xref: /openbmc/linux/drivers/net/ethernet/sfc/rx.c (revision 151f4e2b)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/prefetch.h>
19 #include <linux/moduleparam.h>
20 #include <linux/iommu.h>
21 #include <net/ip.h>
22 #include <net/checksum.h>
23 #include "net_driver.h"
24 #include "efx.h"
25 #include "filter.h"
26 #include "nic.h"
27 #include "selftest.h"
28 #include "workarounds.h"
29 
30 /* Preferred number of descriptors to fill at once */
31 #define EFX_RX_PREFERRED_BATCH 8U
32 
33 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
34  * ring, this number is divided by the number of buffers per page to calculate
35  * the number of pages to store in the RX page recycle ring.
36  */
37 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
38 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
39 
40 /* Size of buffer allocated for skb header area. */
41 #define EFX_SKB_HEADERS  128u
42 
43 /* This is the percentage fill level below which new RX descriptors
44  * will be added to the RX descriptor ring.
45  */
46 static unsigned int rx_refill_threshold;
47 
48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
49 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
50 				      EFX_RX_USR_BUF_SIZE)
51 
52 /*
53  * RX maximum head room required.
54  *
55  * This must be at least 1 to prevent overflow, plus one packet-worth
56  * to allow pipelined receives.
57  */
58 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
59 
60 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
61 {
62 	return page_address(buf->page) + buf->page_offset;
63 }
64 
65 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
66 {
67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
68 	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
69 #else
70 	const u8 *data = eh + efx->rx_packet_hash_offset;
71 	return (u32)data[0]	  |
72 	       (u32)data[1] << 8  |
73 	       (u32)data[2] << 16 |
74 	       (u32)data[3] << 24;
75 #endif
76 }
77 
78 static inline struct efx_rx_buffer *
79 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
80 {
81 	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
82 		return efx_rx_buffer(rx_queue, 0);
83 	else
84 		return rx_buf + 1;
85 }
86 
87 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
88 				      struct efx_rx_buffer *rx_buf,
89 				      unsigned int len)
90 {
91 	dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
92 				DMA_FROM_DEVICE);
93 }
94 
95 void efx_rx_config_page_split(struct efx_nic *efx)
96 {
97 	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
98 				      EFX_RX_BUF_ALIGNMENT);
99 	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
100 		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
101 		 efx->rx_page_buf_step);
102 	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
103 		efx->rx_bufs_per_page;
104 	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
105 					       efx->rx_bufs_per_page);
106 }
107 
108 /* Check the RX page recycle ring for a page that can be reused. */
109 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
110 {
111 	struct efx_nic *efx = rx_queue->efx;
112 	struct page *page;
113 	struct efx_rx_page_state *state;
114 	unsigned index;
115 
116 	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
117 	page = rx_queue->page_ring[index];
118 	if (page == NULL)
119 		return NULL;
120 
121 	rx_queue->page_ring[index] = NULL;
122 	/* page_remove cannot exceed page_add. */
123 	if (rx_queue->page_remove != rx_queue->page_add)
124 		++rx_queue->page_remove;
125 
126 	/* If page_count is 1 then we hold the only reference to this page. */
127 	if (page_count(page) == 1) {
128 		++rx_queue->page_recycle_count;
129 		return page;
130 	} else {
131 		state = page_address(page);
132 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
133 			       PAGE_SIZE << efx->rx_buffer_order,
134 			       DMA_FROM_DEVICE);
135 		put_page(page);
136 		++rx_queue->page_recycle_failed;
137 	}
138 
139 	return NULL;
140 }
141 
142 /**
143  * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
144  *
145  * @rx_queue:		Efx RX queue
146  *
147  * This allocates a batch of pages, maps them for DMA, and populates
148  * struct efx_rx_buffers for each one. Return a negative error code or
149  * 0 on success. If a single page can be used for multiple buffers,
150  * then the page will either be inserted fully, or not at all.
