xref: /openbmc/linux/drivers/net/ethernet/sfc/ptp.c (revision e3d786a3)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2011-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 /* Theory of operation:
11  *
12  * PTP support is assisted by firmware running on the MC, which provides
13  * the hardware timestamping capabilities.  Both transmitted and received
14  * PTP event packets are queued onto internal queues for subsequent processing;
15  * this is because the MC operations are relatively long and would block
16  * block NAPI/interrupt operation.
17  *
18  * Receive event processing:
19  *	The event contains the packet's UUID and sequence number, together
20  *	with the hardware timestamp.  The PTP receive packet queue is searched
21  *	for this UUID/sequence number and, if found, put on a pending queue.
22  *	Packets not matching are delivered without timestamps (MCDI events will
23  *	always arrive after the actual packet).
24  *	It is important for the operation of the PTP protocol that the ordering
25  *	of packets between the event and general port is maintained.
26  *
27  * Work queue processing:
28  *	If work waiting, synchronise host/hardware time
29  *
30  *	Transmit: send packet through MC, which returns the transmission time
31  *	that is converted to an appropriate timestamp.
32  *
33  *	Receive: the packet's reception time is converted to an appropriate
34  *	timestamp.
35  */
36 #include <linux/ip.h>
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
45 #include "efx.h"
46 #include "mcdi.h"
47 #include "mcdi_pcol.h"
48 #include "io.h"
49 #include "farch_regs.h"
50 #include "nic.h"
51 
52 /* Maximum number of events expected to make up a PTP event */
53 #define	MAX_EVENT_FRAGS			3
54 
55 /* Maximum delay, ms, to begin synchronisation */
56 #define	MAX_SYNCHRONISE_WAIT_MS		2
57 
58 /* How long, at most, to spend synchronising */
59 #define	SYNCHRONISE_PERIOD_NS		250000
60 
61 /* How often to update the shared memory time */
62 #define	SYNCHRONISATION_GRANULARITY_NS	200
63 
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define	DEFAULT_MIN_SYNCHRONISATION_NS	120
66 
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define	MAX_SYNCHRONISATION_NS		1000
69 
70 /* How many (MC) receive events that can be queued */
71 #define	MAX_RECEIVE_EVENTS		8
72 
73 /* Length of (modified) moving average. */
74 #define	AVERAGE_LENGTH			16
75 
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS		10
78 
79 /* Offsets into PTP packet for identification.  These offsets are from the
80  * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
81  * PTP V2 permit the use of IPV4 options.
82  */
83 #define PTP_DPORT_OFFSET	22
84 
85 #define PTP_V1_VERSION_LENGTH	2
86 #define PTP_V1_VERSION_OFFSET	28
87 
88 #define PTP_V1_UUID_LENGTH	6
89 #define PTP_V1_UUID_OFFSET	50
90 
91 #define PTP_V1_SEQUENCE_LENGTH	2
92 #define PTP_V1_SEQUENCE_OFFSET	58
93 
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95  * includes IP header.
96  */
97 #define	PTP_V1_MIN_LENGTH	64
98 
99 #define PTP_V2_VERSION_LENGTH	1
100 #define PTP_V2_VERSION_OFFSET	29
101 
102 #define PTP_V2_UUID_LENGTH	8
103 #define PTP_V2_UUID_OFFSET	48
104 
105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106  * the MC only captures the last six bytes of the clock identity. These values
107  * reflect those, not the ones used in the standard.  The standard permits
108  * mapping of V1 UUIDs to V2 UUIDs with these same values.
109  */
110 #define PTP_V2_MC_UUID_LENGTH	6
111 #define PTP_V2_MC_UUID_OFFSET	50
112 
113 #define PTP_V2_SEQUENCE_LENGTH	2
114 #define PTP_V2_SEQUENCE_OFFSET	58
115 
116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117  * includes IP header.
118  */
119 #define	PTP_V2_MIN_LENGTH	63
120 
121 #define	PTP_MIN_LENGTH		63
122 
123 #define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */
124 #define PTP_EVENT_PORT		319
125 #define PTP_GENERAL_PORT	320
126 
127 /* Annoyingly the format of the version numbers are different between
128  * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
129  */
130 #define	PTP_VERSION_V1		1
131 
132 #define	PTP_VERSION_V2		2
133 #define	PTP_VERSION_V2_MASK	0x0f
134 
135 enum ptp_packet_state {
136 	PTP_PACKET_STATE_UNMATCHED = 0,
137 	PTP_PACKET_STATE_MATCHED,
138 	PTP_PACKET_STATE_TIMED_OUT,
139 	PTP_PACKET_STATE_MATCH_UNWANTED
140 };
141 
142 /* NIC synchronised with single word of time only comprising
143  * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
144  */
145 #define	MC_NANOSECOND_BITS	30
146 #define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
147 #define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
148 
149 /* Maximum parts-per-billion adjustment that is acceptable */
150 #define MAX_PPB			1000000
151 
152 /* Precalculate scale word to avoid long long division at runtime */
153 /* This is equivalent to 2^66 / 10^9. */
154 #define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
155 
156 /* How much to shift down after scaling to convert to FP40 */
157 #define PPB_SHIFT_FP40		26
158 /* ... and FP44. */
159 #define PPB_SHIFT_FP44		22
160 
161 #define PTP_SYNC_ATTEMPTS	4
162 
163 /**
164  * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
165  * @words: UUID and (partial) sequence number
166  * @expiry: Time after which the packet should be delivered irrespective of
167  *            event arrival.
168  * @state: The state of the packet - whether it is ready for processing or
169  *         whether that is of no interest.
170  */
171 struct efx_ptp_match {
172 	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
173 	unsigned long expiry;
174 	enum ptp_packet_state state;
175 };
176 
177 /**
178  * struct efx_ptp_event_rx - A PTP receive event (from MC)
179  * @seq0: First part of (PTP) UUID
180  * @seq1: Second part of (PTP) UUID and sequence number
181  * @hwtimestamp: Event timestamp
182  */
183 struct efx_ptp_event_rx {
184 	struct list_head link;
185 	u32 seq0;
186 	u32 seq1;
187 	ktime_t hwtimestamp;
188 	unsigned long expiry;
189 };
190 
191 /**
192  * struct efx_ptp_timeset - Synchronisation between host and MC
193  * @host_start: Host time immediately before hardware timestamp taken
194  * @major: Hardware timestamp, major
195  * @minor: Hardware timestamp, minor
196  * @host_end: Host time immediately after hardware timestamp taken
197  * @wait: Number of NIC clock ticks between hardware timestamp being read and
198  *          host end time being seen
199  * @window: Difference of host_end and host_start
200  * @valid: Whether this timeset is valid
201  */
202 struct efx_ptp_timeset {
203 	u32 host_start;
204 	u32 major;
205 	u32 minor;
206 	u32 host_end;
207 	u32 wait;
208 	u32 window;	/* Derived: end - start, allowing for wrap */
209 };
210 
211 /**
212  * struct efx_ptp_data - Precision Time Protocol (PTP) state
213  * @efx: The NIC context
214  * @channel: The PTP channel (Siena only)
215  * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
216  *	separate events)
217  * @rxq: Receive SKB queue (awaiting timestamps)
218  * @txq: Transmit SKB queue
219  * @evt_list: List of MC receive events awaiting packets
220  * @evt_free_list: List of free events
221  * @evt_lock: Lock for manipulating evt_list and evt_free_list
222  * @rx_evts: Instantiated events (on evt_list and evt_free_list)
223  * @workwq: Work queue for processing pending PTP operations
224  * @work: Work task
225  * @reset_required: A serious error has occurred and the PTP task needs to be
226  *                  reset (disable, enable).
227  * @rxfilter_event: Receive filter when operating
228  * @rxfilter_general: Receive filter when operating
229  * @config: Current timestamp configuration
230  * @enabled: PTP operation enabled
231  * @mode: Mode in which PTP operating (PTP version)
232  * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
233  * @nic_to_kernel_time: Function to convert from NIC to kernel time
234  * @nic_time.minor_max: Wrap point for NIC minor times
235  * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
236  * in packet prefix and last MCDI time sync event i.e. how much earlier than
237  * the last sync event time a packet timestamp can be.
238  * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
239  * in packet prefix and last MCDI time sync event i.e. how much later than
240  * the last sync event time a packet timestamp can be.
241  * @nic_time.sync_event_minor_shift: Shift required to make minor time from
242  * field in MCDI time sync event.
243  * @min_synchronisation_ns: Minimum acceptable corrected sync window
244  * @capabilities: Capabilities flags from the NIC
245  * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
246  *                         timestamps
247  * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
248  *                         timestamps
249  * @ts_corrections.pps_out: PPS output error (information only)
250  * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
251  * @ts_corrections.general_tx: Required driver correction of general packet
252  *                             transmit timestamps
253  * @ts_corrections.general_rx: Required driver correction of general packet
254  *                             receive timestamps
255  * @evt_frags: Partly assembled PTP events
256  * @evt_frag_idx: Current fragment number
257  * @evt_code: Last event code
258  * @start: Address at which MC indicates ready for synchronisation
259  * @host_time_pps: Host time at last PPS
260  * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
261  * frequency adjustment into a fixed point fractional nanosecond format.
