1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2011-2013 Solarflare Communications Inc. 5 */ 6 7 /* Theory of operation: 8 * 9 * PTP support is assisted by firmware running on the MC, which provides 10 * the hardware timestamping capabilities. Both transmitted and received 11 * PTP event packets are queued onto internal queues for subsequent processing; 12 * this is because the MC operations are relatively long and would block 13 * block NAPI/interrupt operation. 14 * 15 * Receive event processing: 16 * The event contains the packet's UUID and sequence number, together 17 * with the hardware timestamp. The PTP receive packet queue is searched 18 * for this UUID/sequence number and, if found, put on a pending queue. 19 * Packets not matching are delivered without timestamps (MCDI events will 20 * always arrive after the actual packet). 21 * It is important for the operation of the PTP protocol that the ordering 22 * of packets between the event and general port is maintained. 23 * 24 * Work queue processing: 25 * If work waiting, synchronise host/hardware time 26 * 27 * Transmit: send packet through MC, which returns the transmission time 28 * that is converted to an appropriate timestamp. 29 * 30 * Receive: the packet's reception time is converted to an appropriate 31 * timestamp. 32 */ 33 #include <linux/ip.h> 34 #include <linux/udp.h> 35 #include <linux/time.h> 36 #include <linux/ktime.h> 37 #include <linux/module.h> 38 #include <linux/net_tstamp.h> 39 #include <linux/pps_kernel.h> 40 #include <linux/ptp_clock_kernel.h> 41 #include "net_driver.h" 42 #include "efx.h" 43 #include "mcdi.h" 44 #include "mcdi_pcol.h" 45 #include "io.h" 46 #include "farch_regs.h" 47 #include "nic.h" 48 49 /* Maximum number of events expected to make up a PTP event */ 50 #define MAX_EVENT_FRAGS 3 51 52 /* Maximum delay, ms, to begin synchronisation */ 53 #define MAX_SYNCHRONISE_WAIT_MS 2 54 55 /* How long, at most, to spend synchronising */ 56 #define SYNCHRONISE_PERIOD_NS 250000 57 58 /* How often to update the shared memory time */ 59 #define SYNCHRONISATION_GRANULARITY_NS 200 60 61 /* Minimum permitted length of a (corrected) synchronisation time */ 62 #define DEFAULT_MIN_SYNCHRONISATION_NS 120 63 64 /* Maximum permitted length of a (corrected) synchronisation time */ 65 #define MAX_SYNCHRONISATION_NS 1000 66 67 /* How many (MC) receive events that can be queued */ 68 #define MAX_RECEIVE_EVENTS 8 69 70 /* Length of (modified) moving average. */ 71 #define AVERAGE_LENGTH 16 72 73 /* How long an unmatched event or packet can be held */ 74 #define PKT_EVENT_LIFETIME_MS 10 75 76 /* Offsets into PTP packet for identification. These offsets are from the 77 * start of the IP header, not the MAC header. Note that neither PTP V1 nor 78 * PTP V2 permit the use of IPV4 options. 79 */ 80 #define PTP_DPORT_OFFSET 22 81 82 #define PTP_V1_VERSION_LENGTH 2 83 #define PTP_V1_VERSION_OFFSET 28 84 85 #define PTP_V1_UUID_LENGTH 6 86 #define PTP_V1_UUID_OFFSET 50 87 88 #define PTP_V1_SEQUENCE_LENGTH 2 89 #define PTP_V1_SEQUENCE_OFFSET 58 90 91 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: 92 * includes IP header. 93 */ 94 #define PTP_V1_MIN_LENGTH 64 95 96 #define PTP_V2_VERSION_LENGTH 1 97 #define PTP_V2_VERSION_OFFSET 29 98 99 #define PTP_V2_UUID_LENGTH 8 100 #define PTP_V2_UUID_OFFSET 48 101 102 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2), 103 * the MC only captures the last six bytes of the clock identity. These values 104 * reflect those, not the ones used in the standard. The standard permits 105 * mapping of V1 UUIDs to V2 UUIDs with these same values. 106 */ 107 #define PTP_V2_MC_UUID_LENGTH 6 108 #define PTP_V2_MC_UUID_OFFSET 50 109 110 #define PTP_V2_SEQUENCE_LENGTH 2 111 #define PTP_V2_SEQUENCE_OFFSET 58 112 113 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: 114 * includes IP header. 115 */ 116 #define PTP_V2_MIN_LENGTH 63 117 118 #define PTP_MIN_LENGTH 63 119 120 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */ 121 #define PTP_EVENT_PORT 319 122 #define PTP_GENERAL_PORT 320 123 124 /* Annoyingly the format of the version numbers are different between 125 * versions 1 and 2 so it isn't possible to simply look for 1 or 2. 126 */ 127 #define PTP_VERSION_V1 1 128 129 #define PTP_VERSION_V2 2 130 #define PTP_VERSION_V2_MASK 0x0f 131 132 enum ptp_packet_state { 133 PTP_PACKET_STATE_UNMATCHED = 0, 134 PTP_PACKET_STATE_MATCHED, 135 PTP_PACKET_STATE_TIMED_OUT, 136 PTP_PACKET_STATE_MATCH_UNWANTED 137 }; 138 139 /* NIC synchronised with single word of time only comprising 140 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. 141 */ 142 #define MC_NANOSECOND_BITS 30 143 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) 144 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) 145 146 /* Maximum parts-per-billion adjustment that is acceptable */ 147 #define MAX_PPB 1000000 148 149 /* Precalculate scale word to avoid long long division at runtime */ 150 /* This is equivalent to 2^66 / 10^9. */ 151 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL) 152 153 /* How much to shift down after scaling to convert to FP40 */ 154 #define PPB_SHIFT_FP40 26 155 /* ... and FP44. */ 156 #define PPB_SHIFT_FP44 22 157 158 #define PTP_SYNC_ATTEMPTS 4 159 160 /** 161 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. 162 * @words: UUID and (partial) sequence number 163 * @expiry: Time after which the packet should be delivered irrespective of 164 * event arrival. 165 * @state: The state of the packet - whether it is ready for processing or 166 * whether that is of no interest. 167 */ 168 struct efx_ptp_match { 169 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)]; 170 unsigned long expiry; 171 enum ptp_packet_state state; 172 }; 173 174 /** 175 * struct efx_ptp_event_rx - A PTP receive event (from MC) 176 * @seq0: First part of (PTP) UUID 177 * @seq1: Second part of (PTP) UUID and sequence number 178 * @hwtimestamp: Event timestamp 179 */ 180 struct efx_ptp_event_rx { 181 struct list_head link; 182 u32 seq0; 183 u32 seq1; 184 ktime_t hwtimestamp; 185 unsigned long expiry; 186 }; 187 188 /** 189 * struct efx_ptp_timeset - Synchronisation between host and MC 190 * @host_start: Host time immediately before hardware timestamp taken 191 * @major: Hardware timestamp, major 192 * @minor: Hardware timestamp, minor 193 * @host_end: Host time immediately after hardware timestamp taken 194 * @wait: Number of NIC clock ticks between hardware timestamp being read and 195 * host end time being seen 196 * @window: Difference of host_end and host_start 197 * @valid: Whether this timeset is valid 198 */ 199 struct efx_ptp_timeset { 200 u32 host_start; 201 u32 major; 202 u32 minor; 203 u32 host_end; 204 u32 wait; 205 u32 window; /* Derived: end - start, allowing for wrap */ 206 }; 207 208 /** 209 * struct efx_ptp_data - Precision Time Protocol (PTP) state 210 * @efx: The NIC context 211 * @channel: The PTP channel (Siena only) 212 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are 213 * separate events) 214 * @rxq: Receive SKB queue (awaiting timestamps) 215 * @txq: Transmit SKB queue 216 * @evt_list: List of MC receive events awaiting packets 217 * @evt_free_list: List of free events 218 * @evt_lock: Lock for manipulating evt_list and evt_free_list 219 * @rx_evts: Instantiated events (on evt_list and evt_free_list) 220 * @workwq: Work queue for processing pending PTP operations 221 * @work: Work task 222 * @reset_required: A serious error has occurred and the PTP task needs to be 223 * reset (disable, enable). 224 * @rxfilter_event: Receive filter when operating 225 * @rxfilter_general: Receive filter when operating 226 * @config: Current timestamp configuration 227 * @enabled: PTP operation enabled 228 * @mode: Mode in which PTP operating (PTP version) 229 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time 230 * @nic_to_kernel_time: Function to convert from NIC to kernel time 231 * @nic_time.minor_max: Wrap point for NIC minor times 232 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time 233 * in packet prefix and last MCDI time sync event i.e. how much earlier than 234 * the last sync event time a packet timestamp can be. 235 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time 236 * in packet prefix and last MCDI time sync event i.e. how much later than 237 * the last sync event time a packet timestamp can be. 238 * @nic_time.sync_event_minor_shift: Shift required to make minor time from 239 * field in MCDI time sync event. 