151  */
152 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
153 {
154 	struct efx_nic *efx = rx_queue->efx;
155 	struct efx_rx_buffer *rx_buf;
156 	struct page *page;
157 	unsigned int page_offset;
158 	struct efx_rx_page_state *state;
159 	dma_addr_t dma_addr;
160 	unsigned index, count;
161 
162 	count = 0;
163 	do {
164 		page = efx_reuse_page(rx_queue);
165 		if (page == NULL) {
166 			page = alloc_pages(__GFP_COMP |
167 					   (atomic ? GFP_ATOMIC : GFP_KERNEL),
168 					   efx->rx_buffer_order);
169 			if (unlikely(page == NULL))
170 				return -ENOMEM;
171 			dma_addr =
172 				dma_map_page(&efx->pci_dev->dev, page, 0,
173 					     PAGE_SIZE << efx->rx_buffer_order,
174 					     DMA_FROM_DEVICE);
175 			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
176 						       dma_addr))) {
177 				__free_pages(page, efx->rx_buffer_order);
178 				return -EIO;
179 			}
180 			state = page_address(page);
181 			state->dma_addr = dma_addr;
182 		} else {
183 			state = page_address(page);
184 			dma_addr = state->dma_addr;
185 		}
186 
187 		dma_addr += sizeof(struct efx_rx_page_state);
188 		page_offset = sizeof(struct efx_rx_page_state);
189 
190 		do {
191 			index = rx_queue->added_count & rx_queue->ptr_mask;
192 			rx_buf = efx_rx_buffer(rx_queue, index);
193 			rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
194 			rx_buf->page = page;
195 			rx_buf->page_offset = page_offset + efx->rx_ip_align;
196 			rx_buf->len = efx->rx_dma_len;
197 			rx_buf->flags = 0;
198 			++rx_queue->added_count;
199 			get_page(page);
200 			dma_addr += efx->rx_page_buf_step;
201 			page_offset += efx->rx_page_buf_step;
202 		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
203 
204 		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
205 	} while (++count < efx->rx_pages_per_batch);
206 
207 	return 0;
208 }
209 
210 /* Unmap a DMA-mapped page.  This function is only called for the final RX
211  * buffer in a page.
212  */
213 static void efx_unmap_rx_buffer(struct efx_nic *efx,
214 				struct efx_rx_buffer *rx_buf)
215 {
216 	struct page *page = rx_buf->page;
217 
218 	if (page) {
219 		struct efx_rx_page_state *state = page_address(page);
220 		dma_unmap_page(&efx->pci_dev->dev,
221 			       state->dma_addr,
222 			       PAGE_SIZE << efx->rx_buffer_order,
223 			       DMA_FROM_DEVICE);
224 	}
225 }
226 
227 static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
228 				struct efx_rx_buffer *rx_buf,
229 				unsigned int num_bufs)
230 {
231 	do {
232 		if (rx_buf->page) {
233 			put_page(rx_buf->page);
234 			rx_buf->page = NULL;
235 		}
236 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
237 	} while (--num_bufs);
238 }
239 
240 /* Attempt to recycle the page if there is an RX recycle ring; the page can
241  * only be added if this is the final RX buffer, to prevent pages being used in
242  * the descriptor ring and appearing in the recycle ring simultaneously.
243  */
244 static void efx_recycle_rx_page(struct efx_channel *channel,
245 				struct efx_rx_buffer *rx_buf)
246 {
247 	struct page *page = rx_buf->page;
248 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
249 	struct efx_nic *efx = rx_queue->efx;
250 	unsigned index;
251 
252 	/* Only recycle the page after processing the final buffer. */
253 	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
254 		return;
255 
256 	index = rx_queue->page_add & rx_queue->page_ptr_mask;
257 	if (rx_queue->page_ring[index] == NULL) {
258 		unsigned read_index = rx_queue->page_remove &
259 			rx_queue->page_ptr_mask;
260 
261 		/* The next slot in the recycle ring is available, but
262 		 * increment page_remove if the read pointer currently
263 		 * points here.