262  * @current_adjfreq: Current ppb adjustment.
263  * @phc_clock: Pointer to registered phc device (if primary function)
264  * @phc_clock_info: Registration structure for phc device
265  * @pps_work: pps work task for handling pps events
266  * @pps_workwq: pps work queue
267  * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
268  * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
269  *         allocations in main data path).
270  * @good_syncs: Number of successful synchronisations.
271  * @fast_syncs: Number of synchronisations requiring short delay
272  * @bad_syncs: Number of failed synchronisations.
273  * @sync_timeouts: Number of synchronisation timeouts
274  * @no_time_syncs: Number of synchronisations with no good times.
275  * @invalid_sync_windows: Number of sync windows with bad durations.
276  * @undersize_sync_windows: Number of corrected sync windows that are too small
277  * @oversize_sync_windows: Number of corrected sync windows that are too large
278  * @rx_no_timestamp: Number of packets received without a timestamp.
279  * @timeset: Last set of synchronisation statistics.
280  * @xmit_skb: Transmit SKB function.
281  */
282 struct efx_ptp_data {
283 	struct efx_nic *efx;
284 	struct efx_channel *channel;
285 	bool rx_ts_inline;
286 	struct sk_buff_head rxq;
287 	struct sk_buff_head txq;
288 	struct list_head evt_list;
289 	struct list_head evt_free_list;
290 	spinlock_t evt_lock;
291 	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
292 	struct workqueue_struct *workwq;
293 	struct work_struct work;
294 	bool reset_required;
295 	u32 rxfilter_event;
296 	u32 rxfilter_general;
297 	bool rxfilter_installed;
298 	struct hwtstamp_config config;
299 	bool enabled;
300 	unsigned int mode;
301 	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
302 	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
303 				      s32 correction);
304 	struct {
305 		u32 minor_max;
306 		u32 sync_event_diff_min;
307 		u32 sync_event_diff_max;
308 		unsigned int sync_event_minor_shift;
309 	} nic_time;
310 	unsigned int min_synchronisation_ns;
311 	unsigned int capabilities;
312 	struct {
313 		s32 ptp_tx;
314 		s32 ptp_rx;
315 		s32 pps_out;
316 		s32 pps_in;
317 		s32 general_tx;
318 		s32 general_rx;
319 	} ts_corrections;
320 	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
321 	int evt_frag_idx;
322 	int evt_code;
323 	struct efx_buffer start;
324 	struct pps_event_time host_time_pps;
325 	unsigned int adjfreq_ppb_shift;
326 	s64 current_adjfreq;
327 	struct ptp_clock *phc_clock;
328 	struct ptp_clock_info phc_clock_info;
329 	struct work_struct pps_work;
330 	struct workqueue_struct *pps_workwq;
331 	bool nic_ts_enabled;
332 	_MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
333 
334 	unsigned int good_syncs;
335 	unsigned int fast_syncs;
336 	unsigned int bad_syncs;
337 	unsigned int sync_timeouts;
338 	unsigned int no_time_syncs;
339 	unsigned int invalid_sync_windows;
340 	unsigned int undersize_sync_windows;
341 	unsigned int oversize_sync_windows;
342 	unsigned int rx_no_timestamp;
343 	struct efx_ptp_timeset
344 	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
345 	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
346 };
347 
348 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
349 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
350 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
351 static int efx_phc_settime(struct ptp_clock_info *ptp,
352 			   const struct timespec64 *e_ts);
353 static int efx_phc_enable(struct ptp_clock_info *ptp,
354 			  struct ptp_clock_request *request, int on);
355 
356 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
357 {
358 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
359 
360 	return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) &&
361 		(nic_data->datapath_caps2 &
362 		 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN)
363 		));
364 }
365 
366 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
367  * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
368  */
369 static bool efx_ptp_want_txqs(struct efx_channel *channel)
370 {
371 	return efx_ptp_use_mac_tx_timestamps(channel->efx);
372 }
373 
374 #define PTP_SW_STAT(ext_name, field_name)				\
375 	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
376 #define PTP_MC_STAT(ext_name, mcdi_name)				\
377 	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
378 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
379 	PTP_SW_STAT(ptp_good_syncs, good_syncs),
380 	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
381 	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
382 	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
383 	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
384 	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
385 	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
386 	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
387 	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
388 	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
389 	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
390 	PTP_MC_STAT(ptp_timestamp_packets, TS),
391 	PTP_MC_STAT(ptp_filter_matches, FM),
392 	PTP_MC_STAT(ptp_non_filter_matches, NFM),
393 };
394 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
395 static const unsigned long efx_ptp_stat_mask[] = {
396 	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
397 };
398 
399 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
400 {
401 	if (!efx->ptp_data)
402 		return 0;
403 
404 	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
405 				      efx_ptp_stat_mask, strings);
406 }
407 
408 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
409 {
410 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
411 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
412 	size_t i;
413 	int rc;
414 
415 	if (!efx->ptp_data)
416 		return 0;
417 
418 	/* Copy software statistics */
419 	for (i = 0; i < PTP_STAT_COUNT; i++) {
420 		if (efx_ptp_stat_desc[i].dma_width)
421 			continue;
422 		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
423 					     efx_ptp_stat_desc[i].offset);
424 	}
425 
426 	/* Fetch MC statistics.  We *must* fill in all statistics or
427 	 * risk leaking kernel memory to userland, so if the MCDI
428 	 * request fails we pretend we got zeroes.
429 	 */
430 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
431 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
432 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
433 			  outbuf, sizeof(outbuf), NULL);
434 	if (rc)
435 		memset(outbuf, 0, sizeof(outbuf));
436 	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
437 			     efx_ptp_stat_mask,
438 			     stats, _MCDI_PTR(outbuf, 0), false);
439 
440 	return PTP_STAT_COUNT;
441 }
442 
443 /* For Siena platforms NIC time is s and ns */
444 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
445 {
446 	struct timespec64 ts = ns_to_timespec64(ns);
447 	*nic_major = (u32)ts.tv_sec;
448 	*nic_minor = ts.tv_nsec;
449 }
450 
451 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
452 						s32 correction)
453 {
454 	ktime_t kt = ktime_set(nic_major, nic_minor);
455 	if (correction >= 0)
456 		kt = ktime_add_ns(kt, (u64)correction);
457 	else
458 		kt = ktime_sub_ns(kt, (u64)-correction);
459 	return kt;
460 }
461 
462 /* To convert from s27 format to ns we multiply then divide by a power of 2.
463  * For the conversion from ns to s27, the operation is also converted to a
464  * multiply and shift.
465  */
466 #define S27_TO_NS_SHIFT	(27)
467 #define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
468 #define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
469 #define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)
470 
471 /* For Huntington platforms NIC time is in seconds and fractions of a second
472  * where the minor register only uses 27 bits in units of 2^-27s.
473  */
474 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
475 {
476 	struct timespec64 ts = ns_to_timespec64(ns);
477 	u32 maj = (u32)ts.tv_sec;
478 	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
479 			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
480 
481 	/* The conversion can result in the minor value exceeding the maximum.
482 	 * In this case, round up to the next second.
483 	 */
484 	if (min >= S27_MINOR_MAX) {
485 		min -= S27_MINOR_MAX;
486 		maj++;
487 	}
488 
489 	*nic_major = maj;
490 	*nic_minor = min;
491 }
492 
493 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
494 {
495 	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
496 			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
497 	return ktime_set(nic_major, ns);
498 }
499 
500 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
501 					       s32 correction)
502 {
503 	/* Apply the correction and deal with carry */
504 	nic_minor += correction;
505 	if ((s32)nic_minor < 0) {
506 		nic_minor += S27_MINOR_MAX;
507 		nic_major--;
508 	} else if (nic_minor >= S27_MINOR_MAX) {
509 		nic_minor -= S27_MINOR_MAX;
510 		nic_major++;
511 	}
512 
513 	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
514 }
515 
516 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
517 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
518 {
519 	struct timespec64 ts = ns_to_timespec64(ns);
520 
521 	*nic_major = (u32)ts.tv_sec;
522 	*nic_minor = ts.tv_nsec * 4;
523 }
524 
525 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
526 						 s32 correction)
527 {
528 	ktime_t kt;
529 
530 	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
531 	correction = DIV_ROUND_CLOSEST(correction, 4);
532 
533 	kt = ktime_set(nic_major, nic_minor);
534 
535 	if (correction >= 0)
536 		kt = ktime_add_ns(kt, (u64)correction);
537 	else
538 		kt = ktime_sub_ns(kt, (u64)-correction);
539 	return kt;
540 }
541 
542 struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
543 {
544 	return efx->ptp_data ? efx->ptp_data->channel : NULL;
545 }
546 
547 static u32 last_sync_timestamp_major(struct efx_nic *efx)
548 {
549 	struct efx_channel *channel = efx_ptp_channel(efx);
550 	u32 major = 0;
551 
552 	if (channel)
553 		major = channel->sync_timestamp_major;
554 	return major;
555 }
556 
557 /* The 8000 series and later can provide the time from the MAC, which is only
558  * 48 bits long and provides meta-information in the top 2 bits.
