_remove != rx_queue->page_add)
123 		++rx_queue->page_remove;
124 
125 	/* If page_count is 1 then we hold the only reference to this page. */
126 	if (page_count(page) == 1) {
127 		++rx_queue->page_recycle_count;
128 		return page;
129 	} else {
130 		state = page_address(page);
131 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
132 			       PAGE_SIZE << efx->rx_buffer_order,
133 			       DMA_FROM_DEVICE);
134 		put_page(page);
135 		++rx_queue->page_recycle_failed;
136 	}
137 
138 	return NULL;
139 }
140 
141 /**
142  * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
143  *
144  * @rx_queue:		Efx RX queue
145  *
146  * This allocates a batch of pages, maps them for DMA, and populates
147  * struct efx_rx_buffers for each one. Return a negative error code or
148  * 0 on success. If a single page can be used for multiple buffers,
149  * then the page will either be inserted fully, or not at all.
150  */
151 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
152 {
153 	struct efx_nic *efx = rx_queue->efx;
154 	struct efx_rx_buffer *rx_buf;
155 	struct page *page;
156 	unsigned int page_offset;
157 	struct efx_rx_page_state *state;
158 	dma_addr_t dma_addr;
159 	unsigned index, count;
160 
161 	count = 0;
162 	do {
163 		page = efx_reuse_page(rx_queue);
164 		if (page == NULL) {
165 			page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
166 					   efx->rx_buffer_order);
167 			if (unlikely(page == NULL))
168 				return -ENOMEM;
169 			dma_addr =
170 				dma_map_page(&efx->pci_dev->dev, page, 0,
171 					     PAGE_SIZE << efx->rx_buffer_order,
172 					     DMA_FROM_DEVICE);
173 			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
174 						       dma_addr))) {
175 				__free_pages(page, efx->rx_buffer_order);
176 				return -EIO;
177 			}
178 			state = page_address(page);
179 			state->dma_addr = dma_addr;
180 		} else {
181 			state = page_address(page);
182 			dma_addr = state->dma_addr;
183 		}
184 
185 		dma_addr += sizeof(struct efx_rx_page_state);
186 		page_offset = sizeof(struct efx_rx_page_state);
187 
188 		do {
189 			index = rx_queue->added_count & rx_queue->ptr_mask;
190 			rx_buf = efx_rx_buffer(rx_queue, index);
191 			rx_buf->dma_addr = dma_addr + NET_IP_ALIGN;
192 			rx_buf->page = page;
193 			rx_buf->page_offset = page_offset + NET_IP_ALIGN;
194 			rx_buf->len = efx->rx_dma_len;
195 			rx_buf->flags = 0;
196 			++rx_queue->added_count;
197 			get_page(page);
198 			dma_addr += efx->rx_page_buf_step;
199 			page_offset += efx->rx_page_buf_step;
200 		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
201 
202 		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
203 	} while (++count < efx->rx_pages_per_batch);
204 
205 	return 0;
206 }
207 
208 /* Unmap a DMA-mapped page.  This function is only called for the final RX
209  * buffer in a page.
210  */
211 static void efx_unmap_rx_buffer(struct efx_nic *efx,
212 				struct efx_rx_buffer *rx_buf)
213 {
214 	struct page *page = rx_buf->page;
215 
216 	if (page) {
217 		struct efx_rx_page_state *state = page_address(page);
218 		dma_unmap_page(&efx->pci_dev->dev,
219 			       state->dma_addr,
220 			       PAGE_SIZE << efx->rx_buffer_order,
221 			       DMA_FROM_DEVICE);
222 	}
223 }
224 
225 static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
226 {
227 	if (rx_buf->page) {
228 		put_page(rx_buf->page);
229 		rx_buf->page = NULL;
230 	}
231 }
232 
233 /* Attempt to recycle the page if there is an RX recycle ring; the page can
234  * only be added if this is the final RX buffer, to prevent pages being used in
235  * the descriptor ring and appearing in the recycle ring simultaneously.
236  */
237 static void efx_recycle_rx_page(struct efx_channel *channel,
238 				struct efx_rx_buffer *rx_buf)
239 {
240 	struct page *page = rx_buf->page;
241 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
242 	struct efx_nic *efx = rx_queue->efx;
243 	unsigned index;
244 
245 	/* Only recycle the page after processing the final buffer. */
246 	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
247 		return;
248 
249 	index = rx_queue->page_add & rx_queue->page_ptr_mask;
250 	if (rx_queue->page_ring[index] == NULL) {
251 		unsigned read_index = rx_queue->page_remove &
252 			rx_queue->page_ptr_mask;
253 
254 		/* The next slot in the recycle ring is available, but
255 		 * increment page_remove if the read pointer currently
256 		 * points here.