240 * @min_synchronisation_ns: Minimum acceptable corrected sync window 241 * @capabilities: Capabilities flags from the NIC 242 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit 243 * timestamps 244 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive 245 * timestamps 246 * @ts_corrections.pps_out: PPS output error (information only) 247 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps 248 * @ts_corrections.general_tx: Required driver correction of general packet 249 * transmit timestamps 250 * @ts_corrections.general_rx: Required driver correction of general packet 251 * receive timestamps 252 * @evt_frags: Partly assembled PTP events 253 * @evt_frag_idx: Current fragment number 254 * @evt_code: Last event code 255 * @start: Address at which MC indicates ready for synchronisation 256 * @host_time_pps: Host time at last PPS 257 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion 258 * frequency adjustment into a fixed point fractional nanosecond format. 259 * @current_adjfreq: Current ppb adjustment. 260 * @phc_clock: Pointer to registered phc device (if primary function) 261 * @phc_clock_info: Registration structure for phc device 262 * @pps_work: pps work task for handling pps events 263 * @pps_workwq: pps work queue 264 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled 265 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids 266 * allocations in main data path). 267 * @good_syncs: Number of successful synchronisations. 268 * @fast_syncs: Number of synchronisations requiring short delay 269 * @bad_syncs: Number of failed synchronisations. 270 * @sync_timeouts: Number of synchronisation timeouts 271 * @no_time_syncs: Number of synchronisations with no good times. 272 * @invalid_sync_windows: Number of sync windows with bad durations. 273 * @undersize_sync_windows: Number of corrected sync windows that are too small 274 * @oversize_sync_windows: Number of corrected sync windows that are too large 275 * @rx_no_timestamp: Number of packets received without a timestamp. 276 * @timeset: Last set of synchronisation statistics. 277 * @xmit_skb: Transmit SKB function. 278 */ 279 struct efx_ptp_data { 280 struct efx_nic *efx; 281 struct efx_channel *channel; 282 bool rx_ts_inline; 283 struct sk_buff_head rxq; 284 struct sk_buff_head txq; 285 struct list_head evt_list; 286 struct list_head evt_free_list; 287 spinlock_t evt_lock; 288 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS]; 289 struct workqueue_struct *workwq; 290 struct work_struct work; 291 bool reset_required; 292 u32 rxfilter_event; 293 u32 rxfilter_general; 294 bool rxfilter_installed; 295 struct hwtstamp_config config; 296 bool enabled; 297 unsigned int mode; 298 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); 299 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, 300 s32 correction); 301 struct { 302 u32 minor_max; 303 u32 sync_event_diff_min; 304 u32 sync_event_diff_max; 305 unsigned int sync_event_minor_shift; 306 } nic_time; 307 unsigned int min_synchronisation_ns; 308 unsigned int capabilities; 309 struct { 310 s32 ptp_tx; 311 s32 ptp_rx; 312 s32 pps_out; 313 s32 pps_in; 314 s32 general_tx; 315 s32 general_rx; 316 } ts_corrections; 317 efx_qword_t evt_frags[MAX_EVENT_FRAGS]; 318 int evt_frag_idx; 319 int evt_code; 320 struct efx_buffer start; 321 struct pps_event_time host_time_pps; 322 unsigned int adjfreq_ppb_shift; 323 s64 current_adjfreq; 324 struct ptp_clock *phc_clock; 325 struct ptp_clock_info phc_clock_info; 326 struct work_struct pps_work; 327 struct workqueue_struct *pps_workwq; 328 bool nic_ts_enabled; 329 _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX); 330 331 unsigned int good_syncs; 332 unsigned int fast_syncs; 333 unsigned int bad_syncs; 334 unsigned int sync_timeouts; 335 unsigned int no_time_syncs; 336 unsigned int invalid_sync_windows; 337 unsigned int undersize_sync_windows; 338 unsigned int oversize_sync_windows; 339 unsigned int rx_no_timestamp; 340 struct efx_ptp_timeset 341 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; 342 void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb); 343 }; 344 345 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta); 346 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); 347 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts); 348 static int efx_phc_settime(struct ptp_clock_info *ptp, 349 const struct timespec64 *e_ts); 350 static int efx_phc_enable(struct ptp_clock_info *ptp, 351 struct ptp_clock_request *request, int on); 352 353 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx) 354 { 355 struct efx_ef10_nic_data *nic_data = efx->nic_data; 356 357 return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) && 358 (nic_data->datapath_caps2 & 359 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN) 360 )); 361 } 362 363 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues 364 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit. 365 */ 366 static bool efx_ptp_want_txqs(struct efx_channel *channel) 367 { 368 return efx_ptp_use_mac_tx_timestamps(channel->efx); 369 } 370 371 #define PTP_SW_STAT(ext_name, field_name) \ 372 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } 373 #define PTP_MC_STAT(ext_name, mcdi_name) \ 374 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } 375 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { 376 PTP_SW_STAT(ptp_good_syncs, good_syncs), 377 PTP_SW_STAT(ptp_fast_syncs, fast_syncs), 378 PTP_SW_STAT(ptp_bad_syncs, bad_syncs), 379 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), 380 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), 381 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), 382 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), 383 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), 384 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), 385 PTP_MC_STAT(ptp_tx_timestamp_packets, TX), 386 PTP_MC_STAT(ptp_rx_timestamp_packets, RX), 387 PTP_MC_STAT(ptp_timestamp_packets, TS), 388 PTP_MC_STAT(ptp_filter_matches, FM), 389 PTP_MC_STAT(ptp_non_filter_matches, NFM), 390 }; 391 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) 392 static const unsigned long efx_ptp_stat_mask[] = { 393 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, 394 }; 395 396 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings) 397 { 398 if (!efx->ptp_data) 399 return 0; 400 401 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 402 efx_ptp_stat_mask, strings); 403 } 404 405 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats) 406 { 407 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); 408 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); 409 size_t i; 410 int rc; 411 412 if (!efx->ptp_data) 413 return 0; 414 415 /* Copy software statistics */ 416 for (i = 0; i < PTP_STAT_COUNT; i++) { 417 if (efx_ptp_stat_desc[i].dma_width) 418 continue; 419 stats[i] = *(unsigned int *)((char *)efx->ptp_data + 420 efx_ptp_stat_desc[i].offset); 421 } 422 423 /* Fetch MC statistics. We *must* fill in all statistics or 424 * risk leaking kernel memory to userland, so if the MCDI 425 * request fails we pretend we got zeroes. 426 */ 427 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); 428 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 429 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 430 outbuf, sizeof(outbuf), NULL); 431 if (rc) 432 memset(outbuf, 0, sizeof(outbuf)); 433 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 434 efx_ptp_stat_mask, 435 stats, _MCDI_PTR(outbuf, 0), false); 436 437 return PTP_STAT_COUNT; 438 } 439 440 /* For Siena platforms NIC time is s and ns */ 441 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor) 442 { 443 struct timespec64 ts = ns_to_timespec64(ns); 444 *nic_major = (u32)ts.tv_sec; 445 *nic_minor = ts.tv_nsec; 446 } 447 448 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor, 449 s32 correction) 450 { 451 ktime_t kt = ktime_set(nic_major, nic_minor); 452 if (correction >= 0) 453 kt = ktime_add_ns(kt, (u64)correction); 454 else 455 kt = ktime_sub_ns(kt, (u64)-correction); 456 return kt; 457 } 458 459 /* To convert from s27 format to ns we multiply then divide by a power of 2. 460 * For the conversion from ns to s27, the operation is also converted to a 461 * multiply and shift. 462 */ 463 #define S27_TO_NS_SHIFT (27) 464 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) 465 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT) 466 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT) 467 468 /* For Huntington platforms NIC time is in seconds and fractions of a second 469 * where the minor register only uses 27 bits in units of 2^-27s. 470 */ 471 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) 472 { 473 struct timespec64 ts = ns_to_timespec64(ns); 474 u32 maj = (u32)ts.tv_sec; 475 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + 476 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); 477 478 /* The conversion can result in the minor value exceeding the maximum. 479 * In this case, round up to the next second. 