559  */
560 static ktime_t
561 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
562 				    struct efx_ptp_data *ptp,
563 				    u32 nic_major, u32 nic_minor,
564 				    s32 correction)
565 {
566 	ktime_t kt = { 0 };
567 
568 	if (!(nic_major & 0x80000000)) {
569 		WARN_ON_ONCE(nic_major >> 16);
570 		/* Use the top bits from the latest sync event. */
571 		nic_major &= 0xffff;
572 		nic_major |= (last_sync_timestamp_major(efx) & 0xffff0000);
573 
574 		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
575 					     correction);
576 	}
577 	return kt;
578 }
579 
580 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
581 {
582 	struct efx_nic *efx = tx_queue->efx;
583 	struct efx_ptp_data *ptp = efx->ptp_data;
584 	ktime_t kt;
585 
586 	if (efx_ptp_use_mac_tx_timestamps(efx))
587 		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
588 				tx_queue->completed_timestamp_major,
589 				tx_queue->completed_timestamp_minor,
590 				ptp->ts_corrections.general_tx);
591 	else
592 		kt = ptp->nic_to_kernel_time(
593 				tx_queue->completed_timestamp_major,
594 				tx_queue->completed_timestamp_minor,
595 				ptp->ts_corrections.general_tx);
596 	return kt;
597 }
598 
599 /* Get PTP attributes and set up time conversions */
600 static int efx_ptp_get_attributes(struct efx_nic *efx)
601 {
602 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
603 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
604 	struct efx_ptp_data *ptp = efx->ptp_data;
605 	int rc;
606 	u32 fmt;
607 	size_t out_len;
608 
609 	/* Get the PTP attributes. If the NIC doesn't support the operation we
610 	 * use the default format for compatibility with older NICs i.e.
611 	 * seconds and nanoseconds.
612 	 */
613 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
614 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
615 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
616 				outbuf, sizeof(outbuf), &out_len);
617 	if (rc == 0) {
618 		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
619 	} else if (rc == -EINVAL) {
620 		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
621 	} else if (rc == -EPERM) {
622 		netif_info(efx, probe, efx->net_dev, "no PTP support\n");
623 		return rc;
624 	} else {
625 		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
626 				       outbuf, sizeof(outbuf), rc);
627 		return rc;
628 	}
629 
630 	switch (fmt) {
631 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
632 		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
633 		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
634 		ptp->nic_time.minor_max = 1 << 27;
635 		ptp->nic_time.sync_event_minor_shift = 19;
636 		break;
637 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
638 		ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
639 		ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
640 		ptp->nic_time.minor_max = 1000000000;
641 		ptp->nic_time.sync_event_minor_shift = 22;
642 		break;
643 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
644 		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
645 		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
646 		ptp->nic_time.minor_max = 4000000000UL;
647 		ptp->nic_time.sync_event_minor_shift = 24;
648 		break;
649 	default:
650 		return -ERANGE;
651 	}
652 
653 	/* Precalculate acceptable difference between the minor time in the
654 	 * packet prefix and the last MCDI time sync event. We expect the
655 	 * packet prefix timestamp to be after of sync event by up to one
656 	 * sync event interval (0.25s) but we allow it to exceed this by a
657 	 * fuzz factor of (0.1s)
658 	 */
659 	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
660 		- (ptp->nic_time.minor_max / 10);
661 	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
662 		+ (ptp->nic_time.minor_max / 10);
663 
664 	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
665 	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
666 	 * a value to use for the minimum acceptable corrected synchronization
667 	 * window and may return further capabilities.
668 	 * If we have the extra information store it. For older firmware that
669 	 * does not implement the extended command use the default value.
670 	 */
671 	if (rc == 0 &&
672 	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
673 		ptp->min_synchronisation_ns =
674 			MCDI_DWORD(outbuf,
675 				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
676 	else
677 		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
678 
679 	if (rc == 0 &&
680 	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
681 		ptp->capabilities = MCDI_DWORD(outbuf,
682 					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
683 	else
684 		ptp->capabilities = 0;
685 
686 	/* Set up the shift for conversion between frequency
687 	 * adjustments in parts-per-billion and the fixed-point
688 	 * fractional ns format that the adapter uses.
689 	 */
690 	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
691 		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
692 	else
693 		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
694 
695 	return 0;
696 }
697 
698 /* Get PTP timestamp corrections */
699 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
700 {
701 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
702 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
703 	int rc;
704 	size_t out_len;
705 
706 	/* Get the timestamp corrections from the NIC. If this operation is
707 	 * not supported (older NICs) then no correction is required.
708 	 */
709 	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
710 		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
711 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
712 
713 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
714 				outbuf, sizeof(outbuf), &out_len);
715 	if (rc == 0) {
716 		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
717 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
718 		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
719 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
720 		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
721 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
722 		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
723 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
724 
725 		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
726 			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
727 				outbuf,
728 				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
729 			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
730 				outbuf,
731 				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
732 		} else {
733 			efx->ptp_data->ts_corrections.general_tx =
734 				efx->ptp_data->ts_corrections.ptp_tx;
735 			efx->ptp_data->ts_corrections.general_rx =
736 				efx->ptp_data->ts_corrections.ptp_rx;
737 		}
738 	} else if (rc == -EINVAL) {
739 		efx->ptp_data->ts_corrections.ptp_tx = 0;
740 		efx->ptp_data->ts_corrections.ptp_rx = 0;
741 		efx->ptp_data->ts_corrections.pps_out = 0;
742 		efx->ptp_data->ts_corrections.pps_in = 0;
743 		efx->ptp_data->ts_corrections.general_tx = 0;
744 		efx->ptp_data->ts_corrections.general_rx = 0;
745 	} else {
746 		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
747 				       sizeof(outbuf), rc);
748 		return rc;
749 	}
750 
751 	return 0;
752 }
753 
754 /* Enable MCDI PTP support. */
755 static int efx_ptp_enable(struct efx_nic *efx)
756 {
757 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
758 	MCDI_DECLARE_BUF_ERR(outbuf);
759 	int rc;
760 
761 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
762 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
763 	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
764 		       efx->ptp_data->channel ?
765 		       efx->ptp_data->channel->channel : 0);
766 	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
767 
768 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
769 				outbuf, sizeof(outbuf), NULL);
770 	rc = (rc == -EALREADY) ? 0 : rc;
771 	if (rc)
772 		efx_mcdi_display_error(efx, MC_CMD_PTP,
773 				       MC_CMD_PTP_IN_ENABLE_LEN,
774 				       outbuf, sizeof(outbuf), rc);
775 	return rc;
776 }
777 
778 /* Disable MCDI PTP support.
779  *
780  * Note that this function should never rely on the presence of ptp_data -
781  * may be called before that exists.
782  */
783 static int efx_ptp_disable(struct efx_nic *efx)
784 {
785 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
786 	MCDI_DECLARE_BUF_ERR(outbuf);
787 	int rc;
788 
789 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
790 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
791 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
792 				outbuf, sizeof(outbuf), NULL);
793 	rc = (rc == -EALREADY) ? 0 : rc;
794 	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
795 	 * should only have been called during probe.
796 	 */
797 	if (rc == -ENOSYS || rc == -EPERM)
798 		netif_info(efx, probe, efx->net_dev, "no PTP support\n");
799 	else if (rc)
800 		efx_mcdi_display_error(efx, MC_CMD_PTP,
801 				       MC_CMD_PTP_IN_DISABLE_LEN,
802 				       outbuf, sizeof(outbuf), rc);
803 	return rc;
804 }
805 
806 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
807 {
808 	struct sk_buff *skb;
809 
810 	while ((skb = skb_dequeue(q))) {
811 		local_bh_disable();
812 		netif_receive_skb(skb);
813 		local_bh_enable();
814 	}
815 }
816 
817 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
818 {
819 	netif_err(efx, drv, efx->net_dev,
820 		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
821 		  "vector. PTP disabled\n");
822 }
823 
824 /* Repeatedly send the host time to the MC which will capture the hardware
825  * time.
