xref: /openbmc/linux/drivers/net/ethernet/sfc/ptp.c (revision cd5d5810)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2011-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 /* Theory of operation:
11  *
12  * PTP support is assisted by firmware running on the MC, which provides
13  * the hardware timestamping capabilities.  Both transmitted and received
14  * PTP event packets are queued onto internal queues for subsequent processing;
15  * this is because the MC operations are relatively long and would block
16  * block NAPI/interrupt operation.
17  *
18  * Receive event processing:
19  *	The event contains the packet's UUID and sequence number, together
20  *	with the hardware timestamp.  The PTP receive packet queue is searched
21  *	for this UUID/sequence number and, if found, put on a pending queue.
22  *	Packets not matching are delivered without timestamps (MCDI events will
23  *	always arrive after the actual packet).
24  *	It is important for the operation of the PTP protocol that the ordering
25  *	of packets between the event and general port is maintained.
26  *
27  * Work queue processing:
28  *	If work waiting, synchronise host/hardware time
29  *
30  *	Transmit: send packet through MC, which returns the transmission time
31  *	that is converted to an appropriate timestamp.
32  *
33  *	Receive: the packet's reception time is converted to an appropriate
34  *	timestamp.
35  */
36 #include <linux/ip.h>
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
45 #include "efx.h"
46 #include "mcdi.h"
47 #include "mcdi_pcol.h"
48 #include "io.h"
49 #include "farch_regs.h"
50 #include "nic.h"
51 
52 /* Maximum number of events expected to make up a PTP event */
53 #define	MAX_EVENT_FRAGS			3
54 
55 /* Maximum delay, ms, to begin synchronisation */
56 #define	MAX_SYNCHRONISE_WAIT_MS		2
57 
58 /* How long, at most, to spend synchronising */
59 #define	SYNCHRONISE_PERIOD_NS		250000
60 
61 /* How often to update the shared memory time */
62 #define	SYNCHRONISATION_GRANULARITY_NS	200
63 
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define	MIN_SYNCHRONISATION_NS		120
66 
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define	MAX_SYNCHRONISATION_NS		1000
69 
70 /* How many (MC) receive events that can be queued */
71 #define	MAX_RECEIVE_EVENTS		8
72 
73 /* Length of (modified) moving average. */
74 #define	AVERAGE_LENGTH			16
75 
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS		10
78 
79 /* Offsets into PTP packet for identification.  These offsets are from the
80  * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
81  * PTP V2 permit the use of IPV4 options.
82  */
83 #define PTP_DPORT_OFFSET	22
84 
85 #define PTP_V1_VERSION_LENGTH	2
86 #define PTP_V1_VERSION_OFFSET	28
87 
88 #define PTP_V1_UUID_LENGTH	6
89 #define PTP_V1_UUID_OFFSET	50
90 
91 #define PTP_V1_SEQUENCE_LENGTH	2
92 #define PTP_V1_SEQUENCE_OFFSET	58
93 
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95  * includes IP header.
96  */
97 #define	PTP_V1_MIN_LENGTH	64
98 
99 #define PTP_V2_VERSION_LENGTH	1
100 #define PTP_V2_VERSION_OFFSET	29
101 
102 #define PTP_V2_UUID_LENGTH	8
103 #define PTP_V2_UUID_OFFSET	48
104 
105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106  * the MC only captures the last six bytes of the clock identity. These values
107  * reflect those, not the ones used in the standard.  The standard permits
108  * mapping of V1 UUIDs to V2 UUIDs with these same values.
109  */
110 #define PTP_V2_MC_UUID_LENGTH	6
111 #define PTP_V2_MC_UUID_OFFSET	50
112 
113 #define PTP_V2_SEQUENCE_LENGTH	2
114 #define PTP_V2_SEQUENCE_OFFSET	58
115 
116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117  * includes IP header.
118  */
119 #define	PTP_V2_MIN_LENGTH	63
120 
121 #define	PTP_MIN_LENGTH		63
122 
123 #define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */
124 #define PTP_EVENT_PORT		319
125 #define PTP_GENERAL_PORT	320
126 
127 /* Annoyingly the format of the version numbers are different between
128  * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
129  */
130 #define	PTP_VERSION_V1		1
131 
132 #define	PTP_VERSION_V2		2
133 #define	PTP_VERSION_V2_MASK	0x0f
134 
135 enum ptp_packet_state {
136 	PTP_PACKET_STATE_UNMATCHED = 0,
137 	PTP_PACKET_STATE_MATCHED,
138 	PTP_PACKET_STATE_TIMED_OUT,
139 	PTP_PACKET_STATE_MATCH_UNWANTED
140 };
141 
142 /* NIC synchronised with single word of time only comprising
143  * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
144  */
145 #define	MC_NANOSECOND_BITS	30
146 #define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
147 #define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
148 
149 /* Maximum parts-per-billion adjustment that is acceptable */
150 #define MAX_PPB			1000000
151 
152 /* Number of bits required to hold the above */
153 #define	MAX_PPB_BITS		20
154 
155 /* Number of extra bits allowed when calculating fractional ns.
156  * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
157  * be less than 63.
158  */
159 #define	PPB_EXTRA_BITS		2
160 
161 /* Precalculate scale word to avoid long long division at runtime */
162 #define	PPB_SCALE_WORD	((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
163 			MAX_PPB_BITS)) / 1000000000LL)
164 
165 #define PTP_SYNC_ATTEMPTS	4
166 
167 /**
168  * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
169  * @words: UUID and (partial) sequence number
170  * @expiry: Time after which the packet should be delivered irrespective of
171  *            event arrival.
172  * @state: The state of the packet - whether it is ready for processing or
173  *         whether that is of no interest.