264 		 */
265 		if (read_index == index)
266 			++rx_queue->page_remove;
267 		rx_queue->page_ring[index] = page;
268 		++rx_queue->page_add;
269 		return;
270 	}
271 	++rx_queue->page_recycle_full;
272 	efx_unmap_rx_buffer(efx, rx_buf);
273 	put_page(rx_buf->page);
274 }
275 
276 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
277 			       struct efx_rx_buffer *rx_buf)
278 {
279 	/* Release the page reference we hold for the buffer. */
280 	if (rx_buf->page)
281 		put_page(rx_buf->page);
282 
283 	/* If this is the last buffer in a page, unmap and free it. */
284 	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
285 		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
286 		efx_free_rx_buffers(rx_queue, rx_buf, 1);
287 	}
288 	rx_buf->page = NULL;
289 }
290 
291 /* Recycle the pages that are used by buffers that have just been received. */
292 static void efx_recycle_rx_pages(struct efx_channel *channel,
293 				 struct efx_rx_buffer *rx_buf,
294 				 unsigned int n_frags)
295 {
296 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
297 
298 	do {
299 		efx_recycle_rx_page(channel, rx_buf);
300 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
301 	} while (--n_frags);
302 }
303 
304 static void efx_discard_rx_packet(struct efx_channel *channel,
305 				  struct efx_rx_buffer *rx_buf,
306 				  unsigned int n_frags)
307 {
308 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
309 
310 	efx_recycle_rx_pages(channel, rx_buf, n_frags);
311 
312 	efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
313 }
314 
315 /**
316  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
317  * @rx_queue:		RX descriptor queue
318  *
319  * This will aim to fill the RX descriptor queue up to
320  * @rx_queue->@max_fill. If there is insufficient atomic
321  * memory to do so, a slow fill will be scheduled.
322  *
323  * The caller must provide serialisation (none is used here). In practise,
324  * this means this function must run from the NAPI handler, or be called
325  * when NAPI is disabled.
326  */
327 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
328 {
329 	struct efx_nic *efx = rx_queue->efx;
330 	unsigned int fill_level, batch_size;
331 	int space, rc = 0;
332 
333 	if (!rx_queue->refill_enabled)
334 		return;
335 
336 	/* Calculate current fill level, and exit if we don't need to fill */
337 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
338 	EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
339 	if (fill_level >= rx_queue->fast_fill_trigger)
340 		goto out;
341 
342 	/* Record minimum fill level */
343 	if (unlikely(fill_level < rx_queue->min_fill)) {
344 		if (fill_level)
345 			rx_queue->min_fill = fill_level;
346 	}
347 
348 	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
349 	space = rx_queue->max_fill - fill_level;
350 	EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
351 
352 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
353 		   "RX queue %d fast-filling descriptor ring from"
354 		   " level %d to level %d\n",
355 		   efx_rx_queue_index(rx_queue), fill_level,
356 		   rx_queue->max_fill);
357 
358 
359 	do {
360 		rc = efx_init_rx_buffers(rx_queue, atomic);
361 		if (unlikely(rc)) {
362 			/* Ensure that we don't leave the rx queue empty */
363 			efx_schedule_slow_fill(rx_queue);
364 			goto out;
365 		}
366 	} while ((space -= batch_size) >= batch_size);
367 
368 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
369 		   "RX queue %d fast-filled descriptor ring "
370 		   "to level %d\n", efx_rx_queue_index(rx_queue),
371 		   rx_queue->added_count - rx_queue->removed_count);
372 
373  out:
374 	if (rx_queue->notified_count != rx_queue->added_count)
375 		efx_nic_notify_rx_desc(rx_queue);
376 }
377 
378 void efx_rx_slow_fill(struct timer_list *t)
379 {
380 	struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
381 
382 	/* Post an event to cause NAPI to run and refill the queue */
383 	efx_nic_generate_fill_event(rx_queue);
384 	++rx_queue->slow_fill_count;
385 }
386 
387 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
388 				     struct efx_rx_buffer *rx_buf,
389 				     int len)
390 {
391 	struct efx_nic *efx = rx_queue->efx;
392 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
393 
394 	if (likely(len <= max_len))
395 		return;
396 
397 	/* The packet must be discarded, but this is only a fatal error
398 	 * if the caller indicated it was
399 	 */
400 	rx_buf->flags |= EFX_RX_PKT_DISCARD;
401 
402 	if (net_ratelimit())
403 		netif_err(efx, rx_err, efx->net_dev,
404 			  "RX queue %d overlength RX event (%#x > %#x)\n",
405 			  efx_rx_queue_index(rx_queue), len, max_len);
406 
407 	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
408 }
409 
410 /* Pass a received packet up through GRO.  GRO can handle pages
411  * regardless of checksum state and skbs with a good checksum.