826  */
827 static void efx_ptp_send_times(struct efx_nic *efx,
828 			       struct pps_event_time *last_time)
829 {
830 	struct pps_event_time now;
831 	struct timespec64 limit;
832 	struct efx_ptp_data *ptp = efx->ptp_data;
833 	int *mc_running = ptp->start.addr;
834 
835 	pps_get_ts(&now);
836 	limit = now.ts_real;
837 	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
838 
839 	/* Write host time for specified period or until MC is done */
840 	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
841 	       READ_ONCE(*mc_running)) {
842 		struct timespec64 update_time;
843 		unsigned int host_time;
844 
845 		/* Don't update continuously to avoid saturating the PCIe bus */
846 		update_time = now.ts_real;
847 		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
848 		do {
849 			pps_get_ts(&now);
850 		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
851 			 READ_ONCE(*mc_running));
852 
853 		/* Synchronise NIC with single word of time only */
854 		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
855 			     now.ts_real.tv_nsec);
856 		/* Update host time in NIC memory */
857 		efx->type->ptp_write_host_time(efx, host_time);
858 	}
859 	*last_time = now;
860 }
861 
862 /* Read a timeset from the MC's results and partial process. */
863 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
864 				 struct efx_ptp_timeset *timeset)
865 {
866 	unsigned start_ns, end_ns;
867 
868 	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
869 	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
870 	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
871 	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
872 	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
873 
874 	/* Ignore seconds */
875 	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
876 	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
877 	/* Allow for rollover */
878 	if (end_ns < start_ns)
879 		end_ns += NSEC_PER_SEC;
880 	/* Determine duration of operation */
881 	timeset->window = end_ns - start_ns;
882 }
883 
884 /* Process times received from MC.
885  *
886  * Extract times from returned results, and establish the minimum value
887  * seen.  The minimum value represents the "best" possible time and events
888  * too much greater than this are rejected - the machine is, perhaps, too
889  * busy. A number of readings are taken so that, hopefully, at least one good
890  * synchronisation will be seen in the results.
891  */
892 static int
893 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
894 		      size_t response_length,
895 		      const struct pps_event_time *last_time)
896 {
897 	unsigned number_readings =
898 		MCDI_VAR_ARRAY_LEN(response_length,
899 				   PTP_OUT_SYNCHRONIZE_TIMESET);
900 	unsigned i;
901 	unsigned ngood = 0;
902 	unsigned last_good = 0;
903 	struct efx_ptp_data *ptp = efx->ptp_data;
904 	u32 last_sec;
905 	u32 start_sec;
906 	struct timespec64 delta;
907 	ktime_t mc_time;
908 
909 	if (number_readings == 0)
910 		return -EAGAIN;
911 
912 	/* Read the set of results and find the last good host-MC
913 	 * synchronization result. The MC times when it finishes reading the
914 	 * host time so the corrected window time should be fairly constant
915 	 * for a given platform. Increment stats for any results that appear
916 	 * to be erroneous.
917 	 */
918 	for (i = 0; i < number_readings; i++) {
919 		s32 window, corrected;
920 		struct timespec64 wait;
921 
922 		efx_ptp_read_timeset(
923 			MCDI_ARRAY_STRUCT_PTR(synch_buf,
924 					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
925 			&ptp->timeset[i]);
926 
927 		wait = ktime_to_timespec64(
928 			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
929 		window = ptp->timeset[i].window;
930 		corrected = window - wait.tv_nsec;
931 
932 		/* We expect the uncorrected synchronization window to be at
933 		 * least as large as the interval between host start and end
934 		 * times. If it is smaller than this then this is mostly likely
935 		 * to be a consequence of the host's time being adjusted.
936 		 * Check that the corrected sync window is in a reasonable
937 		 * range. If it is out of range it is likely to be because an
938 		 * interrupt or other delay occurred between reading the system
939 		 * time and writing it to MC memory.
940 		 */
941 		if (window < SYNCHRONISATION_GRANULARITY_NS) {
942 			++ptp->invalid_sync_windows;
943 		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
944 			++ptp->oversize_sync_windows;
945 		} else if (corrected < ptp->min_synchronisation_ns) {
946 			++ptp->undersize_sync_windows;
947 		} else {
948 			ngood++;
949 			last_good = i;
950 		}
951 	}
952 
953 	if (ngood == 0) {
954 		netif_warn(efx, drv, efx->net_dev,
955 			   "PTP no suitable synchronisations\n");
956 		return -EAGAIN;
957 	}
958 
959 	/* Calculate delay from last good sync (host time) to last_time.
960 	 * It is possible that the seconds rolled over between taking
961 	 * the start reading and the last value written by the host.  The
962 	 * timescales are such that a gap of more than one second is never
963 	 * expected.  delta is *not* normalised.
964 	 */
965 	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
966 	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
967 	if (start_sec != last_sec &&
968 	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
969 		netif_warn(efx, hw, efx->net_dev,
970 			   "PTP bad synchronisation seconds\n");
971 		return -EAGAIN;
972 	}
973 	delta.tv_sec = (last_sec - start_sec) & 1;
974 	delta.tv_nsec =
975 		last_time->ts_real.tv_nsec -
976 		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
977 
978 	/* Convert the NIC time at last good sync into kernel time.
979 	 * No correction is required - this time is the output of a
980 	 * firmware process.
981 	 */
982 	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
983 					  ptp->timeset[last_good].minor, 0);
984 
985 	/* Calculate delay from NIC top of second to last_time */
986 	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
987 
988 	/* Set PPS timestamp to match NIC top of second */
989 	ptp->host_time_pps = *last_time;
990 	pps_sub_ts(&ptp->host_time_pps, delta);
991 
992 	return 0;
993 }
994 
995 /* Synchronize times between the host and the MC */
996 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
997 {
998 	struct efx_ptp_data *ptp = efx->ptp_data;
999 	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1000 	size_t response_length;
1001 	int rc;
1002 	unsigned long timeout;
1003 	struct pps_event_time last_time = {};
1004 	unsigned int loops = 0;
1005 	int *start = ptp->start.addr;
1006 
1007 	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1008 	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1009 	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1010 		       num_readings);
1011 	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1012 		       ptp->start.dma_addr);
1013 
1014 	/* Clear flag that signals MC ready */
1015 	WRITE_ONCE(*start, 0);
1016 	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1017 				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1018 	EFX_WARN_ON_ONCE_PARANOID(rc);
1019 
1020 	/* Wait for start from MCDI (or timeout) */
1021 	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1022 	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1023 		udelay(20);	/* Usually start MCDI execution quickly */
1024 		loops++;
1025 	}
1026 
1027 	if (loops <= 1)
1028 		++ptp->fast_syncs;
1029 	if (!time_before(jiffies, timeout))
1030 		++ptp->sync_timeouts;
1031 
1032 	if (READ_ONCE(*start))
1033 		efx_ptp_send_times(efx, &last_time);
1034 
1035 	/* Collect results */
1036 	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1037 				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1038 				 synch_buf, sizeof(synch_buf),
1039 				 &response_length);
1040 	if (rc == 0) {
1041 		rc = efx_ptp_process_times(efx, synch_buf, response_length,
1042 					   &last_time);
1043 		if (rc == 0)
1044 			++ptp->good_syncs;
1045 		else
1046 			++ptp->no_time_syncs;
1047 	}
1048 
1049 	/* Increment the bad syncs counter if the synchronize fails, whatever
1050 	 * the reason.