174  */
175 struct efx_ptp_match {
176 	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
177 	unsigned long expiry;
178 	enum ptp_packet_state state;
179 };
180 
181 /**
182  * struct efx_ptp_event_rx - A PTP receive event (from MC)
183  * @seq0: First part of (PTP) UUID
184  * @seq1: Second part of (PTP) UUID and sequence number
185  * @hwtimestamp: Event timestamp
186  */
187 struct efx_ptp_event_rx {
188 	struct list_head link;
189 	u32 seq0;
190 	u32 seq1;
191 	ktime_t hwtimestamp;
192 	unsigned long expiry;
193 };
194 
195 /**
196  * struct efx_ptp_timeset - Synchronisation between host and MC
197  * @host_start: Host time immediately before hardware timestamp taken
198  * @seconds: Hardware timestamp, seconds
199  * @nanoseconds: Hardware timestamp, nanoseconds
200  * @host_end: Host time immediately after hardware timestamp taken
201  * @waitns: Number of nanoseconds between hardware timestamp being read and
202  *          host end time being seen
203  * @window: Difference of host_end and host_start
204  * @valid: Whether this timeset is valid
205  */
206 struct efx_ptp_timeset {
207 	u32 host_start;
208 	u32 seconds;
209 	u32 nanoseconds;
210 	u32 host_end;
211 	u32 waitns;
212 	u32 window;	/* Derived: end - start, allowing for wrap */
213 };
214 
215 /**
216  * struct efx_ptp_data - Precision Time Protocol (PTP) state
217  * @channel: The PTP channel
218  * @rxq: Receive queue (awaiting timestamps)
219  * @txq: Transmit queue
220  * @evt_list: List of MC receive events awaiting packets
221  * @evt_free_list: List of free events
222  * @evt_lock: Lock for manipulating evt_list and evt_free_list
223  * @rx_evts: Instantiated events (on evt_list and evt_free_list)
224  * @workwq: Work queue for processing pending PTP operations
225  * @work: Work task
226  * @reset_required: A serious error has occurred and the PTP task needs to be
227  *                  reset (disable, enable).
228  * @rxfilter_event: Receive filter when operating
229  * @rxfilter_general: Receive filter when operating
230  * @config: Current timestamp configuration
231  * @enabled: PTP operation enabled
232  * @mode: Mode in which PTP operating (PTP version)
233  * @evt_frags: Partly assembled PTP events
234  * @evt_frag_idx: Current fragment number
235  * @evt_code: Last event code
236  * @start: Address at which MC indicates ready for synchronisation
237  * @host_time_pps: Host time at last PPS
238  * @last_sync_ns: Last number of nanoseconds between readings when synchronising
239  * @base_sync_ns: Number of nanoseconds for last synchronisation.
240  * @base_sync_valid: Whether base_sync_time is valid.
241  * @current_adjfreq: Current ppb adjustment.
242  * @phc_clock: Pointer to registered phc device
243  * @phc_clock_info: Registration structure for phc device
244  * @pps_work: pps work task for handling pps events
245  * @pps_workwq: pps work queue
246  * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
247  * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
248  *         allocations in main data path).
249  * @debug_ptp_dir: PTP debugfs directory
250  * @missed_rx_sync: Number of packets received without syncrhonisation.
251  * @good_syncs: Number of successful synchronisations.
252  * @no_time_syncs: Number of synchronisations with no good times.
253  * @bad_sync_durations: Number of synchronisations with bad durations.
254  * @bad_syncs: Number of failed synchronisations.
255  * @last_sync_time: Number of nanoseconds for last synchronisation.
256  * @sync_timeouts: Number of synchronisation timeouts
257  * @fast_syncs: Number of synchronisations requiring short delay
258  * @min_sync_delta: Minimum time between event and synchronisation
259  * @max_sync_delta: Maximum time between event and synchronisation
260  * @average_sync_delta: Average time between event and synchronisation.
261  *                      Modified moving average.
262  * @last_sync_delta: Last time between event and synchronisation
263  * @mc_stats: Context value for MC statistics
264  * @timeset: Last set of synchronisation statistics.
265  */
266 struct efx_ptp_data {
267 	struct efx_channel *channel;
268 	struct sk_buff_head rxq;
269 	struct sk_buff_head txq;
270 	struct list_head evt_list;
271 	struct list_head evt_free_list;
272 	spinlock_t evt_lock;
273 	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
274 	struct workqueue_struct *workwq;
275 	struct work_struct work;
276 	bool reset_required;
277 	u32 rxfilter_event;
278 	u32 rxfilter_general;
279 	bool rxfilter_installed;
280 	struct hwtstamp_config config;
281 	bool enabled;
282 	unsigned int mode;
283 	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
284 	int evt_frag_idx;
285 	int evt_code;
286 	struct efx_buffer start;
287 	struct pps_event_time host_time_pps;
288 	unsigned last_sync_ns;
289 	unsigned base_sync_ns;
290 	bool base_sync_valid;
291 	s64 current_adjfreq;
292 	struct ptp_clock *phc_clock;
293 	struct ptp_clock_info phc_clock_info;
294 	struct work_struct pps_work;
295 	struct workqueue_struct *pps_workwq;
296 	bool nic_ts_enabled;
297 	MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
298 	struct efx_ptp_timeset
299 	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
300 };
301 
302 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
303 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
304 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
305 static int efx_phc_settime(struct ptp_clock_info *ptp,
306 			   const struct timespec *e_ts);
307 static int efx_phc_enable(struct ptp_clock_info *ptp,
308 			  struct ptp_clock_request *request, int on);
309 
310 /* Enable MCDI PTP support. */
311 static int efx_ptp_enable(struct efx_nic *efx)
312 {
313 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
314 
315 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
316 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
317 	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
318 		       efx->ptp_data->channel->channel);
319 	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
320 
321 	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
322 			    NULL, 0, NULL);
323 }
324 
325 /* Disable MCDI PTP support.
326  *
327  * Note that this function should never rely on the presence of ptp_data -
328  * may be called before that exists.