412  */
413 static void
414 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
415 		  unsigned int n_frags, u8 *eh)
416 {
417 	struct napi_struct *napi = &channel->napi_str;
418 	gro_result_t gro_result;
419 	struct efx_nic *efx = channel->efx;
420 	struct sk_buff *skb;
421 
422 	skb = napi_get_frags(napi);
423 	if (unlikely(!skb)) {
424 		struct efx_rx_queue *rx_queue;
425 
426 		rx_queue = efx_channel_get_rx_queue(channel);
427 		efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
428 		return;
429 	}
430 
431 	if (efx->net_dev->features & NETIF_F_RXHASH)
432 		skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
433 			     PKT_HASH_TYPE_L3);
434 	skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
435 			  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
436 	skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
437 
438 	for (;;) {
439 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
440 				   rx_buf->page, rx_buf->page_offset,
441 				   rx_buf->len);
442 		rx_buf->page = NULL;
443 		skb->len += rx_buf->len;
444 		if (skb_shinfo(skb)->nr_frags == n_frags)
445 			break;
446 
447 		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
448 	}
449 
450 	skb->data_len = skb->len;
451 	skb->truesize += n_frags * efx->rx_buffer_truesize;
452 
453 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
454 
455 	gro_result = napi_gro_frags(napi);
456 	if (gro_result != GRO_DROP)
457 		channel->irq_mod_score += 2;
458 }
459 
460 /* Allocate and construct an SKB around page fragments */
461 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
462 				     struct efx_rx_buffer *rx_buf,
463 				     unsigned int n_frags,
464 				     u8 *eh, int hdr_len)
465 {
466 	struct efx_nic *efx = channel->efx;
467 	struct sk_buff *skb;
468 
469 	/* Allocate an SKB to store the headers */
470 	skb = netdev_alloc_skb(efx->net_dev,
471 			       efx->rx_ip_align + efx->rx_prefix_size +
472 			       hdr_len);
473 	if (unlikely(skb == NULL)) {
474 		atomic_inc(&efx->n_rx_noskb_drops);
475 		return NULL;
476 	}
477 
478 	EFX_WARN_ON_ONCE_PARANOID(rx_buf->len < hdr_len);
479 
480 	memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
481 	       efx->rx_prefix_size + hdr_len);
482 	skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
483 	__skb_put(skb, hdr_len);
484 
485 	/* Append the remaining page(s) onto the frag list */
486 	if (rx_buf->len > hdr_len) {
487 		rx_buf->page_offset += hdr_len;
488 		rx_buf->len -= hdr_len;
489 
490 		for (;;) {
491 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
492 					   rx_buf->page, rx_buf->page_offset,
493 					   rx_buf->len);
494 			rx_buf->page = NULL;
495 			skb->len += rx_buf->len;
496 			skb->data_len += rx_buf->len;
497 			if (skb_shinfo(skb)->nr_frags == n_frags)
498 				break;
499 
500 			rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
501 		}
502 	} else {
503 		__free_pages(rx_buf->page, efx->rx_buffer_order);
504 		rx_buf->page = NULL;
505 		n_frags = 0;
506 	}
507 
508 	skb->truesize += n_frags * efx->rx_buffer_truesize;
509 
510 	/* Move past the ethernet header */
511 	skb->protocol = eth_type_trans(skb, efx->net_dev);
512 
513 	skb_mark_napi_id(skb, &channel->napi_str);
514 
515 	return skb;
516 }
517 
518 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
519 		   unsigned int n_frags, unsigned int len, u16 flags)
520 {
521 	struct efx_nic *efx = rx_queue->efx;
522 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
523 	struct efx_rx_buffer *rx_buf;
524 
525 	rx_queue->rx_packets++;
526 
527 	rx_buf = efx_rx_buffer(rx_queue, index);
528 	rx_buf->flags |= flags;
529 
530 	/* Validate the number of fragments and completed length */
531 	if (n_frags == 1) {
532 		if (!(flags & EFX_RX_PKT_PREFIX_LEN))
533 			efx_rx_packet__check_len(rx_queue, rx_buf, len);
534 	} else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
535 		   unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
536 		   unlikely(len > n_frags * efx->rx_dma_len) ||
537 		   unlikely(!efx->rx_scatter)) {
538 		/* If this isn't an explicit discard request, either
539 		 * the hardware or the driver is broken.