1051 	 */
1052 	if (rc != 0)
1053 		++ptp->bad_syncs;
1054 
1055 	return rc;
1056 }
1057 
1058 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1059 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1060 {
1061 	struct efx_ptp_data *ptp_data = efx->ptp_data;
1062 	struct efx_tx_queue *tx_queue;
1063 	u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
1064 
1065 	tx_queue = &ptp_data->channel->tx_queue[type];
1066 	if (tx_queue && tx_queue->timestamping) {
1067 		efx_enqueue_skb(tx_queue, skb);
1068 	} else {
1069 		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1070 		dev_kfree_skb_any(skb);
1071 	}
1072 }
1073 
1074 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
1075 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1076 {
1077 	struct efx_ptp_data *ptp_data = efx->ptp_data;
1078 	struct skb_shared_hwtstamps timestamps;
1079 	int rc = -EIO;
1080 	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1081 	size_t len;
1082 
1083 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1084 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1085 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1086 	if (skb_shinfo(skb)->nr_frags != 0) {
1087 		rc = skb_linearize(skb);
1088 		if (rc != 0)
1089 			goto fail;
1090 	}
1091 
1092 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1093 		rc = skb_checksum_help(skb);
1094 		if (rc != 0)
1095 			goto fail;
1096 	}
1097 	skb_copy_from_linear_data(skb,
1098 				  MCDI_PTR(ptp_data->txbuf,
1099 					   PTP_IN_TRANSMIT_PACKET),
1100 				  skb->len);
1101 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1102 			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1103 			  txtime, sizeof(txtime), &len);
1104 	if (rc != 0)
1105 		goto fail;
1106 
1107 	memset(&timestamps, 0, sizeof(timestamps));
1108 	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1109 		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1110 		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1111 		ptp_data->ts_corrections.ptp_tx);
1112 
1113 	skb_tstamp_tx(skb, &timestamps);
1114 
1115 	rc = 0;
1116 
1117 fail:
1118 	dev_kfree_skb_any(skb);
1119 
1120 	return;
1121 }
1122 
1123 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1124 {
1125 	struct efx_ptp_data *ptp = efx->ptp_data;
1126 	struct list_head *cursor;
1127 	struct list_head *next;
1128 
1129 	if (ptp->rx_ts_inline)
1130 		return;
1131 
1132 	/* Drop time-expired events */
1133 	spin_lock_bh(&ptp->evt_lock);
1134 	if (!list_empty(&ptp->evt_list)) {
1135 		list_for_each_safe(cursor, next, &ptp->evt_list) {
1136 			struct efx_ptp_event_rx *evt;
1137 
1138 			evt = list_entry(cursor, struct efx_ptp_event_rx,
1139 					 link);
1140 			if (time_after(jiffies, evt->expiry)) {
1141 				list_move(&evt->link, &ptp->evt_free_list);
1142 				netif_warn(efx, hw, efx->net_dev,
1143 					   "PTP rx event dropped\n");
1144 			}
1145 		}
1146 	}
1147 	spin_unlock_bh(&ptp->evt_lock);
1148 }
1149 
1150 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1151 					      struct sk_buff *skb)
1152 {
1153 	struct efx_ptp_data *ptp = efx->ptp_data;
1154 	bool evts_waiting;
1155 	struct list_head *cursor;
1156 	struct list_head *next;
1157 	struct efx_ptp_match *match;
1158 	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1159 
1160 	WARN_ON_ONCE(ptp->rx_ts_inline);
1161 
1162 	spin_lock_bh(&ptp->evt_lock);
1163 	evts_waiting = !list_empty(&ptp->evt_list);
1164 	spin_unlock_bh(&ptp->evt_lock);
1165 
1166 	if (!evts_waiting)
1167 		return PTP_PACKET_STATE_UNMATCHED;
1168 
1169 	match = (struct efx_ptp_match *)skb->cb;
1170 	/* Look for a matching timestamp in the event queue */
1171 	spin_lock_bh(&ptp->evt_lock);
1172 	list_for_each_safe(cursor, next, &ptp->evt_list) {
1173 		struct efx_ptp_event_rx *evt;
1174 
1175 		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1176 		if ((evt->seq0 == match->words[0]) &&
1177 		    (evt->seq1 == match->words[1])) {
1178 			struct skb_shared_hwtstamps *timestamps;
1179 
1180 			/* Match - add in hardware timestamp */
1181 			timestamps = skb_hwtstamps(skb);
1182 			timestamps->hwtstamp = evt->hwtimestamp;
1183 
1184 			match->state = PTP_PACKET_STATE_MATCHED;
1185 			rc = PTP_PACKET_STATE_MATCHED;
1186 			list_move(&evt->link, &ptp->evt_free_list);
1187 			break;
1188 		}
1189 	}
1190 	spin_unlock_bh(&ptp->evt_lock);
1191 
1192 	return rc;
1193 }
1194 
1195 /* Process any queued receive events and corresponding packets
1196  *
1197  * q is returned with all the packets that are ready for delivery.
1198  */
1199 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1200 {
1201 	struct efx_ptp_data *ptp = efx->ptp_data;
1202 	struct sk_buff *skb;
1203 
1204 	while ((skb = skb_dequeue(&ptp->rxq))) {
1205 		struct efx_ptp_match *match;
1206 
1207 		match = (struct efx_ptp_match *)skb->cb;
1208 		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1209 			__skb_queue_tail(q, skb);
1210 		} else if (efx_ptp_match_rx(efx, skb) ==
1211 			   PTP_PACKET_STATE_MATCHED) {
1212 			__skb_queue_tail(q, skb);
1213 		} else if (time_after(jiffies, match->expiry)) {
1214 			match->state = PTP_PACKET_STATE_TIMED_OUT;
1215 			++ptp->rx_no_timestamp;
1216 			__skb_queue_tail(q, skb);
1217 		} else {
1218 			/* Replace unprocessed entry and stop */
1219 			skb_queue_head(&ptp->rxq, skb);
1220 			break;
1221 		}
1222 	}
1223 }
1224 
1225 /* Complete processing of a received packet */
1226 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1227 {
1228 	local_bh_disable();
1229 	netif_receive_skb(skb);
1230 	local_bh_enable();
1231 }
1232 
1233 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1234 {
1235 	struct efx_ptp_data *ptp = efx->ptp_data;
1236 
1237 	if (ptp->rxfilter_installed) {
1238 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1239 					  ptp->rxfilter_general);
1240 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1241 					  ptp->rxfilter_event);
1242 		ptp->rxfilter_installed = false;
1243 	}
1244 }
1245 
1246 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1247 {
1248 	struct efx_ptp_data *ptp = efx->ptp_data;
1249 	struct efx_filter_spec rxfilter;
1250 	int rc;
1251 
1252 	if (!ptp->channel || ptp->rxfilter_installed)
1253 		return 0;
1254 
1255 	/* Must filter on both event and general ports to ensure
1256 	 * that there is no packet re-ordering.
1257 	 */
1258 	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1259 			   efx_rx_queue_index(
1260 				   efx_channel_get_rx_queue(ptp->channel)));
1261 	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1262 				       htonl(PTP_ADDRESS),
1263 				       htons(PTP_EVENT_PORT));
1264 	if (rc != 0)
1265 		return rc;
1266 
1267 	rc = efx_filter_insert_filter(efx, &rxfilter, true);
1268 	if (rc < 0)
1269 		return rc;
1270 	ptp->rxfilter_event = rc;
1271 
1272 	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1273 			   efx_rx_queue_index(
1274 				   efx_channel_get_rx_queue(ptp->channel)));
1275 	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1276 				       htonl(PTP_ADDRESS),
1277 				       htons(PTP_GENERAL_PORT));
1278 	if (rc != 0)
1279 		goto fail;
1280 
1281 	rc = efx_filter_insert_filter(efx, &rxfilter, true);
1282 	if (rc < 0)
1283 		goto fail;
1284 	ptp->rxfilter_general = rc;
1285 
1286 	ptp->rxfilter_installed = true;
1287 	return 0;
1288 
1289 fail:
1290 	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1291 				  ptp->rxfilter_event);
1292 	return rc;
1293 }
1294 
1295 static int efx_ptp_start(struct efx_nic *efx)
1296 {
1297 	struct efx_ptp_data *ptp = efx->ptp_data;
1298 	int rc;
1299 
1300 	ptp->reset_required = false;
1301 
1302 	rc = efx_ptp_insert_multicast_filters(efx);
1303 	if (rc)
1304 		return rc;
1305 
1306 	rc = efx_ptp_enable(efx);
1307 	if (rc != 0)
1308 		goto fail;
1309 
1310 	ptp->evt_frag_idx = 0;
1311 	ptp->current_adjfreq = 0;
1312 
1313 	return 0;
1314 
1315 fail:
1316 	efx_ptp_remove_multicast_filters(efx);
1317 	return rc;
1318 }
1319 
1320 static int efx_ptp_stop(struct efx_nic *efx)
1321 {
1322 	struct efx_ptp_data *ptp = efx->ptp_data;
1323 	struct list_head *cursor;
1324 	struct list_head *next;
1325 	int rc;
1326 
1327 	if (ptp == NULL)
1328 		return 0;
1329 
1330 	rc = efx_ptp_disable(efx);
1331 
1332 	efx_ptp_remove_multicast_filters(efx);
1333 
1334 	/* Make sure RX packets are really delivered */
1335 	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1336 	skb_queue_purge(&efx->ptp_data->txq);
1337 
1338 	/* Drop any pending receive events */
1339 	spin_lock_bh(&efx->ptp_data->evt_lock);
1340 	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1341 		list_move(cursor, &efx->ptp_data->evt_free_list);
1342 	}
1343 	spin_unlock_bh(&efx->ptp_data->evt_lock);
1344 
1345 	return rc;
1346 }
1347 
1348 static int efx_ptp_restart(struct efx_nic *efx)