257 		 */
258 		if (read_index == index)
259 			++rx_queue->page_remove;
260 		rx_queue->page_ring[index] = page;
261 		++rx_queue->page_add;
262 		return;
263 	}
264 	++rx_queue->page_recycle_full;
265 	efx_unmap_rx_buffer(efx, rx_buf);
266 	put_page(rx_buf->page);
267 }
268 
269 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
270 			       struct efx_rx_buffer *rx_buf)
271 {
272 	/* Release the page reference we hold for the buffer. */
273 	if (rx_buf->page)
274 		put_page(rx_buf->page);
275 
276 	/* If this is the last buffer in a page, unmap and free it. */
277 	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
278 		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
279 		efx_free_rx_buffer(rx_buf);
280 	}
281 	rx_buf->page = NULL;
282 }
283 
284 /* Recycle the pages that are used by buffers that have just been received. */
285 static void efx_recycle_rx_buffers(struct efx_channel *channel,
286 				   struct efx_rx_buffer *rx_buf,
287 				   unsigned int n_frags)
288 {
289 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
290 
291 	do {
292 		efx_recycle_rx_page(channel, rx_buf);
293 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
294 	} while (--n_frags);
295 }
296 
297 /**
298  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
299  * @rx_queue:		RX descriptor queue
300  *
301  * This will aim to fill the RX descriptor queue up to
302  * @rx_queue->@max_fill. If there is insufficient atomic
303  * memory to do so, a slow fill will be scheduled.
304  *
305  * The caller must provide serialisation (none is used here). In practise,
306  * this means this function must run from the NAPI handler, or be called
307  * when NAPI is disabled.
308  */
309 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
310 {
311 	struct efx_nic *efx = rx_queue->efx;
312 	unsigned int fill_level, batch_size;
313 	int space, rc = 0;
314 
315 	/* Calculate current fill level, and exit if we don't need to fill */
316 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
317 	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
318 	if (fill_level >= rx_queue->fast_fill_trigger)
319 		goto out;
320 
321 	/* Record minimum fill level */
322 	if (unlikely(fill_level < rx_queue->min_fill)) {
323 		if (fill_level)
324 			rx_queue->min_fill = fill_level;
325 	}
326 
327 	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
328 	space = rx_queue->max_fill - fill_level;
329 	EFX_BUG_ON_PARANOID(space < batch_size);
330 
331 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
332 		   "RX queue %d fast-filling descriptor ring from"
333 		   " level %d to level %d\n",
334 		   efx_rx_queue_index(rx_queue), fill_level,
335 		   rx_queue->max_fill);
336 
337 
338 	do {
339 		rc = efx_init_rx_buffers(rx_queue);
340 		if (unlikely(rc)) {
341 			/* Ensure that we don't leave the rx queue empty */
342 			if (rx_queue->added_count == rx_queue->removed_count)
343 				efx_schedule_slow_fill(rx_queue);
344 			goto out;
345 		}
346 	} while ((space -= batch_size) >= batch_size);
347 
348 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
349 		   "RX queue %d fast-filled descriptor ring "
350 		   "to level %d\n", efx_rx_queue_index(rx_queue),
351 		   rx_queue->added_count - rx_queue->removed_count);
352 
353  out:
354 	if (rx_queue->notified_count != rx_queue->added_count)
355 		efx_nic_notify_rx_desc(rx_queue);
356 }
357 
358 void efx_rx_slow_fill(unsigned long context)
359 {
360 	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
361 
362 	/* Post an event to cause NAPI to run and refill the queue */
363 	efx_nic_generate_fill_event(rx_queue);
364 	++rx_queue->slow_fill_count;
365 }
366 
367 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
368 				     struct efx_rx_buffer *rx_buf,
369 				     int len)
370 {
371 	struct efx_nic *efx = rx_queue->efx;
372 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
373 
374 	if (likely(len <= max_len))
375 		return;
376 
377 	/* The packet must be discarded, but this is only a fatal error
378 	 * if the caller indicated it was
379 	 */
380 	rx_buf->flags |= EFX_RX_PKT_DISCARD;
381 
382 	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
383 		if (net_ratelimit())
384 			netif_err(efx, rx_err, efx->net_dev,
385 				  " RX queue %d seriously overlength "
386 				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
387 				  efx_rx_queue_index(rx_queue), len, max_len,
388 				  efx->type->rx_buffer_padding);
389 		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
390 	} else {
391 		if (net_ratelimit())
392 			netif_err(efx, rx_err, efx->net_dev,
393 				  " RX queue %d overlength RX event "
394 				  "(0x%x > 0x%x)\n",
395 				  efx_rx_queue_index(rx_queue), len, max_len);
396 	}
397 
398 	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
399 }
400 
401 /* Pass a received packet up through GRO.  GRO can handle pages
402  * regardless of checksum state and skbs with a good checksum.