329  */
330 static int efx_ptp_disable(struct efx_nic *efx)
331 {
332 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
333 
334 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
335 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
336 	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
337 			    NULL, 0, NULL);
338 }
339 
340 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
341 {
342 	struct sk_buff *skb;
343 
344 	while ((skb = skb_dequeue(q))) {
345 		local_bh_disable();
346 		netif_receive_skb(skb);
347 		local_bh_enable();
348 	}
349 }
350 
351 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
352 {
353 	netif_err(efx, drv, efx->net_dev,
354 		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
355 		  "vector. PTP disabled\n");
356 }
357 
358 /* Repeatedly send the host time to the MC which will capture the hardware
359  * time.
360  */
361 static void efx_ptp_send_times(struct efx_nic *efx,
362 			       struct pps_event_time *last_time)
363 {
364 	struct pps_event_time now;
365 	struct timespec limit;
366 	struct efx_ptp_data *ptp = efx->ptp_data;
367 	struct timespec start;
368 	int *mc_running = ptp->start.addr;
369 
370 	pps_get_ts(&now);
371 	start = now.ts_real;
372 	limit = now.ts_real;
373 	timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
374 
375 	/* Write host time for specified period or until MC is done */
376 	while ((timespec_compare(&now.ts_real, &limit) < 0) &&
377 	       ACCESS_ONCE(*mc_running)) {
378 		struct timespec update_time;
379 		unsigned int host_time;
380 
381 		/* Don't update continuously to avoid saturating the PCIe bus */
382 		update_time = now.ts_real;
383 		timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
384 		do {
385 			pps_get_ts(&now);
386 		} while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
387 			 ACCESS_ONCE(*mc_running));
388 
389 		/* Synchronise NIC with single word of time only */
390 		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
391 			     now.ts_real.tv_nsec);
392 		/* Update host time in NIC memory */
393 		efx->type->ptp_write_host_time(efx, host_time);
394 	}
395 	*last_time = now;
396 }
397 
398 /* Read a timeset from the MC's results and partial process. */
399 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
400 				 struct efx_ptp_timeset *timeset)
401 {
402 	unsigned start_ns, end_ns;
403 
404 	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
405 	timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
406 	timeset->nanoseconds = MCDI_DWORD(data,
407 					 PTP_OUT_SYNCHRONIZE_NANOSECONDS);
408 	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
409 	timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
410 
411 	/* Ignore seconds */
412 	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
413 	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
414 	/* Allow for rollover */
415 	if (end_ns < start_ns)
416 		end_ns += NSEC_PER_SEC;
417 	/* Determine duration of operation */
418 	timeset->window = end_ns - start_ns;
419 }
420 
421 /* Process times received from MC.
422  *
423  * Extract times from returned results, and establish the minimum value
424  * seen.  The minimum value represents the "best" possible time and events
425  * too much greater than this are rejected - the machine is, perhaps, too
426  * busy. A number of readings are taken so that, hopefully, at least one good
427  * synchronisation will be seen in the results.
428  */
429 static int
430 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
431 		      size_t response_length,
432 		      const struct pps_event_time *last_time)
433 {
434 	unsigned number_readings =
435 		MCDI_VAR_ARRAY_LEN(response_length,
436 				   PTP_OUT_SYNCHRONIZE_TIMESET);
437 	unsigned i;
438 	unsigned total;
439 	unsigned ngood = 0;
440 	unsigned last_good = 0;
441 	struct efx_ptp_data *ptp = efx->ptp_data;
442 	u32 last_sec;
443 	u32 start_sec;
444 	struct timespec delta;
445 
446 	if (number_readings == 0)
447 		return -EAGAIN;
448 
449 	/* Read the set of results and increment stats for any results that
450 	 * appera to be erroneous.
451 	 */
452 	for (i = 0; i < number_readings; i++) {
453 		efx_ptp_read_timeset(
454 			MCDI_ARRAY_STRUCT_PTR(synch_buf,
455 					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
456 			&ptp->timeset[i]);
457 	}
458 
459 	/* Find the last good host-MC synchronization result. The MC times
460 	 * when it finishes reading the host time so the corrected window time
461 	 * should be fairly constant for a given platform.
462 	 */
463 	total = 0;
464 	for (i = 0; i < number_readings; i++)
465 		if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
466 			unsigned win;
467 
468 			win = ptp->timeset[i].window - ptp->timeset[i].waitns;
469 			if (win >= MIN_SYNCHRONISATION_NS &&
470 			    win < MAX_SYNCHRONISATION_NS) {
471 				total += ptp->timeset[i].window;
472 				ngood++;
473 				last_good = i;
474 			}
475 		}
476 
477 	if (ngood == 0) {
478 		netif_warn(efx, drv, efx->net_dev,
479 			   "PTP no suitable synchronisations %dns\n",
480 			   ptp->base_sync_ns);
481 		return -EAGAIN;
482 	}
483 
484 	/* Average minimum this synchronisation */
485 	ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
486 	if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
487 		ptp->base_sync_valid = true;
488 		ptp->base_sync_ns = ptp->last_sync_ns;
489 	}
490 
491 	/* Calculate delay from actual PPS to last_time */
492 	delta.tv_nsec =
493 		ptp->timeset[last_good].nanoseconds +
494 		last_time->ts_real.tv_nsec -
495 		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
496 
497 	/* It is possible that the seconds rolled over between taking
498 	 * the start reading and the last value written by the host.  The
499 	 * timescales are such that a gap of more than one second is never
500 	 * expected.