1349 {
1350 	if (efx->ptp_data && efx->ptp_data->enabled)
1351 		return efx_ptp_start(efx);
1352 	return 0;
1353 }
1354 
1355 static void efx_ptp_pps_worker(struct work_struct *work)
1356 {
1357 	struct efx_ptp_data *ptp =
1358 		container_of(work, struct efx_ptp_data, pps_work);
1359 	struct efx_nic *efx = ptp->efx;
1360 	struct ptp_clock_event ptp_evt;
1361 
1362 	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1363 		return;
1364 
1365 	ptp_evt.type = PTP_CLOCK_PPSUSR;
1366 	ptp_evt.pps_times = ptp->host_time_pps;
1367 	ptp_clock_event(ptp->phc_clock, &ptp_evt);
1368 }
1369 
1370 static void efx_ptp_worker(struct work_struct *work)
1371 {
1372 	struct efx_ptp_data *ptp_data =
1373 		container_of(work, struct efx_ptp_data, work);
1374 	struct efx_nic *efx = ptp_data->efx;
1375 	struct sk_buff *skb;
1376 	struct sk_buff_head tempq;
1377 
1378 	if (ptp_data->reset_required) {
1379 		efx_ptp_stop(efx);
1380 		efx_ptp_start(efx);
1381 		return;
1382 	}
1383 
1384 	efx_ptp_drop_time_expired_events(efx);
1385 
1386 	__skb_queue_head_init(&tempq);
1387 	efx_ptp_process_events(efx, &tempq);
1388 
1389 	while ((skb = skb_dequeue(&ptp_data->txq)))
1390 		ptp_data->xmit_skb(efx, skb);
1391 
1392 	while ((skb = __skb_dequeue(&tempq)))
1393 		efx_ptp_process_rx(efx, skb);
1394 }
1395 
1396 static const struct ptp_clock_info efx_phc_clock_info = {
1397 	.owner		= THIS_MODULE,
1398 	.name		= "sfc",
1399 	.max_adj	= MAX_PPB,
1400 	.n_alarm	= 0,
1401 	.n_ext_ts	= 0,
1402 	.n_per_out	= 0,
1403 	.n_pins		= 0,
1404 	.pps		= 1,
1405 	.adjfreq	= efx_phc_adjfreq,
1406 	.adjtime	= efx_phc_adjtime,
1407 	.gettime64	= efx_phc_gettime,
1408 	.settime64	= efx_phc_settime,
1409 	.enable		= efx_phc_enable,
1410 };
1411 
1412 /* Initialise PTP state. */
1413 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1414 {
1415 	struct efx_ptp_data *ptp;
1416 	int rc = 0;
1417 	unsigned int pos;
1418 
1419 	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1420 	efx->ptp_data = ptp;
1421 	if (!efx->ptp_data)
1422 		return -ENOMEM;
1423 
1424 	ptp->efx = efx;
1425 	ptp->channel = channel;
1426 	ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1427 
1428 	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1429 	if (rc != 0)
1430 		goto fail1;
1431 
1432 	skb_queue_head_init(&ptp->rxq);
1433 	skb_queue_head_init(&ptp->txq);
1434 	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1435 	if (!ptp->workwq) {
1436 		rc = -ENOMEM;
1437 		goto fail2;
1438 	}
1439 
1440 	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1441 		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1442 		/* Request sync events on this channel. */
1443 		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1444 	} else {
1445 		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1446 	}
1447 
1448 	INIT_WORK(&ptp->work, efx_ptp_worker);
1449 	ptp->config.flags = 0;
1450 	ptp->config.tx_type = HWTSTAMP_TX_OFF;
1451 	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1452 	INIT_LIST_HEAD(&ptp->evt_list);
1453 	INIT_LIST_HEAD(&ptp->evt_free_list);
1454 	spin_lock_init(&ptp->evt_lock);
1455 	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1456 		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1457 
1458 	/* Get the NIC PTP attributes and set up time conversions */
1459 	rc = efx_ptp_get_attributes(efx);
1460 	if (rc < 0)
1461 		goto fail3;
1462 
1463 	/* Get the timestamp corrections */
1464 	rc = efx_ptp_get_timestamp_corrections(efx);
1465 	if (rc < 0)
1466 		goto fail3;
1467 
1468 	if (efx->mcdi->fn_flags &
1469 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1470 		ptp->phc_clock_info = efx_phc_clock_info;
1471 		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1472 						    &efx->pci_dev->dev);
1473 		if (IS_ERR(ptp->phc_clock)) {
1474 			rc = PTR_ERR(ptp->phc_clock);
1475 			goto fail3;
1476 		} else if (ptp->phc_clock) {
1477 			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1478 			ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1479 			if (!ptp->pps_workwq) {
1480 				rc = -ENOMEM;
1481 				goto fail4;
1482 			}
1483 		}
1484 	}
1485 	ptp->nic_ts_enabled = false;
1486 
1487 	return 0;
1488 fail4:
1489 	ptp_clock_unregister(efx->ptp_data->phc_clock);
1490 
1491 fail3:
1492 	destroy_workqueue(efx->ptp_data->workwq);
1493 
1494 fail2:
1495 	efx_nic_free_buffer(efx, &ptp->start);
1496 
1497 fail1:
1498 	kfree(efx->ptp_data);
1499 	efx->ptp_data = NULL;
1500 
1501 	return rc;
1502 }
1503 
1504 /* Initialise PTP channel.
1505  *
1506  * Setting core_index to zero causes the queue to be initialised and doesn't
1507  * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1508  */
1509 static int efx_ptp_probe_channel(struct efx_channel *channel)
1510 {
1511 	struct efx_nic *efx = channel->efx;
1512 	int rc;
1513 
1514 	channel->irq_moderation_us = 0;
1515 	channel->rx_queue.core_index = 0;
1516 
1517 	rc = efx_ptp_probe(efx, channel);
1518 	/* Failure to probe PTP is not fatal; this channel will just not be
1519 	 * used for anything.
1520 	 * In the case of EPERM, efx_ptp_probe will print its own message (in
1521 	 * efx_ptp_get_attributes()), so we don't need to.
1522 	 */
1523 	if (rc && rc != -EPERM)
1524 		netif_warn(efx, drv, efx->net_dev,
1525 			   "Failed to probe PTP, rc=%d\n", rc);
1526 	return 0;
1527 }
1528 
1529 void efx_ptp_remove(struct efx_nic *efx)
1530 {
1531 	if (!efx->ptp_data)
1532 		return;
1533 
1534 	(void)efx_ptp_disable(efx);
1535 
1536 	cancel_work_sync(&efx->ptp_data->work);
1537 	cancel_work_sync(&efx->ptp_data->pps_work);
1538 
1539 	skb_queue_purge(&efx->ptp_data->rxq);
1540 	skb_queue_purge(&efx->ptp_data->txq);
1541 
1542 	if (efx->ptp_data->phc_clock) {
1543 		destroy_workqueue(efx->ptp_data->pps_workwq);
1544 		ptp_clock_unregister(efx->ptp_data->phc_clock);
1545 	}
1546 
1547 	destroy_workqueue(efx->ptp_data->workwq);
1548 
1549 	efx_nic_free_buffer(efx, &efx->ptp_data->start);
1550 	kfree(efx->ptp_data);
1551 	efx->ptp_data = NULL;
1552 }
1553 
1554 static void efx_ptp_remove_channel(struct efx_channel *channel)
1555 {
1556 	efx_ptp_remove(channel->efx);
1557 }
1558 
1559 static void efx_ptp_get_channel_name(struct efx_channel *channel,
1560 				     char *buf, size_t len)
1561 {
1562 	snprintf(buf, len, "%s-ptp", channel->efx->name);
1563 }
1564 
1565 /* Determine whether this packet should be processed by the PTP module
1566  * or transmitted conventionally.
1567  */
1568 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1569 {
1570 	return efx->ptp_data &&
1571 		efx->ptp_data->enabled &&
1572 		skb->len >= PTP_MIN_LENGTH &&
1573 		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1574 		likely(skb->protocol == htons(ETH_P_IP)) &&
1575 		skb_transport_header_was_set(skb) &&
1576 		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1577 		ip_hdr(skb)->protocol == IPPROTO_UDP &&
1578 		skb_headlen(skb) >=
1579 		skb_transport_offset(skb) + sizeof(struct udphdr) &&
1580 		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1581 }
1582 
1583 /* Receive a PTP packet.  Packets are queued until the arrival of
1584  * the receive timestamp from the MC - this will probably occur after the
1585  * packet arrival because of the processing in the MC.
1586  */
1587 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1588 {
1589 	struct efx_nic *efx = channel->efx;
1590 	struct efx_ptp_data *ptp = efx->ptp_data;
1591 	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1592 	u8 *match_data_012, *match_data_345;
1593 	unsigned int version;
1594 	u8 *data;
1595 
1596 	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1597 
1598 	/* Correct version? */
1599 	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1600 		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1601 			return false;
1602 		}
1603 		data = skb->data;
1604 		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1605 		if (version != PTP_VERSION_V1) {
1606 			return false;
1607 		}
1608 
1609 		/* PTP V1 uses all six bytes of the UUID to match the packet
1610 		 * to the timestamp
1611 		 */
1612 		match_data_012 = data + PTP_V1_UUID_OFFSET;
1613 		match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1614 	} else {
1615 		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1616 			return false;
1617 		}
1618 		data = skb->data;
1619 		version = data[PTP_V2_VERSION_OFFSET];
1620 		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1621 			return false;
1622 		}
1623 
1624 		/* The original V2 implementation uses bytes 2-7 of
1625 		 * the UUID to match the packet to the timestamp. This
1626 		 * discards two of the bytes of the MAC address used
1627 		 * to create the UUID (SF bug 33070).  The PTP V2
1628 		 * enhanced mode fixes this issue and uses bytes 0-2
1629 		 * and byte 5-7 of the UUID.