540 		 */
541 		WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
542 		rx_buf->flags |= EFX_RX_PKT_DISCARD;
543 	}
544 
545 	netif_vdbg(efx, rx_status, efx->net_dev,
546 		   "RX queue %d received ids %x-%x len %d %s%s\n",
547 		   efx_rx_queue_index(rx_queue), index,
548 		   (index + n_frags - 1) & rx_queue->ptr_mask, len,
549 		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
550 		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
551 
552 	/* Discard packet, if instructed to do so.  Process the
553 	 * previous receive first.
554 	 */
555 	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
556 		efx_rx_flush_packet(channel);
557 		efx_discard_rx_packet(channel, rx_buf, n_frags);
558 		return;
559 	}
560 
561 	if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
562 		rx_buf->len = len;
563 
564 	/* Release and/or sync the DMA mapping - assumes all RX buffers
565 	 * consumed in-order per RX queue.
566 	 */
567 	efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
568 
569 	/* Prefetch nice and early so data will (hopefully) be in cache by
570 	 * the time we look at it.
571 	 */
572 	prefetch(efx_rx_buf_va(rx_buf));
573 
574 	rx_buf->page_offset += efx->rx_prefix_size;
575 	rx_buf->len -= efx->rx_prefix_size;
576 
577 	if (n_frags > 1) {
578 		/* Release/sync DMA mapping for additional fragments.
579 		 * Fix length for last fragment.
580 		 */
581 		unsigned int tail_frags = n_frags - 1;
582 
583 		for (;;) {
584 			rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
585 			if (--tail_frags == 0)
586 				break;
587 			efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
588 		}
589 		rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
590 		efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
591 	}
592 
593 	/* All fragments have been DMA-synced, so recycle pages. */
594 	rx_buf = efx_rx_buffer(rx_queue, index);
595 	efx_recycle_rx_pages(channel, rx_buf, n_frags);
596 
597 	/* Pipeline receives so that we give time for packet headers to be
598 	 * prefetched into cache.
599 	 */
600 	efx_rx_flush_packet(channel);
601 	channel->rx_pkt_n_frags = n_frags;
602 	channel->rx_pkt_index = index;
603 }
604 
605 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
606 			   struct efx_rx_buffer *rx_buf,
607 			   unsigned int n_frags)
608 {
609 	struct sk_buff *skb;
610 	u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
611 
612 	skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
613 	if (unlikely(skb == NULL)) {
614 		struct efx_rx_queue *rx_queue;
615 
616 		rx_queue = efx_channel_get_rx_queue(channel);
617 		efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
618 		return;
619 	}
620 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
621 
622 	/* Set the SKB flags */
623 	skb_checksum_none_assert(skb);
624 	if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) {
625 		skb->ip_summed = CHECKSUM_UNNECESSARY;
626 		skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
627 	}
628 
629 	efx_rx_skb_attach_timestamp(channel, skb);
630 
631 	if (channel->type->receive_skb)
632 		if (channel->type->receive_skb(channel, skb))
633 			return;
634 
635 	/* Pass the packet up */
636 	if (channel->rx_list != NULL)
637 		/* Add to list, will pass up later */
638 		list_add_tail(&skb->list, channel->rx_list);
639 	else
640 		/* No list, so pass it up now */
641 		netif_receive_skb(skb);
642 }
643 
644 /* Handle a received packet.  Second half: Touches packet payload. */
645 void __efx_rx_packet(struct efx_channel *channel)
646 {
647 	struct efx_nic *efx = channel->efx;
648 	struct efx_rx_buffer *rx_buf =
649 		efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
650 	u8 *eh = efx_rx_buf_va(rx_buf);
651 
652 	/* Read length from the prefix if necessary.  This already
653 	 * excludes the length of the prefix itself.