480 */ 481 if (min >= S27_MINOR_MAX) { 482 min -= S27_MINOR_MAX; 483 maj++; 484 } 485 486 *nic_major = maj; 487 *nic_minor = min; 488 } 489 490 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) 491 { 492 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + 493 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); 494 return ktime_set(nic_major, ns); 495 } 496 497 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, 498 s32 correction) 499 { 500 /* Apply the correction and deal with carry */ 501 nic_minor += correction; 502 if ((s32)nic_minor < 0) { 503 nic_minor += S27_MINOR_MAX; 504 nic_major--; 505 } else if (nic_minor >= S27_MINOR_MAX) { 506 nic_minor -= S27_MINOR_MAX; 507 nic_major++; 508 } 509 510 return efx_ptp_s27_to_ktime(nic_major, nic_minor); 511 } 512 513 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */ 514 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor) 515 { 516 struct timespec64 ts = ns_to_timespec64(ns); 517 518 *nic_major = (u32)ts.tv_sec; 519 *nic_minor = ts.tv_nsec * 4; 520 } 521 522 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor, 523 s32 correction) 524 { 525 ktime_t kt; 526 527 nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4); 528 correction = DIV_ROUND_CLOSEST(correction, 4); 529 530 kt = ktime_set(nic_major, nic_minor); 531 532 if (correction >= 0) 533 kt = ktime_add_ns(kt, (u64)correction); 534 else 535 kt = ktime_sub_ns(kt, (u64)-correction); 536 return kt; 537 } 538 539 struct efx_channel *efx_ptp_channel(struct efx_nic *efx) 540 { 541 return efx->ptp_data ? efx->ptp_data->channel : NULL; 542 } 543 544 static u32 last_sync_timestamp_major(struct efx_nic *efx) 545 { 546 struct efx_channel *channel = efx_ptp_channel(efx); 547 u32 major = 0; 548 549 if (channel) 550 major = channel->sync_timestamp_major; 551 return major; 552 } 553 554 /* The 8000 series and later can provide the time from the MAC, which is only 555 * 48 bits long and provides meta-information in the top 2 bits. 556 */ 557 static ktime_t 558 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx, 559 struct efx_ptp_data *ptp, 560 u32 nic_major, u32 nic_minor, 561 s32 correction) 562 { 563 ktime_t kt = { 0 }; 564 565 if (!(nic_major & 0x80000000)) { 566 WARN_ON_ONCE(nic_major >> 16); 567 /* Use the top bits from the latest sync event. */ 568 nic_major &= 0xffff; 569 nic_major |= (last_sync_timestamp_major(efx) & 0xffff0000); 570 571 kt = ptp->nic_to_kernel_time(nic_major, nic_minor, 572 correction); 573 } 574 return kt; 575 } 576 577 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue) 578 { 579 struct efx_nic *efx = tx_queue->efx; 580 struct efx_ptp_data *ptp = efx->ptp_data; 581 ktime_t kt; 582 583 if (efx_ptp_use_mac_tx_timestamps(efx)) 584 kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp, 585 tx_queue->completed_timestamp_major, 586 tx_queue->completed_timestamp_minor, 587 ptp->ts_corrections.general_tx); 588 else 589 kt = ptp->nic_to_kernel_time( 590 tx_queue->completed_timestamp_major, 591 tx_queue->completed_timestamp_minor, 592 ptp->ts_corrections.general_tx); 593 return kt; 594 } 595 596 /* Get PTP attributes and set up time conversions */ 597 static int efx_ptp_get_attributes(struct efx_nic *efx) 598 { 599 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); 600 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); 601 struct efx_ptp_data *ptp = efx->ptp_data; 602 int rc; 603 u32 fmt; 604 size_t out_len; 605 606 /* Get the PTP attributes. If the NIC doesn't support the operation we 607 * use the default format for compatibility with older NICs i.e. 608 * seconds and nanoseconds. 609 */ 610 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); 611 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 612 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 613 outbuf, sizeof(outbuf), &out_len); 614 if (rc == 0) { 615 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); 616 } else if (rc == -EINVAL) { 617 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; 618 } else if (rc == -EPERM) { 619 netif_info(efx, probe, efx->net_dev, "no PTP support\n"); 620 return rc; 621 } else { 622 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), 623 outbuf, sizeof(outbuf), rc); 624 return rc; 625 } 626 627 switch (fmt) { 628 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION: 629 ptp->ns_to_nic_time = efx_ptp_ns_to_s27; 630 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; 631 ptp->nic_time.minor_max = 1 << 27; 632 ptp->nic_time.sync_event_minor_shift = 19; 633 break; 634 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS: 635 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns; 636 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction; 637 ptp->nic_time.minor_max = 1000000000; 638 ptp->nic_time.sync_event_minor_shift = 22; 639 break; 640 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS: 641 ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns; 642 ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction; 643 ptp->nic_time.minor_max = 4000000000UL; 644 ptp->nic_time.sync_event_minor_shift = 24; 645 break; 646 default: 647 return -ERANGE; 648 } 649 650 /* Precalculate acceptable difference between the minor time in the 651 * packet prefix and the last MCDI time sync event. We expect the 652 * packet prefix timestamp to be after of sync event by up to one 653 * sync event interval (0.25s) but we allow it to exceed this by a 654 * fuzz factor of (0.1s) 655 */ 656 ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max 657 - (ptp->nic_time.minor_max / 10); 658 ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4) 659 + (ptp->nic_time.minor_max / 10); 660 661 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older 662 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return 663 * a value to use for the minimum acceptable corrected synchronization 664 * window and may return further capabilities. 665 * If we have the extra information store it. For older firmware that 666 * does not implement the extended command use the default value. 667 */ 668 if (rc == 0 && 669 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST) 670 ptp->min_synchronisation_ns = 671 MCDI_DWORD(outbuf, 672 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); 673 else 674 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; 675 676 if (rc == 0 && 677 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) 678 ptp->capabilities = MCDI_DWORD(outbuf, 679 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES); 680 else 681 ptp->capabilities = 0; 682 683 /* Set up the shift for conversion between frequency 684 * adjustments in parts-per-billion and the fixed-point 685 * fractional ns format that the adapter uses. 686 */ 687 if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN)) 688 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44; 689 else 690 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40; 691 692 return 0; 693 } 694 695 /* Get PTP timestamp corrections */ 696 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) 697 { 698 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); 699 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN); 700 int rc; 701 size_t out_len; 702 703 /* Get the timestamp corrections from the NIC. If this operation is 704 * not supported (older NICs) then no correction is required. 705 */ 706 MCDI_SET_DWORD(inbuf, PTP_IN_OP, 707 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); 708 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 709 710 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 711 outbuf, sizeof(outbuf), &out_len); 712 if (rc == 0) { 713 efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf, 714 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); 715 efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf, 716 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); 717 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, 718 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); 719 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, 720 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); 721 722 if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) { 723 efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD( 724 outbuf, 725 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX); 726 efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD( 727 outbuf, 728 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX); 729 } else { 730 efx->ptp_data->ts_corrections.general_tx = 731 efx->ptp_data->ts_corrections.ptp_tx; 732 efx->ptp_data->ts_corrections.general_rx = 733 efx->ptp_data->ts_corrections.ptp_rx; 734 } 735 } else if (rc == -EINVAL) { 736 efx->ptp_data->ts_corrections.ptp_tx = 0; 737 efx->ptp_data->ts_corrections.ptp_rx = 0; 738 efx->ptp_data->ts_corrections.pps_out = 0; 739 efx->ptp_data->ts_corrections.pps_in = 0; 740 efx->ptp_data->ts_corrections.general_tx = 0; 741 efx->ptp_data->ts_corrections.general_rx = 0; 742 } else { 743 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, 744 sizeof(outbuf), rc); 745 return rc; 746 } 747 748 return 0; 749 } 750 751 /* Enable MCDI PTP support. */ 752 static int efx_ptp_enable(struct efx_nic *efx) 753 { 754 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); 755 MCDI_DECLARE_BUF_ERR(outbuf); 756 int rc; 757 758 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); 759 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 760 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, 761 efx->ptp_data->channel ? 