1630 		 */
1631 		match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1632 		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1633 			match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1634 		} else {
1635 			match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1636 			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1637 		}
1638 	}
1639 
1640 	/* Does this packet require timestamping? */
1641 	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1642 		match->state = PTP_PACKET_STATE_UNMATCHED;
1643 
1644 		/* We expect the sequence number to be in the same position in
1645 		 * the packet for PTP V1 and V2
1646 		 */
1647 		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1648 		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1649 
1650 		/* Extract UUID/Sequence information */
1651 		match->words[0] = (match_data_012[0]         |
1652 				   (match_data_012[1] << 8)  |
1653 				   (match_data_012[2] << 16) |
1654 				   (match_data_345[0] << 24));
1655 		match->words[1] = (match_data_345[1]         |
1656 				   (match_data_345[2] << 8)  |
1657 				   (data[PTP_V1_SEQUENCE_OFFSET +
1658 					 PTP_V1_SEQUENCE_LENGTH - 1] <<
1659 				    16));
1660 	} else {
1661 		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1662 	}
1663 
1664 	skb_queue_tail(&ptp->rxq, skb);
1665 	queue_work(ptp->workwq, &ptp->work);
1666 
1667 	return true;
1668 }
1669 
1670 /* Transmit a PTP packet.  This has to be transmitted by the MC
1671  * itself, through an MCDI call.  MCDI calls aren't permitted
1672  * in the transmit path so defer the actual transmission to a suitable worker.
1673  */
1674 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1675 {
1676 	struct efx_ptp_data *ptp = efx->ptp_data;
1677 
1678 	skb_queue_tail(&ptp->txq, skb);
1679 
1680 	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1681 	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1682 		efx_xmit_hwtstamp_pending(skb);
1683 	queue_work(ptp->workwq, &ptp->work);
1684 
1685 	return NETDEV_TX_OK;
1686 }
1687 
1688 int efx_ptp_get_mode(struct efx_nic *efx)
1689 {
1690 	return efx->ptp_data->mode;
1691 }
1692 
1693 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1694 			unsigned int new_mode)
1695 {
1696 	if ((enable_wanted != efx->ptp_data->enabled) ||
1697 	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1698 		int rc = 0;
1699 
1700 		if (enable_wanted) {
1701 			/* Change of mode requires disable */
1702 			if (efx->ptp_data->enabled &&
1703 			    (efx->ptp_data->mode != new_mode)) {
1704 				efx->ptp_data->enabled = false;
1705 				rc = efx_ptp_stop(efx);
1706 				if (rc != 0)
1707 					return rc;
1708 			}
1709 
1710 			/* Set new operating mode and establish
1711 			 * baseline synchronisation, which must
1712 			 * succeed.
1713 			 */
1714 			efx->ptp_data->mode = new_mode;
1715 			if (netif_running(efx->net_dev))
1716 				rc = efx_ptp_start(efx);
1717 			if (rc == 0) {
1718 				rc = efx_ptp_synchronize(efx,
1719 							 PTP_SYNC_ATTEMPTS * 2);
1720 				if (rc != 0)
1721 					efx_ptp_stop(efx);
1722 			}
1723 		} else {
1724 			rc = efx_ptp_stop(efx);
1725 		}
1726 
1727 		if (rc != 0)
1728 			return rc;
1729 
1730 		efx->ptp_data->enabled = enable_wanted;
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1737 {
1738 	int rc;
1739 
1740 	if (init->flags)
1741 		return -EINVAL;
1742 
1743 	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1744 	    (init->tx_type != HWTSTAMP_TX_ON))
1745 		return -ERANGE;
1746 
1747 	rc = efx->type->ptp_set_ts_config(efx, init);
1748 	if (rc)
1749 		return rc;
1750 
1751 	efx->ptp_data->config = *init;
1752 	return 0;
1753 }
1754 
1755 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1756 {
1757 	struct efx_ptp_data *ptp = efx->ptp_data;
1758 	struct efx_nic *primary = efx->primary;
1759 
1760 	ASSERT_RTNL();
1761 
1762 	if (!ptp)
1763 		return;
1764 
1765 	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1766 				     SOF_TIMESTAMPING_RX_HARDWARE |
1767 				     SOF_TIMESTAMPING_RAW_HARDWARE);
1768 	/* Check licensed features.  If we don't have the license for TX
1769 	 * timestamps, the NIC will not support them.
1770 	 */
1771 	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1772 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1773 
1774 		if (!(nic_data->licensed_features &
1775 		      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1776 			ts_info->so_timestamping &=
1777 				~SOF_TIMESTAMPING_TX_HARDWARE;
1778 	}
1779 	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1780 		ts_info->phc_index =
1781 			ptp_clock_index(primary->ptp_data->phc_clock);
1782 	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1783 	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1784 }
1785 
1786 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1787 {
1788 	struct hwtstamp_config config;
1789 	int rc;
1790 
1791 	/* Not a PTP enabled port */
1792 	if (!efx->ptp_data)
1793 		return -EOPNOTSUPP;
1794 
1795 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1796 		return -EFAULT;
1797 
1798 	rc = efx_ptp_ts_init(efx, &config);
1799 	if (rc != 0)
1800 		return rc;
1801 
1802 	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1803 		? -EFAULT : 0;
1804 }
1805 
1806 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1807 {
1808 	if (!efx->ptp_data)
1809 		return -EOPNOTSUPP;
1810 
1811 	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1812 			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1813 }
1814 
1815 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1816 {
1817 	struct efx_ptp_data *ptp = efx->ptp_data;
1818 
1819 	netif_err(efx, hw, efx->net_dev,
1820 		"PTP unexpected event length: got %d expected %d\n",
1821 		ptp->evt_frag_idx, expected_frag_len);
1822 	ptp->reset_required = true;
1823 	queue_work(ptp->workwq, &ptp->work);
1824 }
1825 
1826 /* Process a completed receive event.  Put it on the event queue and
1827  * start worker thread.  This is required because event and their
1828  * correspoding packets may come in either order.
1829  */
1830 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1831 {
1832 	struct efx_ptp_event_rx *evt = NULL;
1833 
1834 	if (WARN_ON_ONCE(ptp->rx_ts_inline))
1835 		return;
1836 
1837 	if (ptp->evt_frag_idx != 3) {
1838 		ptp_event_failure(efx, 3);
1839 		return;
1840 	}
1841 
1842 	spin_lock_bh(&ptp->evt_lock);
1843 	if (!list_empty(&ptp->evt_free_list)) {
1844 		evt = list_first_entry(&ptp->evt_free_list,
1845 				       struct efx_ptp_event_rx, link);
1846 		list_del(&evt->link);
1847 
1848 		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1849 		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1850 					     MCDI_EVENT_SRC)        |
1851 			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
1852 					      MCDI_EVENT_SRC) << 8) |
1853 			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
1854 					      MCDI_EVENT_SRC) << 16));
1855 		evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1856 			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1857 			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1858 			ptp->ts_corrections.ptp_rx);
1859 		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1860 		list_add_tail(&evt->link, &ptp->evt_list);
1861 
1862 		queue_work(ptp->workwq, &ptp->work);
1863 	} else if (net_ratelimit()) {
1864 		/* Log a rate-limited warning message. */
1865 		netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1866 	}
1867 	spin_unlock_bh(&ptp->evt_lock);
1868 }
1869 
1870 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1871 {
1872 	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1873 	if (ptp->evt_frag_idx != 1) {
1874 		ptp_event_failure(efx, 1);
1875 		return;
1876 	}
1877 
1878 	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1879 }
1880 
1881 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1882 {
1883 	if (ptp->nic_ts_enabled)
1884 		queue_work(ptp->pps_workwq, &ptp->pps_work);
1885 }
1886 
1887 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1888 {
1889 	struct efx_ptp_data *ptp = efx->ptp_data;
1890 	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1891 
1892 	if (!ptp) {
1893 		if (!efx->ptp_warned) {
1894 			netif_warn(efx, drv, efx->net_dev,
1895 				   "Received PTP event but PTP not set up\n");
1896 			efx->ptp_warned = true;
1897 		}
1898 		return;
1899 	}
1900 
1901 	if (!ptp->enabled)
1902 		return;
1903 
1904 	if (ptp->evt_frag_idx == 0) {
1905 		ptp->evt_code = code;
1906 	} else if (ptp->evt_code != code) {
1907 		netif_err(efx, hw, efx->net_dev,
1908 			  "PTP out of sequence event %d\n", code);
1909 		ptp->evt_frag_idx = 0;
1910 	}
1911 
1912 	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1913 	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1914 		/* Process resulting event */
1915 		switch (code) {
1916 		case MCDI_EVENT_CODE_PTP_RX:
1917 			ptp_event_rx(efx, ptp);
1918 			break;
1919 		case MCDI_EVENT_CODE_PTP_FAULT:
1920 			ptp_event_fault(efx, ptp);
1921 			break;
1922 		case MCDI_EVENT_CODE_PTP_PPS:
1923 			ptp_event_pps(efx, ptp);
1924 			break;
1925 		default:
1926 			netif_err(efx, hw, efx->net_dev,
1927 				  "PTP unknown event %d\n", code);
1928 			break;
1929 		}
1930 		ptp->evt_frag_idx = 0;
1931 	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1932 		netif_err(efx, hw, efx->net_dev,
1933 			  "PTP too many event fragments\n");
1934 		ptp->evt_frag_idx = 0;
1935 	}
1936 }
1937 
1938 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1939 {
1940 	struct efx_nic *efx = channel->efx;
1941 	struct efx_ptp_data *ptp = efx->ptp_data;
1942 
1943 	/* When extracting the sync timestamp minor value, we should discard
1944 	 * the least significant two bits. These are not required in order
1945 	 * to reconstruct full-range timestamps and they are optionally used
1946 	 * to report status depending on the options supplied when subscribing
1947 	 * for sync events.