403  */
404 static void
405 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
406 		  unsigned int n_frags, u8 *eh)
407 {
408 	struct napi_struct *napi = &channel->napi_str;
409 	gro_result_t gro_result;
410 	struct efx_nic *efx = channel->efx;
411 	struct sk_buff *skb;
412 
413 	skb = napi_get_frags(napi);
414 	if (unlikely(!skb)) {
415 		while (n_frags--) {
416 			put_page(rx_buf->page);
417 			rx_buf->page = NULL;
418 			rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
419 		}
420 		return;
421 	}
422 
423 	if (efx->net_dev->features & NETIF_F_RXHASH)
424 		skb->rxhash = efx_rx_buf_hash(eh);
425 	skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
426 			  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
427 
428 	for (;;) {
429 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
430 				   rx_buf->page, rx_buf->page_offset,
431 				   rx_buf->len);
432 		rx_buf->page = NULL;
433 		skb->len += rx_buf->len;
434 		if (skb_shinfo(skb)->nr_frags == n_frags)
435 			break;
436 
437 		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
438 	}
439 
440 	skb->data_len = skb->len;
441 	skb->truesize += n_frags * efx->rx_buffer_truesize;
442 
443 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
444 
445 	gro_result = napi_gro_frags(napi);
446 	if (gro_result != GRO_DROP)
447 		channel->irq_mod_score += 2;
448 }
449 
450 /* Allocate and construct an SKB around page fragments */
451 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
452 				     struct efx_rx_buffer *rx_buf,
453 				     unsigned int n_frags,
454 				     u8 *eh, int hdr_len)
455 {
456 	struct efx_nic *efx = channel->efx;
457 	struct sk_buff *skb;
458 
459 	/* Allocate an SKB to store the headers */
460 	skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
461 	if (unlikely(skb == NULL))
462 		return NULL;
463 
464 	EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
465 
466 	skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
467 	memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
468 
469 	/* Append the remaining page(s) onto the frag list */
470 	if (rx_buf->len > hdr_len) {
471 		rx_buf->page_offset += hdr_len;
472 		rx_buf->len -= hdr_len;
473 
474 		for (;;) {
475 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
476 					   rx_buf->page, rx_buf->page_offset,
477 					   rx_buf->len);
478 			rx_buf->page = NULL;
479 			skb->len += rx_buf->len;
480 			skb->data_len += rx_buf->len;
481 			if (skb_shinfo(skb)->nr_frags == n_frags)
482 				break;
483 
484 			rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
485 		}
486 	} else {
487 		__free_pages(rx_buf->page, efx->rx_buffer_order);
488 		rx_buf->page = NULL;
489 		n_frags = 0;
490 	}
491 
492 	skb->truesize += n_frags * efx->rx_buffer_truesize;
493 
494 	/* Move past the ethernet header */
495 	skb->protocol = eth_type_trans(skb, efx->net_dev);
496 
497 	return skb;
498 }
499 
500 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
501 		   unsigned int n_frags, unsigned int len, u16 flags)
502 {
503 	struct efx_nic *efx = rx_queue->efx;
504 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
505 	struct efx_rx_buffer *rx_buf;
506 
507 	rx_buf = efx_rx_buffer(rx_queue, index);
508 	rx_buf->flags |= flags;
509 
510 	/* Validate the number of fragments and completed length */
511 	if (n_frags == 1) {
512 		efx_rx_packet__check_len(rx_queue, rx_buf, len);
513 	} else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
514 		   unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) ||
515 		   unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) ||
516 		   unlikely(!efx->rx_scatter)) {
517 		/* If this isn't an explicit discard request, either
518 		 * the hardware or the driver is broken.