654 	 */
655 	if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
656 		rx_buf->len = le16_to_cpup((__le16 *)
657 					   (eh + efx->rx_packet_len_offset));
658 
659 	/* If we're in loopback test, then pass the packet directly to the
660 	 * loopback layer, and free the rx_buf here
661 	 */
662 	if (unlikely(efx->loopback_selftest)) {
663 		struct efx_rx_queue *rx_queue;
664 
665 		efx_loopback_rx_packet(efx, eh, rx_buf->len);
666 		rx_queue = efx_channel_get_rx_queue(channel);
667 		efx_free_rx_buffers(rx_queue, rx_buf,
668 				    channel->rx_pkt_n_frags);
669 		goto out;
670 	}
671 
672 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
673 		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
674 
675 	if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
676 		efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
677 	else
678 		efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
679 out:
680 	channel->rx_pkt_n_frags = 0;
681 }
682 
683 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
684 {
685 	struct efx_nic *efx = rx_queue->efx;
686 	unsigned int entries;
687 	int rc;
688 
689 	/* Create the smallest power-of-two aligned ring */
690 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
691 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
692 	rx_queue->ptr_mask = entries - 1;
693 
694 	netif_dbg(efx, probe, efx->net_dev,
695 		  "creating RX queue %d size %#x mask %#x\n",
696 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
697 		  rx_queue->ptr_mask);
698 
699 	/* Allocate RX buffers */
700 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
701 				   GFP_KERNEL);
702 	if (!rx_queue->buffer)
703 		return -ENOMEM;
704 
705 	rc = efx_nic_probe_rx(rx_queue);
706 	if (rc) {
707 		kfree(rx_queue->buffer);
708 		rx_queue->buffer = NULL;
709 	}
710 
711 	return rc;
712 }
713 
714 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
715 				     struct efx_rx_queue *rx_queue)
716 {
717 	unsigned int bufs_in_recycle_ring, page_ring_size;
718 
719 	/* Set the RX recycle ring size */
720 #ifdef CONFIG_PPC64
721 	bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
722 #else
723 	if (iommu_present(&pci_bus_type))
724 		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
725 	else
726 		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
727 #endif /* CONFIG_PPC64 */
728 
729 	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
730 					    efx->rx_bufs_per_page);
731 	rx_queue->page_ring = kcalloc(page_ring_size,
732 				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
733 	rx_queue->page_ptr_mask = page_ring_size - 1;
734 }
735 
736 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
737 {
738 	struct efx_nic *efx = rx_queue->efx;
739 	unsigned int max_fill, trigger, max_trigger;
740 
741 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
742 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
743 
744 	/* Initialise ptr fields */
745 	rx_queue->added_count = 0;
746 	rx_queue->notified_count = 0;
747 	rx_queue->removed_count = 0;
748 	rx_queue->min_fill = -1U;
749 	efx_init_rx_recycle_ring(efx, rx_queue);
750 
751 	rx_queue->page_remove = 0;
752 	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
753 	rx_queue->page_recycle_count = 0;
754 	rx_queue->page_recycle_failed = 0;
755 	rx_queue->page_recycle_full = 0;
756 
757 	/* Initialise limit fields */
758 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
759 	max_trigger =
760 		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
761 	if (rx_refill_threshold != 0) {
762 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
763 		if (trigger > max_trigger)
764 			trigger = max_trigger;
765 	} else {
766 		trigger = max_trigger;
767 	}
768 
769 	rx_queue->max_fill = max_fill;
770 	rx_queue->fast_fill_trigger = trigger;
771 	rx_queue->refill_enabled = true;
772 
773 	/* Set up RX descriptor ring */
774 	efx_nic_init_rx(rx_queue);
775 }
776 
777 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
778 {
779 	int i;
780 	struct efx_nic *efx = rx_queue->efx;
781 	struct efx_rx_buffer *rx_buf;
782 
783 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
784 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
785 
786 	del_timer_sync(&rx_queue->slow_fill);
787 
788 	/* Release RX buffers from the current read ptr to the write ptr */
789 	if (rx_queue->buffer) {
790 		for (i = rx_queue->removed_count; i < rx_queue->added_count;
791 		     i++) {
792 			unsigned index = i & rx_queue->ptr_mask;
793 			rx_buf = efx_rx_buffer(rx_queue, index);
794 			efx_fini_rx_buffer(rx_queue, rx_buf);
795 		}
796 	}
797 
798 	/* Unmap and release the pages in the recycle ring. Remove the ring. */
799 	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
800 		struct page *page = rx_queue->page_ring[i];
801 		struct efx_rx_page_state *state;
802 
803 		if (page == NULL)
804 			continue;
805 
806 		state = page_address(page);
807 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
808 			       PAGE_SIZE << efx->rx_buffer_order,
809 			       DMA_FROM_DEVICE);
810 		put_page(page);
811 	}
812 	kfree(rx_queue->page_ring);
813 	rx_queue->page_ring = NULL;
814 }
815 
816 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
817 {
818 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
819 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
820 
821 	efx_nic_remove_rx(rx_queue);
822 
823 	kfree(rx_queue->buffer);
824 	rx_queue->buffer = NULL;
825 }
826 