1948 	 */
1949 	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1950 	channel->sync_timestamp_minor =
1951 		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
1952 			<< ptp->nic_time.sync_event_minor_shift;
1953 
1954 	/* if sync events have been disabled then we want to silently ignore
1955 	 * this event, so throw away result.
1956 	 */
1957 	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1958 		       SYNC_EVENTS_VALID);
1959 }
1960 
1961 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1962 {
1963 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1964 	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1965 #else
1966 	const u8 *data = eh + efx->rx_packet_ts_offset;
1967 	return (u32)data[0]       |
1968 	       (u32)data[1] << 8  |
1969 	       (u32)data[2] << 16 |
1970 	       (u32)data[3] << 24;
1971 #endif
1972 }
1973 
1974 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
1975 				   struct sk_buff *skb)
1976 {
1977 	struct efx_nic *efx = channel->efx;
1978 	struct efx_ptp_data *ptp = efx->ptp_data;
1979 	u32 pkt_timestamp_major, pkt_timestamp_minor;
1980 	u32 diff, carry;
1981 	struct skb_shared_hwtstamps *timestamps;
1982 
1983 	if (channel->sync_events_state != SYNC_EVENTS_VALID)
1984 		return;
1985 
1986 	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
1987 
1988 	/* get the difference between the packet and sync timestamps,
1989 	 * modulo one second
1990 	 */
1991 	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
1992 	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
1993 		diff += ptp->nic_time.minor_max;
1994 
1995 	/* do we roll over a second boundary and need to carry the one? */
1996 	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
1997 		1 : 0;
1998 
1999 	if (diff <= ptp->nic_time.sync_event_diff_max) {
2000 		/* packet is ahead of the sync event by a quarter of a second or
2001 		 * less (allowing for fuzz)
2002 		 */
2003 		pkt_timestamp_major = channel->sync_timestamp_major + carry;
2004 	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
2005 		/* packet is behind the sync event but within the fuzz factor.
2006 		 * This means the RX packet and sync event crossed as they were
2007 		 * placed on the event queue, which can sometimes happen.
2008 		 */
2009 		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2010 	} else {
2011 		/* it's outside tolerance in both directions. this might be
2012 		 * indicative of us missing sync events for some reason, so
2013 		 * we'll call it an error rather than risk giving a bogus
2014 		 * timestamp.
2015 		 */
2016 		netif_vdbg(efx, drv, efx->net_dev,
2017 			  "packet timestamp %x too far from sync event %x:%x\n",
2018 			  pkt_timestamp_minor, channel->sync_timestamp_major,
2019 			  channel->sync_timestamp_minor);
2020 		return;
2021 	}
2022 
2023 	/* attach the timestamps to the skb */
2024 	timestamps = skb_hwtstamps(skb);
2025 	timestamps->hwtstamp =
2026 		ptp->nic_to_kernel_time(pkt_timestamp_major,
2027 					pkt_timestamp_minor,
2028 					ptp->ts_corrections.general_rx);
2029 }
2030 
2031 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2032 {
2033 	struct efx_ptp_data *ptp_data = container_of(ptp,
2034 						     struct efx_ptp_data,
2035 						     phc_clock_info);
2036 	struct efx_nic *efx = ptp_data->efx;
2037 	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2038 	s64 adjustment_ns;
2039 	int rc;
2040 
2041 	if (delta > MAX_PPB)
2042 		delta = MAX_PPB;
2043 	else if (delta < -MAX_PPB)
2044 		delta = -MAX_PPB;
2045 
2046 	/* Convert ppb to fixed point ns taking care to round correctly. */
2047 	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2048 			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2049 			ptp_data->adjfreq_ppb_shift;
2050 
2051 	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2052 	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2053 	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2054 	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2055 	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2056 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2057 			  NULL, 0, NULL);
2058 	if (rc != 0)
2059 		return rc;
2060 
2061 	ptp_data->current_adjfreq = adjustment_ns;
2062 	return 0;
2063 }
2064 
2065 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2066 {
2067 	u32 nic_major, nic_minor;
2068 	struct efx_ptp_data *ptp_data = container_of(ptp,
2069 						     struct efx_ptp_data,
2070 						     phc_clock_info);
2071 	struct efx_nic *efx = ptp_data->efx;
2072 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2073 
2074 	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2075 
2076 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2077 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2078 	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2079 	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2080 	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2081 	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2082 			    NULL, 0, NULL);
2083 }
2084 
2085 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2086 {
2087 	struct efx_ptp_data *ptp_data = container_of(ptp,
2088 						     struct efx_ptp_data,
2089 						     phc_clock_info);
2090 	struct efx_nic *efx = ptp_data->efx;
2091 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2092 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2093 	int rc;
2094 	ktime_t kt;
2095 
2096 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2097 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2098 
2099 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2100 			  outbuf, sizeof(outbuf), NULL);
2101 	if (rc != 0)
2102 		return rc;
2103 
2104 	kt = ptp_data->nic_to_kernel_time(
2105 		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2106 		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2107 	*ts = ktime_to_timespec64(kt);
2108 	return 0;
2109 }
2110 
2111 static int efx_phc_settime(struct ptp_clock_info *ptp,
2112 			   const struct timespec64 *e_ts)
2113 {
2114 	/* Get the current NIC time, efx_phc_gettime.
2115 	 * Subtract from the desired time to get the offset
2116 	 * call efx_phc_adjtime with the offset
2117 	 */
2118 	int rc;
2119 	struct timespec64 time_now;
2120 	struct timespec64 delta;
2121 
2122 	rc = efx_phc_gettime(ptp, &time_now);
2123 	if (rc != 0)
2124 		return rc;
2125 
2126 	delta = timespec64_sub(*e_ts, time_now);
2127 
2128 	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2129 	if (rc != 0)
2130 		return rc;
2131 
2132 	return 0;
2133 }
2134 
2135 static int efx_phc_enable(struct ptp_clock_info *ptp,
2136 			  struct ptp_clock_request *request,
2137 			  int enable)
2138 {
2139 	struct efx_ptp_data *ptp_data = container_of(ptp,
2140 						     struct efx_ptp_data,
2141 						     phc_clock_info);
2142 	if (request->type != PTP_CLK_REQ_PPS)
2143 		return -EOPNOTSUPP;
2144 
2145 	ptp_data->nic_ts_enabled = !!enable;
2146 	return 0;
2147 }
2148 
2149 static const struct efx_channel_type efx_ptp_channel_type = {
2150 	.handle_no_channel	= efx_ptp_handle_no_channel,
2151 	.pre_probe		= efx_ptp_probe_channel,
2152 	.post_remove		= efx_ptp_remove_channel,
2153 	.get_name		= efx_ptp_get_channel_name,
2154 	/* no copy operation; there is no need to reallocate this channel */
2155 	.receive_skb		= efx_ptp_rx,
2156 	.want_txqs		= efx_ptp_want_txqs,
2157 	.keep_eventq		= false,
2158 };
2159 
2160 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2161 {
2162 	/* Check whether PTP is implemented on this NIC.  The DISABLE
2163 	 * operation will succeed if and only if it is implemented.
2164 	 */
2165 	if (efx_ptp_disable(efx) == 0)
2166 		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2167 			&efx_ptp_channel_type;
2168 }
2169 
2170 void efx_ptp_start_datapath(struct efx_nic *efx)
2171 {
2172 	if (efx_ptp_restart(efx))
2173 		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2174 	/* re-enable timestamping if it was previously enabled */
2175 	if (efx->type->ptp_set_ts_sync_events)
2176 		efx->type->ptp_set_ts_sync_events(efx, true, true);
2177 }
2178 
2179 void efx_ptp_stop_datapath(struct efx_nic *efx)
2180 {
2181 	/* temporarily disable timestamping */
2182 	if (efx->type->ptp_set_ts_sync_events)
2183 		efx->type->ptp_set_ts_sync_events(efx, false, true);
2184 	efx_ptp_stop(efx);
2185 }
2186