501 	 */
502 	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
503 	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
504 	if (start_sec != last_sec) {
505 		if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
506 			netif_warn(efx, hw, efx->net_dev,
507 				   "PTP bad synchronisation seconds\n");
508 			return -EAGAIN;
509 		} else {
510 			delta.tv_sec = 1;
511 		}
512 	} else {
513 		delta.tv_sec = 0;
514 	}
515 
516 	ptp->host_time_pps = *last_time;
517 	pps_sub_ts(&ptp->host_time_pps, delta);
518 
519 	return 0;
520 }
521 
522 /* Synchronize times between the host and the MC */
523 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
524 {
525 	struct efx_ptp_data *ptp = efx->ptp_data;
526 	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
527 	size_t response_length;
528 	int rc;
529 	unsigned long timeout;
530 	struct pps_event_time last_time = {};
531 	unsigned int loops = 0;
532 	int *start = ptp->start.addr;
533 
534 	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
535 	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
536 	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
537 		       num_readings);
538 	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
539 		       ptp->start.dma_addr);
540 
541 	/* Clear flag that signals MC ready */
542 	ACCESS_ONCE(*start) = 0;
543 	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
544 				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
545 	EFX_BUG_ON_PARANOID(rc);
546 
547 	/* Wait for start from MCDI (or timeout) */
548 	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
549 	while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
550 		udelay(20);	/* Usually start MCDI execution quickly */
551 		loops++;
552 	}
553 
554 	if (ACCESS_ONCE(*start))
555 		efx_ptp_send_times(efx, &last_time);
556 
557 	/* Collect results */
558 	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
559 				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
560 				 synch_buf, sizeof(synch_buf),
561 				 &response_length);
562 	if (rc == 0)
563 		rc = efx_ptp_process_times(efx, synch_buf, response_length,
564 					   &last_time);
565 
566 	return rc;
567 }
568 
569 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
570 static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
571 {
572 	struct efx_ptp_data *ptp_data = efx->ptp_data;
573 	struct skb_shared_hwtstamps timestamps;
574 	int rc = -EIO;
575 	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
576 	size_t len;
577 
578 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
579 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
580 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
581 	if (skb_shinfo(skb)->nr_frags != 0) {
582 		rc = skb_linearize(skb);
583 		if (rc != 0)
584 			goto fail;
585 	}
586 
587 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
588 		rc = skb_checksum_help(skb);
589 		if (rc != 0)
590 			goto fail;
591 	}
592 	skb_copy_from_linear_data(skb,
593 				  MCDI_PTR(ptp_data->txbuf,
594 					   PTP_IN_TRANSMIT_PACKET),
595 				  skb->len);
596 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
597 			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
598 			  txtime, sizeof(txtime), &len);
599 	if (rc != 0)
600 		goto fail;
601 
602 	memset(&timestamps, 0, sizeof(timestamps));
603 	timestamps.hwtstamp = ktime_set(
604 		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
605 		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
606 
607 	skb_tstamp_tx(skb, &timestamps);
608 
609 	rc = 0;
610 
611 fail:
612 	dev_kfree_skb(skb);
613 
614 	return rc;
615 }
616 
617 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
618 {
619 	struct efx_ptp_data *ptp = efx->ptp_data;
620 	struct list_head *cursor;
621 	struct list_head *next;
622 
623 	/* Drop time-expired events */
624 	spin_lock_bh(&ptp->evt_lock);
625 	if (!list_empty(&ptp->evt_list)) {
626 		list_for_each_safe(cursor, next, &ptp->evt_list) {
627 			struct efx_ptp_event_rx *evt;
628 
629 			evt = list_entry(cursor, struct efx_ptp_event_rx,
630 					 link);
631 			if (time_after(jiffies, evt->expiry)) {
632 				list_move(&evt->link, &ptp->evt_free_list);
633 				netif_warn(efx, hw, efx->net_dev,
634 					   "PTP rx event dropped\n");
635 			}
636 		}
637 	}
638 	spin_unlock_bh(&ptp->evt_lock);
639 }
640 
641 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
642 					      struct sk_buff *skb)
643 {
644 	struct efx_ptp_data *ptp = efx->ptp_data;
645 	bool evts_waiting;
646 	struct list_head *cursor;
647 	struct list_head *next;
648 	struct efx_ptp_match *match;
649 	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
650 
651 	spin_lock_bh(&ptp->evt_lock);
652 	evts_waiting = !list_empty(&ptp->evt_list);
653 	spin_unlock_bh(&ptp->evt_lock);
654 
655 	if (!evts_waiting)
656 		return PTP_PACKET_STATE_UNMATCHED;
657 
658 	match = (struct efx_ptp_match *)skb->cb;
659 	/* Look for a matching timestamp in the event queue */
660 	spin_lock_bh(&ptp->evt_lock);
661 	list_for_each_safe(cursor, next, &ptp->evt_list) {
662 		struct efx_ptp_event_rx *evt;
663 
664 		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
665 		if ((evt->seq0 == match->words[0]) &&
666 		    (evt->seq1 == match->words[1])) {
667 			struct skb_shared_hwtstamps *timestamps;
668 
669 			/* Match - add in hardware timestamp */
670 			timestamps = skb_hwtstamps(skb);
671 			timestamps->hwtstamp = evt->hwtimestamp;
672 
673 			match->state = PTP_PACKET_STATE_MATCHED;
674 			rc = PTP_PACKET_STATE_MATCHED;
675 			list_move(&evt->link, &ptp->evt_free_list);
676 			break;
677 		}
678 	}
679 	spin_unlock_bh(&ptp->evt_lock);
680 
681 	return rc;
682 }
683 
684 /* Process any queued receive events and corresponding packets
685  *
686  * q is returned with all the packets that are ready for delivery.
687  * true is returned if at least one of those packets requires
688  * synchronisation.