519 		 */
520 		WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
521 		rx_buf->flags |= EFX_RX_PKT_DISCARD;
522 	}
523 
524 	netif_vdbg(efx, rx_status, efx->net_dev,
525 		   "RX queue %d received ids %x-%x len %d %s%s\n",
526 		   efx_rx_queue_index(rx_queue), index,
527 		   (index + n_frags - 1) & rx_queue->ptr_mask, len,
528 		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
529 		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
530 
531 	/* Discard packet, if instructed to do so.  Process the
532 	 * previous receive first.
533 	 */
534 	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
535 		efx_rx_flush_packet(channel);
536 		put_page(rx_buf->page);
537 		efx_recycle_rx_buffers(channel, rx_buf, n_frags);
538 		return;
539 	}
540 
541 	if (n_frags == 1)
542 		rx_buf->len = len;
543 
544 	/* Release and/or sync the DMA mapping - assumes all RX buffers
545 	 * consumed in-order per RX queue.
546 	 */
547 	efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
548 
549 	/* Prefetch nice and early so data will (hopefully) be in cache by
550 	 * the time we look at it.
551 	 */
552 	prefetch(efx_rx_buf_va(rx_buf));
553 
554 	rx_buf->page_offset += efx->type->rx_buffer_hash_size;
555 	rx_buf->len -= efx->type->rx_buffer_hash_size;
556 
557 	if (n_frags > 1) {
558 		/* Release/sync DMA mapping for additional fragments.
559 		 * Fix length for last fragment.
560 		 */
561 		unsigned int tail_frags = n_frags - 1;
562 
563 		for (;;) {
564 			rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
565 			if (--tail_frags == 0)
566 				break;
567 			efx_sync_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE);
568 		}
569 		rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE;
570 		efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
571 	}
572 
573 	/* All fragments have been DMA-synced, so recycle buffers and pages. */
574 	rx_buf = efx_rx_buffer(rx_queue, index);
575 	efx_recycle_rx_buffers(channel, rx_buf, n_frags);
576 
577 	/* Pipeline receives so that we give time for packet headers to be
578 	 * prefetched into cache.
579 	 */
580 	efx_rx_flush_packet(channel);
581 	channel->rx_pkt_n_frags = n_frags;
582 	channel->rx_pkt_index = index;
583 }
584 
585 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
586 			   struct efx_rx_buffer *rx_buf,
587 			   unsigned int n_frags)
588 {
589 	struct sk_buff *skb;
590 	u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
591 
592 	skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
593 	if (unlikely(skb == NULL)) {
594 		efx_free_rx_buffer(rx_buf);
595 		return;
596 	}
597 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
598 
599 	/* Set the SKB flags */
600 	skb_checksum_none_assert(skb);
601 
602 	if (channel->type->receive_skb)
603 		if (channel->type->receive_skb(channel, skb))
604 			return;
605 
606 	/* Pass the packet up */
607 	netif_receive_skb(skb);
608 }
609 
610 /* Handle a received packet.  Second half: Touches packet payload. */
611 void __efx_rx_packet(struct efx_channel *channel)
612 {
613 	struct efx_nic *efx = channel->efx;
614 	struct efx_rx_buffer *rx_buf =
615 		efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
616 	u8 *eh = efx_rx_buf_va(rx_buf);
617 
618 	/* If we're in loopback test, then pass the packet directly to the
619 	 * loopback layer, and free the rx_buf here
620 	 */
621 	if (unlikely(efx->loopback_selftest)) {
622 		efx_loopback_rx_packet(efx, eh, rx_buf->len);
623 		efx_free_rx_buffer(rx_buf);
624 		goto out;
625 	}
626 
627 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
628 		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
629 
630 	if (!channel->type->receive_skb)
631 		efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
632 	else
633 		efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
634 out:
635 	channel->rx_pkt_n_frags = 0;
636 }
637 
638 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
639 {
640 	struct efx_nic *efx = rx_queue->efx;
641 	unsigned int entries;
642 	int rc;
643 
644 	/* Create the smallest power-of-two aligned ring */
645 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
646 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
647 	rx_queue->ptr_mask = entries - 1;
648 
649 	netif_dbg(efx, probe, efx->net_dev,
650 		  "creating RX queue %d size %#x mask %#x\n",