827 
828 module_param(rx_refill_threshold, uint, 0444);
829 MODULE_PARM_DESC(rx_refill_threshold,
830 		 "RX descriptor ring refill threshold (%)");
831 
832 #ifdef CONFIG_RFS_ACCEL
833 
834 static void efx_filter_rfs_work(struct work_struct *data)
835 {
836 	struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
837 							      work);
838 	struct efx_nic *efx = netdev_priv(req->net_dev);
839 	struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
840 	int slot_idx = req - efx->rps_slot;
841 	struct efx_arfs_rule *rule;
842 	u16 arfs_id = 0;
843 	int rc;
844 
845 	rc = efx->type->filter_insert(efx, &req->spec, true);
846 	if (rc >= 0)
847 		rc %= efx->type->max_rx_ip_filters;
848 	if (efx->rps_hash_table) {
849 		spin_lock_bh(&efx->rps_hash_lock);
850 		rule = efx_rps_hash_find(efx, &req->spec);
851 		/* The rule might have already gone, if someone else's request
852 		 * for the same spec was already worked and then expired before
853 		 * we got around to our work.  In that case we have nothing
854 		 * tying us to an arfs_id, meaning that as soon as the filter
855 		 * is considered for expiry it will be removed.
856 		 */
857 		if (rule) {
858 			if (rc < 0)
859 				rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
860 			else
861 				rule->filter_id = rc;
862 			arfs_id = rule->arfs_id;
863 		}
864 		spin_unlock_bh(&efx->rps_hash_lock);
865 	}
866 	if (rc >= 0) {
867 		/* Remember this so we can check whether to expire the filter
868 		 * later.
869 		 */
870 		mutex_lock(&efx->rps_mutex);
871 		channel->rps_flow_id[rc] = req->flow_id;
872 		++channel->rfs_filters_added;
873 		mutex_unlock(&efx->rps_mutex);
874 
875 		if (req->spec.ether_type == htons(ETH_P_IP))
876 			netif_info(efx, rx_status, efx->net_dev,
877 				   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
878 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
879 				   req->spec.rem_host, ntohs(req->spec.rem_port),
880 				   req->spec.loc_host, ntohs(req->spec.loc_port),
881 				   req->rxq_index, req->flow_id, rc, arfs_id);
882 		else
883 			netif_info(efx, rx_status, efx->net_dev,
884 				   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
885 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
886 				   req->spec.rem_host, ntohs(req->spec.rem_port),
887 				   req->spec.loc_host, ntohs(req->spec.loc_port),
888 				   req->rxq_index, req->flow_id, rc, arfs_id);
889 	}
890 
891 	/* Release references */
892 	clear_bit(slot_idx, &efx->rps_slot_map);
893 	dev_put(req->net_dev);
894 }
895 
896 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
897 		   u16 rxq_index, u32 flow_id)
898 {
899 	struct efx_nic *efx = netdev_priv(net_dev);
900 	struct efx_async_filter_insertion *req;
901 	struct efx_arfs_rule *rule;
902 	struct flow_keys fk;
903 	int slot_idx;
904 	bool new;
905 	int rc;
906 
907 	/* find a free slot */
908 	for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
909 		if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
910 			break;
911 	if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
912 		return -EBUSY;
913 
914 	if (flow_id == RPS_FLOW_ID_INVALID) {
915 		rc = -EINVAL;
916 		goto out_clear;
917 	}
918 
919 	if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
920 		rc = -EPROTONOSUPPORT;
921 		goto out_clear;
922 	}
923 
924 	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
925 		rc = -EPROTONOSUPPORT;
926 		goto out_clear;
927 	}
928 	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
929 		rc = -EPROTONOSUPPORT;
930 		goto out_clear;
931 	}
932 
933 	req = efx->rps_slot + slot_idx;
934 	efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
935 			   efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
936 			   rxq_index);
937 	req->spec.match_flags =
938 		EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
939 		EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
940 		EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
941 	req->spec.ether_type = fk.basic.n_proto;
942 	req->spec.ip_proto = fk.basic.ip_proto;
943 
944 	if (fk.basic.n_proto == htons(ETH_P_IP)) {
945 		req->spec.rem_host[0] = fk.addrs.v4addrs.src;
946 		req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
947 	} else {
948 		memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
949 		       sizeof(struct in6_addr));
950 		memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
951 		       sizeof(struct in6_addr));
952 	}
953 
954 	req->spec.rem_port = fk.ports.src;
955 	req->spec.loc_port = fk.ports.dst;
956 
957 	if (efx->rps_hash_table) {
958 		/* Add it to ARFS hash table */
959 		spin_lock(&efx->rps_hash_lock);
960 		rule = efx_rps_hash_add(efx, &req->spec, &new);
961 		if (!rule) {
962 			rc = -ENOMEM;
963 			goto out_unlock;
964 		}
965 		if (new)
966 			rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
967 		rc = rule->arfs_id;
968 		/* Skip if existing or pending filter already does the right thing */
969 		if (!new && rule->rxq_index == rxq_index &&
970 		    rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
971 			goto out_unlock;
972 		rule->rxq_index = rxq_index;
973 		rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
974 		spin_unlock(&efx->rps_hash_lock);
975 	} else {
976 		/* Without an ARFS hash table, we just use arfs_id 0 for all
977 		 * filters.  This means if multiple flows hash to the same
978 		 * flow_id, all but the most recently touched will be eligible
979 		 * for expiry.