689  */
690 static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
691 {
692 	struct efx_ptp_data *ptp = efx->ptp_data;
693 	bool rc = false;
694 	struct sk_buff *skb;
695 
696 	while ((skb = skb_dequeue(&ptp->rxq))) {
697 		struct efx_ptp_match *match;
698 
699 		match = (struct efx_ptp_match *)skb->cb;
700 		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
701 			__skb_queue_tail(q, skb);
702 		} else if (efx_ptp_match_rx(efx, skb) ==
703 			   PTP_PACKET_STATE_MATCHED) {
704 			rc = true;
705 			__skb_queue_tail(q, skb);
706 		} else if (time_after(jiffies, match->expiry)) {
707 			match->state = PTP_PACKET_STATE_TIMED_OUT;
708 			netif_warn(efx, rx_err, efx->net_dev,
709 				   "PTP packet - no timestamp seen\n");
710 			__skb_queue_tail(q, skb);
711 		} else {
712 			/* Replace unprocessed entry and stop */
713 			skb_queue_head(&ptp->rxq, skb);
714 			break;
715 		}
716 	}
717 
718 	return rc;
719 }
720 
721 /* Complete processing of a received packet */
722 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
723 {
724 	local_bh_disable();
725 	netif_receive_skb(skb);
726 	local_bh_enable();
727 }
728 
729 static int efx_ptp_start(struct efx_nic *efx)
730 {
731 	struct efx_ptp_data *ptp = efx->ptp_data;
732 	struct efx_filter_spec rxfilter;
733 	int rc;
734 
735 	ptp->reset_required = false;
736 
737 	/* Must filter on both event and general ports to ensure
738 	 * that there is no packet re-ordering.
739 	 */
740 	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
741 			   efx_rx_queue_index(
742 				   efx_channel_get_rx_queue(ptp->channel)));
743 	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
744 				       htonl(PTP_ADDRESS),
745 				       htons(PTP_EVENT_PORT));
746 	if (rc != 0)
747 		return rc;
748 
749 	rc = efx_filter_insert_filter(efx, &rxfilter, true);
750 	if (rc < 0)
751 		return rc;
752 	ptp->rxfilter_event = rc;
753 
754 	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
755 			   efx_rx_queue_index(
756 				   efx_channel_get_rx_queue(ptp->channel)));
757 	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
758 				       htonl(PTP_ADDRESS),
759 				       htons(PTP_GENERAL_PORT));
760 	if (rc != 0)
761 		goto fail;
762 
763 	rc = efx_filter_insert_filter(efx, &rxfilter, true);
764 	if (rc < 0)
765 		goto fail;
766 	ptp->rxfilter_general = rc;
767 
768 	rc = efx_ptp_enable(efx);
769 	if (rc != 0)
770 		goto fail2;
771 
772 	ptp->evt_frag_idx = 0;
773 	ptp->current_adjfreq = 0;
774 	ptp->rxfilter_installed = true;
775 
776 	return 0;
777 
778 fail2:
779 	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
780 				  ptp->rxfilter_general);
781 fail:
782 	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
783 				  ptp->rxfilter_event);
784 
785 	return rc;
786 }
787 
788 static int efx_ptp_stop(struct efx_nic *efx)
789 {
790 	struct efx_ptp_data *ptp = efx->ptp_data;
791 	int rc = efx_ptp_disable(efx);
792 	struct list_head *cursor;
793 	struct list_head *next;
794 
795 	if (ptp->rxfilter_installed) {
796 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
797 					  ptp->rxfilter_general);
798 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
799 					  ptp->rxfilter_event);
800 		ptp->rxfilter_installed = false;
801 	}
802 
803 	/* Make sure RX packets are really delivered */
804 	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
805 	skb_queue_purge(&efx->ptp_data->txq);
806 
807 	/* Drop any pending receive events */
808 	spin_lock_bh(&efx->ptp_data->evt_lock);
809 	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
810 		list_move(cursor, &efx->ptp_data->evt_free_list);
811 	}
812 	spin_unlock_bh(&efx->ptp_data->evt_lock);
813 
814 	return rc;
815 }
816 
817 static void efx_ptp_pps_worker(struct work_struct *work)
818 {
819 	struct efx_ptp_data *ptp =
820 		container_of(work, struct efx_ptp_data, pps_work);
821 	struct efx_nic *efx = ptp->channel->efx;
822 	struct ptp_clock_event ptp_evt;
823 
824 	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
825 		return;
826 
827 	ptp_evt.type = PTP_CLOCK_PPSUSR;
828 	ptp_evt.pps_times = ptp->host_time_pps;
829 	ptp_clock_event(ptp->phc_clock, &ptp_evt);
830 }
831 
832 /* Process any pending transmissions and timestamp any received packets.
833  */
834 static void efx_ptp_worker(struct work_struct *work)
835 {
836 	struct efx_ptp_data *ptp_data =
837 		container_of(work, struct efx_ptp_data, work);
838 	struct efx_nic *efx = ptp_data->channel->efx;
839 	struct sk_buff *skb;
840 	struct sk_buff_head tempq;
841 
842 	if (ptp_data->reset_required) {
843 		efx_ptp_stop(efx);
844 		efx_ptp_start(efx);
845 		return;
846 	}
847 
848 	efx_ptp_drop_time_expired_events(efx);
849 
850 	__skb_queue_head_init(&tempq);
851 	if (efx_ptp_process_events(efx, &tempq) ||
852 	    !skb_queue_empty(&ptp_data->txq)) {
853 
854 		while ((skb = skb_dequeue(&ptp_data->txq)))
855 			efx_ptp_xmit_skb(efx, skb);
856 	}
857 
858 	while ((skb = __skb_dequeue(&tempq)))
859 		efx_ptp_process_rx(efx, skb);
860 }
861 
862 /* Initialise PTP channel and state.