651 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
652 		  rx_queue->ptr_mask);
653 
654 	/* Allocate RX buffers */
655 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
656 				   GFP_KERNEL);
657 	if (!rx_queue->buffer)
658 		return -ENOMEM;
659 
660 	rc = efx_nic_probe_rx(rx_queue);
661 	if (rc) {
662 		kfree(rx_queue->buffer);
663 		rx_queue->buffer = NULL;
664 	}
665 
666 	return rc;
667 }
668 
669 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
670 				     struct efx_rx_queue *rx_queue)
671 {
672 	unsigned int bufs_in_recycle_ring, page_ring_size;
673 
674 	/* Set the RX recycle ring size */
675 #ifdef CONFIG_PPC64
676 	bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
677 #else
678 	if (efx->pci_dev->dev.iommu_group)
679 		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
680 	else
681 		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
682 #endif /* CONFIG_PPC64 */
683 
684 	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
685 					    efx->rx_bufs_per_page);
686 	rx_queue->page_ring = kcalloc(page_ring_size,
687 				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
688 	rx_queue->page_ptr_mask = page_ring_size - 1;
689 }
690 
691 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
692 {
693 	struct efx_nic *efx = rx_queue->efx;
694 	unsigned int max_fill, trigger, max_trigger;
695 
696 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
697 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
698 
699 	/* Initialise ptr fields */
700 	rx_queue->added_count = 0;
701 	rx_queue->notified_count = 0;
702 	rx_queue->removed_count = 0;
703 	rx_queue->min_fill = -1U;
704 	efx_init_rx_recycle_ring(efx, rx_queue);
705 
706 	rx_queue->page_remove = 0;
707 	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
708 	rx_queue->page_recycle_count = 0;
709 	rx_queue->page_recycle_failed = 0;
710 	rx_queue->page_recycle_full = 0;
711 
712 	/* Initialise limit fields */
713 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
714 	max_trigger =
715 		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
716 	if (rx_refill_threshold != 0) {
717 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
718 		if (trigger > max_trigger)
719 			trigger = max_trigger;
720 	} else {
721 		trigger = max_trigger;
722 	}
723 
724 	rx_queue->max_fill = max_fill;
725 	rx_queue->fast_fill_trigger = trigger;
726 
727 	/* Set up RX descriptor ring */
728 	rx_queue->enabled = true;
729 	efx_nic_init_rx(rx_queue);
730 }
731 
732 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
733 {
734 	int i;
735 	struct efx_nic *efx = rx_queue->efx;
736 	struct efx_rx_buffer *rx_buf;
737 
738 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
739 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
740 
741 	/* A flush failure might have left rx_queue->enabled */
742 	rx_queue->enabled = false;
743 
744 	del_timer_sync(&rx_queue->slow_fill);
745 	efx_nic_fini_rx(rx_queue);
746 
747 	/* Release RX buffers from the current read ptr to the write ptr */
748 	if (rx_queue->buffer) {
749 		for (i = rx_queue->removed_count; i < rx_queue->added_count;
750 		     i++) {
751 			unsigned index = i & rx_queue->ptr_mask;
752 			rx_buf = efx_rx_buffer(rx_queue, index);
753 			efx_fini_rx_buffer(rx_queue, rx_buf);
754 		}
755 	}
756 
757 	/* Unmap and release the pages in the recycle ring. Remove the ring. */
758 	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
759 		struct page *page = rx_queue->page_ring[i];
760 		struct efx_rx_page_state *state;
761 
762 		if (page == NULL)
763 			continue;
764 
765 		state = page_address(page);
766 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
767 			       PAGE_SIZE << efx->rx_buffer_order,
768 			       DMA_FROM_DEVICE);
769 		put_page(page);
770 	}
771 	kfree(rx_queue->page_ring);
772 	rx_queue->page_ring = NULL;
773 }
774 
775 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
776 {
777 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
778 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
779 
780 	efx_nic_remove_rx(rx_queue);
781 
782 	kfree(rx_queue->buffer);
783 	rx_queue->buffer = NULL;
784 }
785 
786 
787 module_param(rx_refill_threshold, uint, 0444);
788 MODULE_PARM_DESC(rx_refill_threshold,
789 		 "RX descriptor ring refill threshold (%)");
790 
791