762 efx->ptp_data->channel->channel : 0); 763 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); 764 765 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 766 outbuf, sizeof(outbuf), NULL); 767 rc = (rc == -EALREADY) ? 0 : rc; 768 if (rc) 769 efx_mcdi_display_error(efx, MC_CMD_PTP, 770 MC_CMD_PTP_IN_ENABLE_LEN, 771 outbuf, sizeof(outbuf), rc); 772 return rc; 773 } 774 775 /* Disable MCDI PTP support. 776 * 777 * Note that this function should never rely on the presence of ptp_data - 778 * may be called before that exists. 779 */ 780 static int efx_ptp_disable(struct efx_nic *efx) 781 { 782 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); 783 MCDI_DECLARE_BUF_ERR(outbuf); 784 int rc; 785 786 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); 787 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 788 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 789 outbuf, sizeof(outbuf), NULL); 790 rc = (rc == -EALREADY) ? 0 : rc; 791 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function 792 * should only have been called during probe. 793 */ 794 if (rc == -ENOSYS || rc == -EPERM) 795 netif_info(efx, probe, efx->net_dev, "no PTP support\n"); 796 else if (rc) 797 efx_mcdi_display_error(efx, MC_CMD_PTP, 798 MC_CMD_PTP_IN_DISABLE_LEN, 799 outbuf, sizeof(outbuf), rc); 800 return rc; 801 } 802 803 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) 804 { 805 struct sk_buff *skb; 806 807 while ((skb = skb_dequeue(q))) { 808 local_bh_disable(); 809 netif_receive_skb(skb); 810 local_bh_enable(); 811 } 812 } 813 814 static void efx_ptp_handle_no_channel(struct efx_nic *efx) 815 { 816 netif_err(efx, drv, efx->net_dev, 817 "ERROR: PTP requires MSI-X and 1 additional interrupt" 818 "vector. PTP disabled\n"); 819 } 820 821 /* Repeatedly send the host time to the MC which will capture the hardware 822 * time. 823 */ 824 static void efx_ptp_send_times(struct efx_nic *efx, 825 struct pps_event_time *last_time) 826 { 827 struct pps_event_time now; 828 struct timespec64 limit; 829 struct efx_ptp_data *ptp = efx->ptp_data; 830 int *mc_running = ptp->start.addr; 831 832 pps_get_ts(&now); 833 limit = now.ts_real; 834 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS); 835 836 /* Write host time for specified period or until MC is done */ 837 while ((timespec64_compare(&now.ts_real, &limit) < 0) && 838 READ_ONCE(*mc_running)) { 839 struct timespec64 update_time; 840 unsigned int host_time; 841 842 /* Don't update continuously to avoid saturating the PCIe bus */ 843 update_time = now.ts_real; 844 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); 845 do { 846 pps_get_ts(&now); 847 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) && 848 READ_ONCE(*mc_running)); 849 850 /* Synchronise NIC with single word of time only */ 851 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | 852 now.ts_real.tv_nsec); 853 /* Update host time in NIC memory */ 854 efx->type->ptp_write_host_time(efx, host_time); 855 } 856 *last_time = now; 857 } 858 859 /* Read a timeset from the MC's results and partial process. */ 860 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), 861 struct efx_ptp_timeset *timeset) 862 { 863 unsigned start_ns, end_ns; 864 865 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); 866 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); 867 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); 868 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), 869 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); 870 871 /* Ignore seconds */ 872 start_ns = timeset->host_start & MC_NANOSECOND_MASK; 873 end_ns = timeset->host_end & MC_NANOSECOND_MASK; 874 /* Allow for rollover */ 875 if (end_ns < start_ns) 876 end_ns += NSEC_PER_SEC; 877 /* Determine duration of operation */ 878 timeset->window = end_ns - start_ns; 879 } 880 881 /* Process times received from MC. 882 * 883 * Extract times from returned results, and establish the minimum value 884 * seen. The minimum value represents the "best" possible time and events 885 * too much greater than this are rejected - the machine is, perhaps, too 886 * busy. A number of readings are taken so that, hopefully, at least one good 887 * synchronisation will be seen in the results. 888 */ 889 static int 890 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), 891 size_t response_length, 892 const struct pps_event_time *last_time) 893 { 894 unsigned number_readings = 895 MCDI_VAR_ARRAY_LEN(response_length, 896 PTP_OUT_SYNCHRONIZE_TIMESET); 897 unsigned i; 898 unsigned ngood = 0; 899 unsigned last_good = 0; 900 struct efx_ptp_data *ptp = efx->ptp_data; 901 u32 last_sec; 902 u32 start_sec; 903 struct timespec64 delta; 904 ktime_t mc_time; 905 906 if (number_readings == 0) 907 return -EAGAIN; 908 909 /* Read the set of results and find the last good host-MC 910 * synchronization result. The MC times when it finishes reading the 911 * host time so the corrected window time should be fairly constant 912 * for a given platform. Increment stats for any results that appear 913 * to be erroneous. 914 */ 915 for (i = 0; i < number_readings; i++) { 916 s32 window, corrected; 917 struct timespec64 wait; 918 919 efx_ptp_read_timeset( 920 MCDI_ARRAY_STRUCT_PTR(synch_buf, 921 PTP_OUT_SYNCHRONIZE_TIMESET, i), 922 &ptp->timeset[i]); 923 924 wait = ktime_to_timespec64( 925 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); 926 window = ptp->timeset[i].window; 927 corrected = window - wait.tv_nsec; 928 929 /* We expect the uncorrected synchronization window to be at 930 * least as large as the interval between host start and end 931 * times. If it is smaller than this then this is mostly likely 932 * to be a consequence of the host's time being adjusted. 933 * Check that the corrected sync window is in a reasonable 934 * range. If it is out of range it is likely to be because an 935 * interrupt or other delay occurred between reading the system 936 * time and writing it to MC memory. 937 */ 938 if (window < SYNCHRONISATION_GRANULARITY_NS) { 939 ++ptp->invalid_sync_windows; 940 } else if (corrected >= MAX_SYNCHRONISATION_NS) { 941 ++ptp->oversize_sync_windows; 942 } else if (corrected < ptp->min_synchronisation_ns) { 943 ++ptp->undersize_sync_windows; 944 } else { 945 ngood++; 946 last_good = i; 947 } 948 } 949 950 if (ngood == 0) { 951 netif_warn(efx, drv, efx->net_dev, 952 "PTP no suitable synchronisations\n"); 953 return -EAGAIN; 954 } 955 956 /* Calculate delay from last good sync (host time) to last_time. 957 * It is possible that the seconds rolled over between taking 958 * the start reading and the last value written by the host. The 959 * timescales are such that a gap of more than one second is never 960 * expected. delta is *not* normalised. 961 */ 962 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; 963 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; 964 if (start_sec != last_sec && 965 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { 966 netif_warn(efx, hw, efx->net_dev, 967 "PTP bad synchronisation seconds\n"); 968 return -EAGAIN; 969 } 970 delta.tv_sec = (last_sec - start_sec) & 1; 971 delta.tv_nsec = 972 last_time->ts_real.tv_nsec - 973 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); 974 975 /* Convert the NIC time at last good sync into kernel time. 976 * No correction is required - this time is the output of a 977 * firmware process. 