863  *
864  * Setting core_index to zero causes the queue to be initialised and doesn't
865  * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
866  */
867 static int efx_ptp_probe_channel(struct efx_channel *channel)
868 {
869 	struct efx_nic *efx = channel->efx;
870 	struct efx_ptp_data *ptp;
871 	int rc = 0;
872 	unsigned int pos;
873 
874 	channel->irq_moderation = 0;
875 	channel->rx_queue.core_index = 0;
876 
877 	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
878 	efx->ptp_data = ptp;
879 	if (!efx->ptp_data)
880 		return -ENOMEM;
881 
882 	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
883 	if (rc != 0)
884 		goto fail1;
885 
886 	ptp->channel = channel;
887 	skb_queue_head_init(&ptp->rxq);
888 	skb_queue_head_init(&ptp->txq);
889 	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
890 	if (!ptp->workwq) {
891 		rc = -ENOMEM;
892 		goto fail2;
893 	}
894 
895 	INIT_WORK(&ptp->work, efx_ptp_worker);
896 	ptp->config.flags = 0;
897 	ptp->config.tx_type = HWTSTAMP_TX_OFF;
898 	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
899 	INIT_LIST_HEAD(&ptp->evt_list);
900 	INIT_LIST_HEAD(&ptp->evt_free_list);
901 	spin_lock_init(&ptp->evt_lock);
902 	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
903 		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
904 
905 	ptp->phc_clock_info.owner = THIS_MODULE;
906 	snprintf(ptp->phc_clock_info.name,
907 		 sizeof(ptp->phc_clock_info.name),
908 		 "%pm", efx->net_dev->perm_addr);
909 	ptp->phc_clock_info.max_adj = MAX_PPB;
910 	ptp->phc_clock_info.n_alarm = 0;
911 	ptp->phc_clock_info.n_ext_ts = 0;
912 	ptp->phc_clock_info.n_per_out = 0;
913 	ptp->phc_clock_info.pps = 1;
914 	ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
915 	ptp->phc_clock_info.adjtime = efx_phc_adjtime;
916 	ptp->phc_clock_info.gettime = efx_phc_gettime;
917 	ptp->phc_clock_info.settime = efx_phc_settime;
918 	ptp->phc_clock_info.enable = efx_phc_enable;
919 
920 	ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
921 					    &efx->pci_dev->dev);
922 	if (IS_ERR(ptp->phc_clock)) {
923 		rc = PTR_ERR(ptp->phc_clock);
924 		goto fail3;
925 	}
926 
927 	INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
928 	ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
929 	if (!ptp->pps_workwq) {
930 		rc = -ENOMEM;
931 		goto fail4;
932 	}
933 	ptp->nic_ts_enabled = false;
934 
935 	return 0;
936 fail4:
937 	ptp_clock_unregister(efx->ptp_data->phc_clock);
938 
939 fail3:
940 	destroy_workqueue(efx->ptp_data->workwq);
941 
942 fail2:
943 	efx_nic_free_buffer(efx, &ptp->start);
944 
945 fail1:
946 	kfree(efx->ptp_data);
947 	efx->ptp_data = NULL;
948 
949 	return rc;
950 }
951 
952 static void efx_ptp_remove_channel(struct efx_channel *channel)
953 {
954 	struct efx_nic *efx = channel->efx;
955 
956 	if (!efx->ptp_data)
957 		return;
958 
959 	(void)efx_ptp_disable(channel->efx);
960 
961 	cancel_work_sync(&efx->ptp_data->work);
962 	cancel_work_sync(&efx->ptp_data->pps_work);
963 
964 	skb_queue_purge(&efx->ptp_data->rxq);
965 	skb_queue_purge(&efx->ptp_data->txq);
966 
967 	ptp_clock_unregister(efx->ptp_data->phc_clock);
968 
969 	destroy_workqueue(efx->ptp_data->workwq);
970 	destroy_workqueue(efx->ptp_data->pps_workwq);
971 
972 	efx_nic_free_buffer(efx, &efx->ptp_data->start);
973 	kfree(efx->ptp_data);
974 }
975 
976 static void efx_ptp_get_channel_name(struct efx_channel *channel,
977 				     char *buf, size_t len)
978 {
979 	snprintf(buf, len, "%s-ptp", channel->efx->name);
980 }
981 
982 /* Determine whether this packet should be processed by the PTP module
983  * or transmitted conventionally.
984  */
985 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
986 {
987 	return efx->ptp_data &&
988 		efx->ptp_data->enabled &&
989 		skb->len >= PTP_MIN_LENGTH &&
990 		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
991 		likely(skb->protocol == htons(ETH_P_IP)) &&
992 		ip_hdr(skb)->protocol == IPPROTO_UDP &&
993 		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
994 }
995 
996 /* Receive a PTP packet.  Packets are queued until the arrival of
997  * the receive timestamp from the MC - this will probably occur after the
998  * packet arrival because of the processing in the MC.
999  */
1000 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1001 {
1002 	struct efx_nic *efx = channel->efx;
1003 	struct efx_ptp_data *ptp = efx->ptp_data;
1004 	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1005 	u8 *match_data_012, *match_data_345;
1006 	unsigned int version;
1007 
1008 	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1009 
1010 	/* Correct version? */
1011 	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1012 		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1013 			return false;
1014 		}
1015 		version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
1016 		if (version != PTP_VERSION_V1) {
1017 			return false;
1018 		}
1019 
1020 		/* PTP V1 uses all six bytes of the UUID to match the packet
1021 		 * to the timestamp
1022 		 */
1023 		match_data_012 = skb->data + PTP_V1_UUID_OFFSET;
1024 		match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3;
1025 	} else {
1026 		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1027 			return false;
1028 		}
1029 		version = skb->data[PTP_V2_VERSION_OFFSET];
1030 		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1031 			return false;
1032 		}
1033 
1034 		/* The original V2 implementation uses bytes 2-7 of
1035 		 * the UUID to match the packet to the timestamp. This
1036 		 * discards two of the bytes of the MAC address used
1037 		 * to create the UUID (SF bug 33070).  The PTP V2
1038 		 * enhanced mode fixes this issue and uses bytes 0-2
1039 		 * and byte 5-7 of the UUID.