980 		 */
981 		rc = 0;
982 	}
983 
984 	/* Queue the request */
985 	dev_hold(req->net_dev = net_dev);
986 	INIT_WORK(&req->work, efx_filter_rfs_work);
987 	req->rxq_index = rxq_index;
988 	req->flow_id = flow_id;
989 	schedule_work(&req->work);
990 	return rc;
991 out_unlock:
992 	spin_unlock(&efx->rps_hash_lock);
993 out_clear:
994 	clear_bit(slot_idx, &efx->rps_slot_map);
995 	return rc;
996 }
997 
998 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
999 {
1000 	bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1001 	unsigned int channel_idx, index, size;
1002 	u32 flow_id;
1003 
1004 	if (!mutex_trylock(&efx->rps_mutex))
1005 		return false;
1006 	expire_one = efx->type->filter_rfs_expire_one;
1007 	channel_idx = efx->rps_expire_channel;
1008 	index = efx->rps_expire_index;
1009 	size = efx->type->max_rx_ip_filters;
1010 	while (quota--) {
1011 		struct efx_channel *channel = efx_get_channel(efx, channel_idx);
1012 		flow_id = channel->rps_flow_id[index];
1013 
1014 		if (flow_id != RPS_FLOW_ID_INVALID &&
1015 		    expire_one(efx, flow_id, index)) {
1016 			netif_info(efx, rx_status, efx->net_dev,
1017 				   "expired filter %d [queue %u flow %u]\n",
1018 				   index, channel_idx, flow_id);
1019 			channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1020 		}
1021 		if (++index == size) {
1022 			if (++channel_idx == efx->n_channels)
1023 				channel_idx = 0;
1024 			index = 0;
1025 		}
1026 	}
1027 	efx->rps_expire_channel = channel_idx;
1028 	efx->rps_expire_index = index;
1029 
1030 	mutex_unlock(&efx->rps_mutex);
1031 	return true;
1032 }
1033 
1034 #endif /* CONFIG_RFS_ACCEL */
1035 
1036 /**
1037  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
1038  * @spec: Specification to test
1039  *
1040  * Return: %true if the specification is a non-drop RX filter that
1041  * matches a local MAC address I/G bit value of 1 or matches a local
1042  * IPv4 or IPv6 address value in the respective multicast address
1043  * range.  Otherwise %false.
1044  */
1045 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
1046 {
1047 	if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
1048 	    spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
1049 		return false;
1050 
1051 	if (spec->match_flags &
1052 	    (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
1053 	    is_multicast_ether_addr(spec->loc_mac))
1054 		return true;
1055 
1056 	if ((spec->match_flags &
1057 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
1058 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
1059 		if (spec->ether_type == htons(ETH_P_IP) &&
1060 		    ipv4_is_multicast(spec->loc_host[0]))
1061 			return true;
1062 		if (spec->ether_type == htons(ETH_P_IPV6) &&
1063 		    ((const u8 *)spec->loc_host)[0] == 0xff)
1064 			return true;
1065 	}
1066 
1067 	return false;
1068 }
1069