978 */ 979 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, 980 ptp->timeset[last_good].minor, 0); 981 982 /* Calculate delay from NIC top of second to last_time */ 983 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec; 984 985 /* Set PPS timestamp to match NIC top of second */ 986 ptp->host_time_pps = *last_time; 987 pps_sub_ts(&ptp->host_time_pps, delta); 988 989 return 0; 990 } 991 992 /* Synchronize times between the host and the MC */ 993 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) 994 { 995 struct efx_ptp_data *ptp = efx->ptp_data; 996 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); 997 size_t response_length; 998 int rc; 999 unsigned long timeout; 1000 struct pps_event_time last_time = {}; 1001 unsigned int loops = 0; 1002 int *start = ptp->start.addr; 1003 1004 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); 1005 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); 1006 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, 1007 num_readings); 1008 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, 1009 ptp->start.dma_addr); 1010 1011 /* Clear flag that signals MC ready */ 1012 WRITE_ONCE(*start, 0); 1013 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, 1014 MC_CMD_PTP_IN_SYNCHRONIZE_LEN); 1015 EFX_WARN_ON_ONCE_PARANOID(rc); 1016 1017 /* Wait for start from MCDI (or timeout) */ 1018 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); 1019 while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) { 1020 udelay(20); /* Usually start MCDI execution quickly */ 1021 loops++; 1022 } 1023 1024 if (loops <= 1) 1025 ++ptp->fast_syncs; 1026 if (!time_before(jiffies, timeout)) 1027 ++ptp->sync_timeouts; 1028 1029 if (READ_ONCE(*start)) 1030 efx_ptp_send_times(efx, &last_time); 1031 1032 /* Collect results */ 1033 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, 1034 MC_CMD_PTP_IN_SYNCHRONIZE_LEN, 1035 synch_buf, sizeof(synch_buf), 1036 &response_length); 1037 if (rc == 0) { 1038 rc = efx_ptp_process_times(efx, synch_buf, response_length, 1039 &last_time); 1040 if (rc == 0) 1041 ++ptp->good_syncs; 1042 else 1043 ++ptp->no_time_syncs; 1044 } 1045 1046 /* Increment the bad syncs counter if the synchronize fails, whatever 1047 * the reason. 1048 */ 1049 if (rc != 0) 1050 ++ptp->bad_syncs; 1051 1052 return rc; 1053 } 1054 1055 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */ 1056 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb) 1057 { 1058 struct efx_ptp_data *ptp_data = efx->ptp_data; 1059 struct efx_tx_queue *tx_queue; 1060 u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; 1061 1062 tx_queue = &ptp_data->channel->tx_queue[type]; 1063 if (tx_queue && tx_queue->timestamping) { 1064 efx_enqueue_skb(tx_queue, skb); 1065 } else { 1066 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n"); 1067 dev_kfree_skb_any(skb); 1068 } 1069 } 1070 1071 /* Transmit a PTP packet, via the MCDI interface, to the wire. */ 1072 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb) 1073 { 1074 struct efx_ptp_data *ptp_data = efx->ptp_data; 1075 struct skb_shared_hwtstamps timestamps; 1076 int rc = -EIO; 1077 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); 1078 size_t len; 1079 1080 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); 1081 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); 1082 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); 1083 if (skb_shinfo(skb)->nr_frags != 0) { 1084 rc = skb_linearize(skb); 1085 if (rc != 0) 1086 goto fail; 1087 } 1088 1089 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1090 rc = skb_checksum_help(skb); 1091 if (rc != 0) 1092 goto fail; 1093 } 1094 skb_copy_from_linear_data(skb, 1095 MCDI_PTR(ptp_data->txbuf, 1096 PTP_IN_TRANSMIT_PACKET), 1097 skb->len); 1098 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, 1099 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 1100 txtime, sizeof(txtime), &len); 1101 if (rc != 0) 1102 goto fail; 1103 1104 memset(×tamps, 0, sizeof(timestamps)); 1105 timestamps.hwtstamp = ptp_data->nic_to_kernel_time( 1106 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), 1107 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), 1108 ptp_data->ts_corrections.ptp_tx); 1109 1110 skb_tstamp_tx(skb, ×tamps); 1111 1112 rc = 0; 1113 1114 fail: 1115 dev_kfree_skb_any(skb); 1116 1117 return; 1118 } 1119 1120 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx) 1121 { 1122 struct efx_ptp_data *ptp = efx->ptp_data; 1123 struct list_head *cursor; 1124 struct list_head *next; 1125 1126 if (ptp->rx_ts_inline) 1127 return; 1128 1129 /* Drop time-expired events */ 1130 spin_lock_bh(&ptp->evt_lock); 1131 if (!list_empty(&ptp->evt_list)) { 1132 list_for_each_safe(cursor, next, &ptp->evt_list) { 1133 struct efx_ptp_event_rx *evt; 1134 1135 evt = list_entry(cursor, struct efx_ptp_event_rx, 1136 link); 1137 if (time_after(jiffies, evt->expiry)) { 1138 list_move(&evt->link, &ptp->evt_free_list); 1139 netif_warn(efx, hw, efx->net_dev, 1140 "PTP rx event dropped\n"); 1141 } 1142 } 1143 } 1144 spin_unlock_bh(&ptp->evt_lock); 1145 } 1146 1147 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx, 1148 struct sk_buff *skb) 1149 { 1150 struct efx_ptp_data *ptp = efx->ptp_data; 1151 bool evts_waiting; 1152 struct list_head *cursor; 1153 struct list_head *next; 1154 struct efx_ptp_match *match; 1155 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED; 1156 1157 WARN_ON_ONCE(ptp->rx_ts_inline); 1158 1159 spin_lock_bh(&ptp->evt_lock); 1160 evts_waiting = !list_empty(&ptp->evt_list); 1161 spin_unlock_bh(&ptp->evt_lock); 1162 1163 if (!evts_waiting) 1164 return PTP_PACKET_STATE_UNMATCHED; 1165 1166 match = (struct efx_ptp_match *)skb->cb; 1167 /* Look for a matching timestamp in the event queue */ 1168 spin_lock_bh(&ptp->evt_lock); 1169 list_for_each_safe(cursor, next, &ptp->evt_list) { 1170 struct efx_ptp_event_rx *evt; 1171 1172 evt = list_entry(cursor, struct efx_ptp_event_rx, link); 1173 if ((evt->seq0 == match->words[0]) && 1174 (evt->seq1 == match->words[1])) { 1175 struct skb_shared_hwtstamps *timestamps; 1176 1177 /* Match - add in hardware timestamp */ 1178 timestamps = skb_hwtstamps(skb); 1179 timestamps->hwtstamp = evt->hwtimestamp; 1180 1181 match->state = PTP_PACKET_STATE_MATCHED; 1182 rc = PTP_PACKET_STATE_MATCHED; 1183 list_move(&evt->link, &ptp->evt_free_list); 1184 break; 1185 } 1186 } 1187 spin_unlock_bh(&ptp->evt_lock); 1188 1189 return rc; 1190 } 1191 1192 /* Process any queued receive events and corresponding packets 1193 * 1194 * q is returned with all the packets that are ready for delivery. 1195 */ 1196 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) 1197 { 1198 struct efx_ptp_data *ptp = efx->ptp_data; 1199 struct sk_buff *skb; 1200 1201 while ((skb = skb_dequeue(&ptp->rxq))) { 1202 struct efx_ptp_match *match; 1203 1204 match = (struct efx_ptp_match *)skb->cb; 1205 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { 1206 __skb_queue_tail(q, skb); 1207 } else if (efx_ptp_match_rx(efx, skb) == 1208 PTP_PACKET_STATE_MATCHED) { 1209 __skb_queue_tail(q, skb); 1210 } else if (time_after(jiffies, match->expiry)) { 1211 match->state = PTP_PACKET_STATE_TIMED_OUT; 1212 ++ptp->rx_no_timestamp; 1213 __skb_queue_tail(q, skb); 1214 } else { 1215 /* Replace unprocessed entry and stop */ 1216 skb_queue_head(&ptp->rxq, skb); 1217 break; 1218 } 1219 } 1220 } 1221 1222 /* Complete processing of a received packet */ 1223 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) 1224 { 1225 local_bh_disable(); 1226 netif_receive_skb(skb); 1227 local_bh_enable(); 1228 } 1229 1230 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx) 1231 { 1232 struct efx_ptp_data *ptp = efx->ptp_data; 1233 1234 if (ptp->rxfilter_installed) { 1235 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1236 ptp->rxfilter_general); 1237 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1238 ptp->rxfilter_event); 1239 ptp->rxfilter_installed = false; 1240 } 1241 } 1242 1243 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) 1244 { 1245 struct efx_ptp_data *ptp = efx->ptp_data; 1246 struct efx_filter_spec rxfilter; 1247 int rc; 1248 1249 if (!ptp->channel || ptp->rxfilter_installed) 1250 return 0; 1251 1252 /* Must filter on both event and general ports to ensure 1253 * that there is no packet re-ordering. 1254 */ 1255 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1256 efx_rx_queue_index( 1257 efx_channel_get_rx_queue(ptp->channel))); 1258 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, 1259 htonl(PTP_ADDRESS), 1260 htons(PTP_EVENT_PORT)); 1261 if (rc != 0) 1262 return rc; 1263 1264 rc = efx_filter_insert_filter(efx, &rxfilter, true); 1265 if (rc < 0) 1266 return rc; 1267 ptp->rxfilter_event = rc; 1268 1269 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1270 efx_rx_queue_index( 1271 efx_channel_get_rx_queue(ptp->channel))); 1272 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, 1273 htonl(PTP_ADDRESS), 1274 htons(PTP_GENERAL_PORT)); 1275 if (rc != 0) 1276 goto fail; 1277 1278 rc = efx_filter_insert_filter(efx, &rxfilter, true); 1279 if (rc < 0) 1280 goto fail; 1281 ptp->rxfilter_general = rc; 1282 1283 ptp->rxfilter_installed = true; 1284 return 0; 1285 1286 fail: 1287 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1288 ptp->rxfilter_event); 1289 return rc; 1290 } 1291 1292 static int efx_ptp_start(struct efx_nic *efx) 1293 { 1294 struct efx_ptp_data *ptp = efx->ptp_data; 1295 int rc; 1296 1297 ptp->reset_required = false; 1298 1299 rc = efx_ptp_insert_multicast_filters(efx); 1300 if (rc) 1301 return rc; 1302 1303 rc = efx_ptp_enable(efx); 1304 if (rc != 0) 1305 goto fail; 1306 1307 ptp->evt_frag_idx = 0; 1308 ptp->current_adjfreq = 0; 1309 1310 return 0; 1311 1312 fail: 1313 efx_ptp_remove_multicast_filters(efx); 1314 return rc; 1315 } 1316 1317 static int efx_ptp_stop(struct