1040 		 */
1041 		match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5;
1042 		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1043 			match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2;
1044 		} else {
1045 			match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0;
1046 			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1047 		}
1048 	}
1049 
1050 	/* Does this packet require timestamping? */
1051 	if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1052 		struct skb_shared_hwtstamps *timestamps;
1053 
1054 		match->state = PTP_PACKET_STATE_UNMATCHED;
1055 
1056 		/* Clear all timestamps held: filled in later */
1057 		timestamps = skb_hwtstamps(skb);
1058 		memset(timestamps, 0, sizeof(*timestamps));
1059 
1060 		/* We expect the sequence number to be in the same position in
1061 		 * the packet for PTP V1 and V2
1062 		 */
1063 		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1064 		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1065 
1066 		/* Extract UUID/Sequence information */
1067 		match->words[0] = (match_data_012[0]         |
1068 				   (match_data_012[1] << 8)  |
1069 				   (match_data_012[2] << 16) |
1070 				   (match_data_345[0] << 24));
1071 		match->words[1] = (match_data_345[1]         |
1072 				   (match_data_345[2] << 8)  |
1073 				   (skb->data[PTP_V1_SEQUENCE_OFFSET +
1074 					      PTP_V1_SEQUENCE_LENGTH - 1] <<
1075 				    16));
1076 	} else {
1077 		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1078 	}
1079 
1080 	skb_queue_tail(&ptp->rxq, skb);
1081 	queue_work(ptp->workwq, &ptp->work);
1082 
1083 	return true;
1084 }
1085 
1086 /* Transmit a PTP packet.  This has to be transmitted by the MC
1087  * itself, through an MCDI call.  MCDI calls aren't permitted
1088  * in the transmit path so defer the actual transmission to a suitable worker.
1089  */
1090 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1091 {
1092 	struct efx_ptp_data *ptp = efx->ptp_data;
1093 
1094 	skb_queue_tail(&ptp->txq, skb);
1095 
1096 	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1097 	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1098 		efx_xmit_hwtstamp_pending(skb);
1099 	queue_work(ptp->workwq, &ptp->work);
1100 
1101 	return NETDEV_TX_OK;
1102 }
1103 
1104 static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1105 			       unsigned int new_mode)
1106 {
1107 	if ((enable_wanted != efx->ptp_data->enabled) ||
1108 	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1109 		int rc;
1110 
1111 		if (enable_wanted) {
1112 			/* Change of mode requires disable */
1113 			if (efx->ptp_data->enabled &&
1114 			    (efx->ptp_data->mode != new_mode)) {
1115 				efx->ptp_data->enabled = false;
1116 				rc = efx_ptp_stop(efx);
1117 				if (rc != 0)
1118 					return rc;
1119 			}
1120 
1121 			/* Set new operating mode and establish
1122 			 * baseline synchronisation, which must
1123 			 * succeed.
1124 			 */
1125 			efx->ptp_data->mode = new_mode;
1126 			rc = efx_ptp_start(efx);
1127 			if (rc == 0) {
1128 				rc = efx_ptp_synchronize(efx,
1129 							 PTP_SYNC_ATTEMPTS * 2);
1130 				if (rc != 0)
1131 					efx_ptp_stop(efx);
1132 			}
1133 		} else {
1134 			rc = efx_ptp_stop(efx);
1135 		}
1136 
1137 		if (rc != 0)
1138 			return rc;
1139 
1140 		efx->ptp_data->enabled = enable_wanted;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1147 {
1148 	bool enable_wanted = false;
1149 	unsigned int new_mode;
1150 	int rc;
1151 
1152 	if (init->flags)
1153 		return -EINVAL;
1154 
1155 	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1156 	    (init->tx_type != HWTSTAMP_TX_ON))
1157 		return -ERANGE;
1158 
1159 	new_mode = efx->ptp_data->mode;
1160 	/* Determine whether any PTP HW operations are required */
1161 	switch (init->rx_filter) {
1162 	case HWTSTAMP_FILTER_NONE:
1163 		break;
1164 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1165 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1166 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1167 		init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1168 		new_mode = MC_CMD_PTP_MODE_V1;
1169 		enable_wanted = true;
1170 		break;
1171 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1172 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1173 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1174 	/* Although these three are accepted only IPV4 packets will be
1175 	 * timestamped
1176 	 */
1177 		init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
1178 		new_mode = MC_CMD_PTP_MODE_V2_ENHANCED;
1179 		enable_wanted = true;
1180 		break;
1181 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1182 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1183 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1184 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1185 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1186 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1187 		/* Non-IP + IPv6 timestamping not supported */
1188 		return -ERANGE;
1189 		break;
1190 	default:
1191 		return -ERANGE;
1192 	}
1193 
1194 	if (init->tx_type != HWTSTAMP_TX_OFF)
1195 		enable_wanted = true;
1196 
1197 	/* Old versions of the firmware do not support the improved
1198 	 * UUID filtering option (SF bug 33070).  If the firmware does
1199 	 * not accept the enhanced mode, fall back to the standard PTP
1200 	 * v2 UUID filtering.