efx_nic *efx) 1318 { 1319 struct efx_ptp_data *ptp = efx->ptp_data; 1320 struct list_head *cursor; 1321 struct list_head *next; 1322 int rc; 1323 1324 if (ptp == NULL) 1325 return 0; 1326 1327 rc = efx_ptp_disable(efx); 1328 1329 efx_ptp_remove_multicast_filters(efx); 1330 1331 /* Make sure RX packets are really delivered */ 1332 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); 1333 skb_queue_purge(&efx->ptp_data->txq); 1334 1335 /* Drop any pending receive events */ 1336 spin_lock_bh(&efx->ptp_data->evt_lock); 1337 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) { 1338 list_move(cursor, &efx->ptp_data->evt_free_list); 1339 } 1340 spin_unlock_bh(&efx->ptp_data->evt_lock); 1341 1342 return rc; 1343 } 1344 1345 static int efx_ptp_restart(struct efx_nic *efx) 1346 { 1347 if (efx->ptp_data && efx->ptp_data->enabled) 1348 return efx_ptp_start(efx); 1349 return 0; 1350 } 1351 1352 static void efx_ptp_pps_worker(struct work_struct *work) 1353 { 1354 struct efx_ptp_data *ptp = 1355 container_of(work, struct efx_ptp_data, pps_work); 1356 struct efx_nic *efx = ptp->efx; 1357 struct ptp_clock_event ptp_evt; 1358 1359 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) 1360 return; 1361 1362 ptp_evt.type = PTP_CLOCK_PPSUSR; 1363 ptp_evt.pps_times = ptp->host_time_pps; 1364 ptp_clock_event(ptp->phc_clock, &ptp_evt); 1365 } 1366 1367 static void efx_ptp_worker(struct work_struct *work) 1368 { 1369 struct efx_ptp_data *ptp_data = 1370 container_of(work, struct efx_ptp_data, work); 1371 struct efx_nic *efx = ptp_data->efx; 1372 struct sk_buff *skb; 1373 struct sk_buff_head tempq; 1374 1375 if (ptp_data->reset_required) { 1376 efx_ptp_stop(efx); 1377 efx_ptp_start(efx); 1378 return; 1379 } 1380 1381 efx_ptp_drop_time_expired_events(efx); 1382 1383 __skb_queue_head_init(&tempq); 1384 efx_ptp_process_events(efx, &tempq); 1385 1386 while ((skb = skb_dequeue(&ptp_data->txq))) 1387 ptp_data->xmit_skb(efx, skb); 1388 1389 while ((skb = __skb_dequeue(&tempq))) 1390 efx_ptp_process_rx(efx, skb); 1391 } 1392 1393 static const struct ptp_clock_info efx_phc_clock_info = { 1394 .owner = THIS_MODULE, 1395 .name = "sfc", 1396 .max_adj = MAX_PPB, 1397 .n_alarm = 0, 1398 .n_ext_ts = 0, 1399 .n_per_out = 0, 1400 .n_pins = 0, 1401 .pps = 1, 1402 .adjfreq = efx_phc_adjfreq, 1403 .adjtime = efx_phc_adjtime, 1404 .gettime64 = efx_phc_gettime, 1405 .settime64 = efx_phc_settime, 1406 .enable = efx_phc_enable, 1407 }; 1408 1409 /* Initialise PTP state. */ 1410 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) 1411 { 1412 struct efx_ptp_data *ptp; 1413 int rc = 0; 1414 unsigned int pos; 1415 1416 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); 1417 efx->ptp_data = ptp; 1418 if (!efx->ptp_data) 1419 return -ENOMEM; 1420 1421 ptp->efx = efx; 1422 ptp->channel = channel; 1423 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0; 1424 1425 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); 1426 if (rc != 0) 1427 goto fail1; 1428 1429 skb_queue_head_init(&ptp->rxq); 1430 skb_queue_head_init(&ptp->txq); 1431 ptp->workwq = create_singlethread_workqueue("sfc_ptp"); 1432 if (!ptp->workwq) { 1433 rc = -ENOMEM; 1434 goto fail2; 1435 } 1436 1437 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1438 ptp->xmit_skb = efx_ptp_xmit_skb_queue; 1439 /* Request sync events on this channel. */ 1440 channel->sync_events_state = SYNC_EVENTS_QUIESCENT; 1441 } else { 1442 ptp->xmit_skb = efx_ptp_xmit_skb_mc; 1443 } 1444 1445 INIT_WORK(&ptp->work, efx_ptp_worker); 1446 ptp->config.flags = 0; 1447 ptp->config.tx_type = HWTSTAMP_TX_OFF; 1448 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; 1449 INIT_LIST_HEAD(&ptp->evt_list); 1450 INIT_LIST_HEAD(&ptp->evt_free_list); 1451 spin_lock_init(&ptp->evt_lock); 1452 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++) 1453 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list); 1454 1455 /* Get the NIC PTP attributes and set up time conversions */ 1456 rc = efx_ptp_get_attributes(efx); 1457 if (rc < 0) 1458 goto fail3; 1459 1460 /* Get the timestamp corrections */ 1461 rc = efx_ptp_get_timestamp_corrections(efx); 1462 if (rc < 0) 1463 goto fail3; 1464 1465 if (efx->mcdi->fn_flags & 1466 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { 1467 ptp->phc_clock_info = efx_phc_clock_info; 1468 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, 1469 &efx->pci_dev->dev); 1470 if (IS_ERR(ptp->phc_clock)) { 1471 rc = PTR_ERR(ptp->phc_clock); 1472 goto fail3; 1473 } else if (ptp->phc_clock) { 1474 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); 1475 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); 1476 if (!ptp->pps_workwq) { 1477 rc = -ENOMEM; 1478 goto fail4; 1479 } 1480 } 1481 } 1482 ptp->nic_ts_enabled = false; 1483 1484 return 0; 1485 fail4: 1486 ptp_clock_unregister(efx->ptp_data->phc_clock); 1487 1488 fail3: 1489 destroy_workqueue(efx->ptp_data->workwq); 1490 1491 fail2: 1492 efx_nic_free_buffer(efx, &ptp->start); 1493 1494 fail1: 1495 kfree(efx->ptp_data); 1496 efx->ptp_data = NULL; 1497 1498 return rc; 1499 } 1500 1501 /* Initialise PTP channel. 1502 * 1503 * Setting core_index to zero causes the queue to be initialised and doesn't 1504 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. 1505 */ 1506 static int efx_ptp_probe_channel(struct efx_channel *channel) 1507 { 1508 struct efx_nic *efx = channel->efx; 1509 int rc; 1510 1511 channel->irq_moderation_us = 0; 1512 channel->rx_queue.core_index = 0; 1513 1514 rc = efx_ptp_probe(efx, channel); 1515 /* Failure to probe PTP is not fatal; this channel will just not be 1516 * used for anything. 1517 * In the case of EPERM, efx_ptp_probe will print its own message (in 1518 * efx_ptp_get_attributes()), so we don't need to. 1519 */ 1520 if (rc && rc != -EPERM) 1521 netif_warn(efx, drv, efx->net_dev, 1522 "Failed to probe PTP, rc=%d\n", rc); 1523 return 0; 1524 } 1525 1526 void efx_ptp_remove(struct efx_nic *efx) 1527 { 1528 if (!efx->ptp_data) 1529 return; 1530 1531 (void)efx_ptp_disable(efx); 1532 1533 cancel_work_sync(&efx->ptp_data->work); 1534 if (efx->ptp_data->pps_workwq) 1535 cancel_work_sync(&efx->ptp_data->pps_work); 1536 1537 skb_queue_purge(&efx->ptp_data->rxq); 1538 skb_queue_purge(&efx->ptp_data->txq); 1539 1540 if (efx->ptp_data->phc_clock) { 1541 destroy_workqueue(efx->ptp_data->pps_workwq); 1542 ptp_clock_unregister(efx->ptp_data->phc_clock); 1543 } 1544 1545 destroy_workqueue(efx->ptp_data->workwq); 1546 1547 efx_nic_free_buffer(efx, &efx->ptp_data->start); 1548 kfree(efx->ptp_data); 1549 efx->ptp_data = NULL; 1550 } 1551 1552 static void efx_ptp_remove_channel(struct efx_channel *channel) 1553 { 1554 efx_ptp_remove(channel->efx); 1555 } 1556 1557 static void efx_ptp_get_channel_name(struct efx_channel *channel, 1558 char *buf, size_t len) 1559 { 1560 snprintf(buf, len, "%s-ptp", channel->efx->name); 1561 } 1562 1563 /* Determine whether this packet should be processed by the PTP module 1564 * or transmitted conventionally. 1565 */ 1566 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1567 { 1568 return efx->ptp_data && 1569 efx->ptp_data->enabled && 1570 skb->len >= PTP_MIN_LENGTH && 1571 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && 1572 likely(skb->protocol == htons(ETH_P_IP)) && 1573 skb_transport_header_was_set(skb) && 1574 skb_network_header_len(skb) >= sizeof(struct iphdr) && 1575 ip_hdr(skb)->protocol == IPPROTO_UDP && 1576 skb_headlen(skb) >= 1577 skb_transport_offset(skb) + sizeof(struct udphdr) && 1578 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); 1579 } 1580 1581 /* Receive a PTP packet. Packets are queued until the arrival of 1582 * the receive timestamp from the MC - this will probably occur after the 1583 * packet arrival because of the processing in the MC. 1584 */ 1585 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) 1586 { 1587 struct efx_nic *efx = channel->efx; 1588 struct efx_ptp_data *ptp = efx->ptp_data; 1589 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; 1590 u8 *match_data_012, *match_data_345; 1591 unsigned int version; 1592 u8 *data; 1593 1594 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1595 1596 /* Correct version? */ 1597 if (ptp->mode == MC_CMD_PTP_MODE_V1) { 1598 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { 1599 return false; 1600 } 1601 data = skb->data; 1602 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); 1603 if (version != PTP_VERSION_V1) { 1604 return false; 1605 } 1606 1607 /* PTP V1 uses all six bytes of the UUID to match the packet 1608 * to the timestamp 1609 */ 1610 match_data_012 = data + PTP_V1_UUID_OFFSET; 1611 match_data_345 = data + PTP_V1_UUID_OFFSET + 3; 1612 } else { 1613 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { 1614 return false; 1615 } 1616 data = skb->data; 1617 version = data[PTP_V2_VERSION_OFFSET]; 1618 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { 1619 return false; 1620 } 1621 1622 /* The original V2 implementation uses bytes 2-7 of 1623 * the UUID to match the packet to the timestamp. This 1624 * discards two of the bytes of the MAC address used 1625 * to create the UUID (SF bug 33070). The PTP V2 1626 * enhanced mode fixes this issue and uses bytes 0-2 1627 * and byte 5-7 of the UUID. 1628 */ 1629 match_data_345 = data + PTP_V2_UUID_OFFSET + 5; 1630 if (ptp->mode == MC_CMD_PTP_MODE_V2) { 1631 match_data_012 = data + PTP_V2_UUID_OFFSET + 2; 1632 } else { 1633 match_data_012 = data + PTP_V2_UUID_OFFSET + 0; 1634 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED); 1635 } 1636 } 1637 1638 /* Does this packet require timestamping? */ 1639 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { 1640 match->state = PTP_PACKET_STATE_UNMATCHED; 1641 1642 /* We expect the sequence number to be in the same position in 1643 * the packet for PTP V1 and V2 1644 */ 1645 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); 1646 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); 1647 1648 /* Extract UUID/Sequence information */ 1649 match->words[0] = (match_data_012[0] | 1650 (match_data_012[1] << 8) | 1651 (match_data_012[2] << 16) | 1652 (match_data_345[0] << 24)); 1653 match->words[1] = (match_data_345[1] | 1654 (match_data_345[2] << 8) | 1655 (data[PTP_V1_SEQUENCE_OFFSET + 1656 PTP_V1_SEQUENCE_LENGTH - 1] << 1657 16)); 1658 } else { 1659 match->state = PTP_PACKET_STATE_MATCH_UNWANTED; 1660 } 1661 1662 skb_queue_tail(&ptp->rxq, skb); 1663 queue_work(ptp->workwq, &ptp->work); 1664 1665 return true; 1666 } 1667 1668 /* Transmit a PTP packet. This has to be transmitted by the MC 1669 * itself, through an MCDI call. MCDI calls aren't permitted 1670 * in the transmit path so defer the actual transmission to a suitable worker. 1671 */ 1672 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1673 { 1674 struct efx_ptp_data *ptp = efx->ptp_data; 1675 1676 skb_queue_tail(&ptp->txq, skb); 1677 1678 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && 1679 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) 1680 efx_xmit_hwtstamp_pending(skb); 1681 queue_work(ptp->workwq, &ptp->work); 1682 1683 return NETDEV_TX_OK; 1684 } 1685 1686 int efx_ptp_get_mode(struct efx_nic *efx) 1687 { 1688 return efx->ptp_data->mode; 1689 } 1690 1691 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, 1692 unsigned int new_mode) 1693 { 1694 if ((enable_wanted != efx->ptp_data->enabled) || 1695 (enable_wanted && (efx->ptp_data->mode != new_mode))) { 1696 int rc = 0; 1697 1698 if (enable_wanted) { 1699 /* Change of mode requires disable */ 1700 if (efx->ptp_data->enabled && 1701 (efx->ptp_data->mode != new_mode)) { 1702 efx->ptp_data->enabled = false; 1703 rc = efx_ptp_stop(efx); 1704 if (rc != 0) 1705 return rc; 1706 } 1707 1708 /* Set new operating mode and establish 1709 * baseline synchronisation, which must 1710 * succeed. 1711 */ 1712 efx->ptp_data->mode = new_mode; 1713 if (netif_running(efx->net_dev)) 1714 rc = efx_ptp_start(efx); 1715 if (rc == 0) { 1716 rc = efx_ptp_synchronize(efx, 1717 PTP_SYNC_ATTEMPTS * 2); 1718 if (rc != 0) 1719 efx_ptp_stop(efx); 1720 } 1721 } else { 1722 rc = efx_ptp_stop(efx); 1723 } 1724 1725 if (rc != 0) 1726 return rc; 1727 1728 efx->ptp_data->enabled = enable_wanted; 1729 } 1730 1731 return 0; 1732 } 1733 1734 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init) 1735 { 1736 int rc; 1737 1738 if (init->flags) 1739 return -EINVAL; 1740 1741 if ((init->tx_type != HWTSTAMP_TX_OFF) && 1742 (init->tx_type != HWTSTAMP_TX_ON)) 1743 return -ERANGE; 1744 1745 rc = efx->type->ptp_set_ts_config(efx, init); 1746 if (rc) 1747 return rc; 1748 1749 efx->ptp_data->config = *init; 1750 return 0; 1751 } 1752 1753 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info) 1754 { 1755 struct efx_ptp_data *ptp = efx->ptp_data; 1756 struct efx_nic *primary = efx->primary; 1757 1758 ASSERT_RTNL(); 1759 1760 if (!ptp) 1761 return; 1762 1763 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 1764 SOF_TIMESTAMPING_RX_HARDWARE | 1765 SOF_TIMESTAMPING_RAW_HARDWARE); 1766 /* Check licensed features. If we don't have the license for TX 1767 * timestamps, the NIC will not support them. 1768 */ 1769 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1770 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1771 1772 if (!(nic_data->licensed_features & 1773 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) 1774 ts_info->so_timestamping &= 1775 ~SOF_TIMESTAMPING_TX_HARDWARE; 1776 } 1777 if (primary && primary->ptp_data && primary->ptp_data->phc_clock) 1778 ts_info->phc_index = 1779 ptp_clock_index(primary->ptp_data->phc_clock); 1780 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; 1781 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; 1782 } 1783 1784 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1785 { 1786 struct hwtstamp_config config; 1787 int rc; 1788 1789 /* Not a PTP enabled port */ 1790 if (!efx->ptp_data) 1791 return -EOPNOTSUPP; 1792 1793 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1794 return -EFAULT; 1795 1796 rc = efx_ptp_ts_init(efx, &config); 1797 if (rc != 0) 1798 return rc; 1799 1800 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) 1801 ? -EFAULT : 0; 1802 } 1803 1804 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1805 { 1806 if (!efx->ptp_data) 1807 return -EOPNOTSUPP; 1808 1809 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config, 1810 sizeof(efx->ptp_data->config)) ? -EFAULT : 0; 1811 } 1812 1813 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) 1814 { 1815 struct efx_ptp_data *ptp = efx->ptp_data; 1816 1817 netif_err(efx, hw, efx->net_dev, 1818 "PTP unexpected event length: got %d expected %d\n", 1819 ptp->evt_frag_idx, expected_frag_len); 1820 ptp->reset_required = true; 1821 queue_work(ptp->workwq, &ptp->work); 1822 } 1823 1824 /* Process a completed receive event. Put it on the event queue and 1825 * start worker thread. This is required because event and their 1826 * correspoding packets may come in either order. 1827 */ 1828 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp) 1829 { 1830 struct efx_ptp_event_rx *evt = NULL; 1831 1832 if (WARN_ON_ONCE(ptp->rx_ts_inline)) 1833 return; 1834 1835 if (ptp->evt_frag_idx != 3) { 1836 ptp_event_failure(efx, 3); 1837 return; 1838 } 1839 1840 spin_lock_bh(&ptp->evt_lock); 1841 if (!list_empty(&ptp->evt_free_list)) { 1842 evt = list_first_entry(&ptp->evt_free_list, 1843 struct efx_ptp_event_rx, link); 1844 list_del(&evt->link); 1845 1846 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA); 1847 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2], 1848 MCDI_EVENT_SRC) | 1849 (EFX_QWORD_FIELD(ptp->evt_frags[1], 1850 MCDI_EVENT_SRC) << 8) | 1851 (EFX_QWORD_FIELD(ptp->evt_frags[0], 1852 MCDI_EVENT_SRC) << 16)); 1853 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time( 1854 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA), 1855 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA), 1856 ptp->ts_corrections.ptp_rx); 1857 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1858 list_add_tail(&evt->link, &ptp->evt_list); 1859 1860 queue_work(ptp->workwq, &ptp->work); 1861 } else if (net_ratelimit()) { 1862 /* Log a rate-limited warning message. */ 1863 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n"); 1864 } 1865 spin_unlock_bh(&ptp->evt_lock); 1866 } 1867 1868 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) 1869 { 1870 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); 1871 if (ptp->evt_frag_idx != 1) { 1872 ptp_event_failure(efx, 1); 1873 return; 1874 } 1875 1876 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); 1877 } 1878 1879 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) 1880 { 1881 if (ptp->nic_ts_enabled) 1882 queue_work(ptp->pps_workwq, &ptp->pps_work); 1883 } 1884 1885 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) 1886 { 1887 struct efx_ptp_data *ptp = efx->ptp_data; 1888 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); 1889 1890 if (!ptp) { 1891 if (!efx->ptp_warned) { 1892 netif_warn(efx, drv, efx->net_dev, 1893 "Received PTP event but PTP not set up\n"); 1894 efx->ptp_warned = true; 1895 } 1896 return; 1897 } 1898 1899 if (!ptp->enabled) 1900 return; 1901 1902 if (ptp->evt_frag_idx == 0) { 1903 ptp->evt_code = code; 1904 } else if (ptp->evt_code != code) { 1905 netif_err(efx, hw, efx->net_dev, 1906 "PTP out of sequence event %d\n", code); 1907 ptp->evt_frag_idx = 0; 1908 } 1909 1910 ptp->evt_frags[ptp->evt_frag_idx++] = *ev; 1911 if (!MCDI_EVENT_FIELD(*ev, CONT)) { 1912 /* Process resulting event */ 1913 switch (code) { 1914 case MCDI_EVENT_CODE_PTP_RX: 1915 ptp_event_rx(efx, ptp); 1916 break; 1917 case MCDI_EVENT_CODE_PTP_FAULT: 1918 ptp_event_fault(efx, ptp); 1919 break; 1920 case MCDI_EVENT_CODE_PTP_PPS: 1921 ptp_event_pps(efx, ptp); 1922 break; 1923 default: 1924 netif_err(efx, hw, efx->net_dev, 1925 "PTP unknown event %d\n", code); 1926 break; 1927 } 1928 ptp->evt_frag_idx = 0; 1929 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { 1930 netif_err(efx, hw, efx->net_dev, 1931 "PTP too many event fragments\n"); 1932 ptp->evt_frag_idx = 0; 1933 } 1934 } 1935 1936 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) 1937 { 1938 struct efx_nic *efx = channel->efx; 1939 struct efx_ptp_data *ptp = efx->ptp_data; 1940 1941 /* When extracting the sync timestamp minor value, we should discard 1942 * the least significant two bits. These are not required in order 1943 * to reconstruct full-range timestamps and they are optionally used 1944 * to report status depending on the options supplied when subscribing 1945 * for sync events. 1946 */ 1947 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); 1948 channel->sync_timestamp_minor = 1949 (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC) 1950 << ptp->nic_time.sync_event_minor_shift; 1951 1952 /* if sync events have been disabled then we want to silently ignore 1953 * this event, so throw away result. 1954 */ 1955 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, 1956 SYNC_EVENTS_VALID); 1957 } 1958 1959 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) 1960 { 1961 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 1962 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); 1963 #else 1964 const u8 *data = eh + efx->rx_packet_ts_offset; 1965 return (u32)data[0] | 1966 (u32)data[1] << 8 | 1967 (u32)data[2] << 16 | 1968 (u32)data[3] << 24; 1969 #endif 1970 } 1971 1972 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, 1973 struct sk_buff *skb) 1974 { 1975 struct efx_nic *efx = channel->efx; 1976 struct efx_ptp_data *ptp = efx->ptp_data; 1977 u32 pkt_timestamp_major, pkt_timestamp_minor; 1978 u32 diff, carry; 1979 struct skb_shared_hwtstamps *timestamps; 1980 1981 if (channel->sync_events_state != SYNC_EVENTS_VALID) 1982 return; 1983 1984 pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb)); 1985 1986 /* get the difference between the packet and sync timestamps, 1987 * modulo one second 1988 */ 1989 diff = pkt_timestamp_minor - channel->sync_timestamp_minor; 1990 if (pkt_timestamp_minor < channel->sync_timestamp_minor) 1991 diff += ptp->nic_time.minor_max; 1992 1993 /* do we roll over a second boundary and need to carry the one? */ 1994 carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ? 1995 1 : 0; 1996 1997 if (diff <= ptp->nic_time.sync_event_diff_max) { 1998 /* packet is ahead of the sync event by a quarter of a second or 1999 * less (allowing for fuzz) 2000 */ 2001 pkt_timestamp_major = channel->sync_timestamp_major + carry; 2002 } else if (diff >= ptp->nic_time.sync_event_diff_min) { 2003 /* packet is behind the sync event but within the fuzz factor. 2004 * This means the RX packet and sync event crossed as they were 2005 * placed on the event queue, which can sometimes happen. 2006 */ 2007 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; 2008 } else { 2009 /* it's outside tolerance in both directions. this might be 2010 * indicative of us missing sync events for some reason, so 2011 * we'll call it an error rather than risk giving a bogus 2012 * timestamp. 2013 */ 2014 netif_vdbg(efx, drv, efx->net_dev, 2015 "packet timestamp %x too far from sync event %x:%x\n", 2016 pkt_timestamp_minor, channel->sync_timestamp_major, 2017 channel->sync_timestamp_minor); 2018 return; 2019 } 2020 2021 /* attach the timestamps to the skb */ 2022 timestamps = skb_hwtstamps(skb); 2023 timestamps->hwtstamp = 2024 ptp->nic_to_kernel_time(pkt_timestamp_major, 2025 pkt_timestamp_minor, 2026 ptp->ts_corrections.general_rx); 2027 } 2028 2029 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta) 2030 { 2031 struct efx_ptp_data *ptp_data = container_of(ptp, 2032 struct efx_ptp_data, 2033 phc_clock_info); 2034 struct efx_nic *efx = ptp_data->efx; 2035 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); 2036 s64 adjustment_ns; 2037 int rc; 2038 2039 if (delta > MAX_PPB) 2040 delta = MAX_PPB; 2041 else if (delta < -MAX_PPB) 2042 delta = -MAX_PPB; 2043 2044 /* Convert ppb to fixed point ns taking care to round correctly. */ 2045 adjustment_ns = ((s64)delta * PPB_SCALE_WORD + 2046 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >> 2047 ptp_data->adjfreq_ppb_shift; 2048 2049 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2050 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); 2051 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); 2052 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); 2053 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); 2054 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), 2055 NULL, 0, NULL); 2056 if (rc != 0) 2057 return rc; 2058 2059 ptp_data->current_adjfreq = adjustment_ns; 2060 return 0; 2061 } 2062 2063 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) 2064 { 2065 u32 nic_major, nic_minor; 2066 struct efx_ptp_data *ptp_data = container_of(ptp, 2067 struct efx_ptp_data, 2068 phc_clock_info); 2069 struct efx_nic *efx = ptp_data->efx; 2070 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); 2071 2072 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); 2073 2074 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2075 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2076 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); 2077 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); 2078 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); 2079 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2080 NULL, 0, NULL); 2081 } 2082 2083 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 2084 { 2085 struct efx_ptp_data *ptp_data = container_of(ptp, 2086 struct efx_ptp_data, 2087 phc_clock_info); 2088 struct efx_nic *efx = ptp_data->efx; 2089 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); 2090 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); 2091 int rc; 2092 ktime_t kt; 2093 2094 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); 2095 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2096 2097 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2098 outbuf, sizeof(outbuf), NULL); 2099 if (rc != 0) 2100 return rc; 2101 2102 kt = ptp_data->nic_to_kernel_time( 2103 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), 2104 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); 2105 *ts = ktime_to_timespec64(kt); 2106 return 0; 2107 } 2108 2109 static int efx_phc_settime(struct ptp_clock_info *ptp, 2110 const struct timespec64 *e_ts) 2111 { 2112 /* Get the current NIC time, efx_phc_gettime. 2113 * Subtract from the desired time to get the offset 2114 * call efx_phc_adjtime with the offset 2115 */ 2116 int rc; 2117 struct timespec64 time_now; 2118 struct timespec64 delta; 2119 2120 rc = efx_phc_gettime(ptp, &time_now); 2121 if (rc != 0) 2122 return rc; 2123 2124 delta = timespec64_sub(*e_ts, time_now); 2125 2126 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta)); 2127 if (rc != 0) 2128 return rc; 2129 2130 return 0; 2131 } 2132 2133 static int efx_phc_enable(struct ptp_clock_info *ptp, 2134 struct ptp_clock_request *request, 2135 int enable) 2136 { 2137 struct efx_ptp_data *ptp_data = container_of(ptp, 2138 struct efx_ptp_data, 2139 phc_clock_info); 2140 if (request->type != PTP_CLK_REQ_PPS) 2141 return -EOPNOTSUPP; 2142 2143 ptp_data->nic_ts_enabled = !!enable; 2144 return 0; 2145 } 2146 2147 static const struct efx_channel_type efx_ptp_channel_type = { 2148 .handle_no_channel = efx_ptp_handle_no_channel, 2149 .pre_probe = efx_ptp_probe_channel, 2150 .post_remove = efx_ptp_remove_channel, 2151 .get_name = efx_ptp_get_channel_name, 2152 /* no copy operation; there is no need to reallocate this channel */ 2153 .receive_skb = efx_ptp_rx, 2154 .want_txqs = efx_ptp_want_txqs, 2155 .keep_eventq = false, 2156 }; 2157 2158 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx) 2159 { 2160 /* Check whether PTP is implemented on this NIC. The DISABLE 2161 * operation will succeed if and only if it is implemented. 2162 */ 2163 if (efx_ptp_disable(efx) == 0) 2164 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = 2165 &efx_ptp_channel_type; 2166 } 2167 2168 void efx_ptp_start_datapath(struct efx_nic *efx) 2169 { 2170 if (efx_ptp_restart(efx)) 2171 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); 2172 /* re-enable timestamping if it was previously enabled */ 2173 if (efx->type->ptp_set_ts_sync_events) 2174 efx->type->ptp_set_ts_sync_events(efx, true, true); 2175 } 2176 2177 void efx_ptp_stop_datapath(struct efx_nic *efx) 2178 { 2179 /* temporarily disable timestamping */ 2180 if (efx->type->ptp_set_ts_sync_events) 2181 efx->type->ptp_set_ts_sync_events(efx, false, true); 2182 efx_ptp_stop(efx); 2183 } 2184