1201 	 */
1202 	rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
1203 	if ((rc != 0) && (new_mode == MC_CMD_PTP_MODE_V2_ENHANCED))
1204 		rc = efx_ptp_change_mode(efx, enable_wanted, MC_CMD_PTP_MODE_V2);
1205 	if (rc != 0)
1206 		return rc;
1207 
1208 	efx->ptp_data->config = *init;
1209 
1210 	return 0;
1211 }
1212 
1213 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1214 {
1215 	struct efx_ptp_data *ptp = efx->ptp_data;
1216 
1217 	if (!ptp)
1218 		return;
1219 
1220 	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1221 				     SOF_TIMESTAMPING_RX_HARDWARE |
1222 				     SOF_TIMESTAMPING_RAW_HARDWARE);
1223 	ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
1224 	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1225 	ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
1226 			       1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
1227 			       1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
1228 			       1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
1229 			       1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
1230 			       1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
1231 			       1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1232 }
1233 
1234 int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
1235 {
1236 	struct hwtstamp_config config;
1237 	int rc;
1238 
1239 	/* Not a PTP enabled port */
1240 	if (!efx->ptp_data)
1241 		return -EOPNOTSUPP;
1242 
1243 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1244 		return -EFAULT;
1245 
1246 	rc = efx_ptp_ts_init(efx, &config);
1247 	if (rc != 0)
1248 		return rc;
1249 
1250 	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1251 		? -EFAULT : 0;
1252 }
1253 
1254 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1255 {
1256 	struct efx_ptp_data *ptp = efx->ptp_data;
1257 
1258 	netif_err(efx, hw, efx->net_dev,
1259 		"PTP unexpected event length: got %d expected %d\n",
1260 		ptp->evt_frag_idx, expected_frag_len);
1261 	ptp->reset_required = true;
1262 	queue_work(ptp->workwq, &ptp->work);
1263 }
1264 
1265 /* Process a completed receive event.  Put it on the event queue and
1266  * start worker thread.  This is required because event and their
1267  * correspoding packets may come in either order.
1268  */
1269 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1270 {
1271 	struct efx_ptp_event_rx *evt = NULL;
1272 
1273 	if (ptp->evt_frag_idx != 3) {
1274 		ptp_event_failure(efx, 3);
1275 		return;
1276 	}
1277 
1278 	spin_lock_bh(&ptp->evt_lock);
1279 	if (!list_empty(&ptp->evt_free_list)) {
1280 		evt = list_first_entry(&ptp->evt_free_list,
1281 				       struct efx_ptp_event_rx, link);
1282 		list_del(&evt->link);
1283 
1284 		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1285 		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1286 					     MCDI_EVENT_SRC)        |
1287 			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
1288 					      MCDI_EVENT_SRC) << 8) |
1289 			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
1290 					      MCDI_EVENT_SRC) << 16));
1291 		evt->hwtimestamp = ktime_set(
1292 			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1293 			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
1294 		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1295 		list_add_tail(&evt->link, &ptp->evt_list);
1296 
1297 		queue_work(ptp->workwq, &ptp->work);
1298 	} else {
1299 		netif_err(efx, rx_err, efx->net_dev, "No free PTP event");
1300 	}
1301 	spin_unlock_bh(&ptp->evt_lock);
1302 }
1303 
1304 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1305 {
1306 	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1307 	if (ptp->evt_frag_idx != 1) {
1308 		ptp_event_failure(efx, 1);
1309 		return;
1310 	}
1311 
1312 	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1313 }
1314 
1315 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1316 {
1317 	if (ptp->nic_ts_enabled)
1318 		queue_work(ptp->pps_workwq, &ptp->pps_work);
1319 }
1320 
1321 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1322 {
1323 	struct efx_ptp_data *ptp = efx->ptp_data;
1324 	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1325 
1326 	if (!ptp->enabled)
1327 		return;
1328 
1329 	if (ptp->evt_frag_idx == 0) {
1330 		ptp->evt_code = code;
1331 	} else if (ptp->evt_code != code) {
1332 		netif_err(efx, hw, efx->net_dev,
1333 			  "PTP out of sequence event %d\n", code);
1334 		ptp->evt_frag_idx = 0;
1335 	}
1336 
1337 	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1338 	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1339 		/* Process resulting event */
1340 		switch (code) {
1341 		case MCDI_EVENT_CODE_PTP_RX:
1342 			ptp_event_rx(efx, ptp);
1343 			break;
1344 		case MCDI_EVENT_CODE_PTP_FAULT:
1345 			ptp_event_fault(efx, ptp);
1346 			break;
1347 		case MCDI_EVENT_CODE_PTP_PPS:
1348 			ptp_event_pps(efx, ptp);
1349 			break;
1350 		default:
1351 			netif_err(efx, hw, efx->net_dev,
1352 				  "PTP unknown event %d\n", code);
1353 			break;
1354 		}
1355 		ptp->evt_frag_idx = 0;
1356 	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1357 		netif_err(efx, hw, efx->net_dev,
1358 			  "PTP too many event fragments\n");
1359 		ptp->evt_frag_idx = 0;
1360 	}
1361 }
1362 
1363 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1364 {
1365 	struct efx_ptp_data *ptp_data = container_of(ptp,
1366 						     struct efx_ptp_data,
1367 						     phc_clock_info);
1368 	struct efx_nic *efx = ptp_data->channel->efx;
1369 	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
1370 	s64 adjustment_ns;
1371 	int rc;
1372 
1373 	if (delta > MAX_PPB)
1374 		delta = MAX_PPB;
1375 	else if (delta < -MAX_PPB)
1376 		delta = -MAX_PPB;
1377 
1378 	/* Convert ppb to fixed point ns. */
1379 	adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1380 			 (PPB_EXTRA_BITS + MAX_PPB_BITS));
1381 
1382 	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1383 	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
1384 	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
1385 	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1386 	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1387 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1388 			  NULL, 0, NULL);
1389 	if (rc != 0)
1390 		return rc;
1391 
1392 	ptp_data->current_adjfreq = delta;
1393 	return 0;
1394 }
1395 
1396 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1397 {
1398 	struct efx_ptp_data *ptp_data = container_of(ptp,
1399 						     struct efx_ptp_data,
1400 						     phc_clock_info);
1401 	struct efx_nic *efx = ptp_data->channel->efx;
1402 	struct timespec delta_ts = ns_to_timespec(delta);
1403 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
1404 
1405 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1406 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1407 	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, 0);
1408 	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
1409 	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
1410 	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1411 			    NULL, 0, NULL);
1412 }
1413 
1414 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1415 {
1416 	struct efx_ptp_data *ptp_data = container_of(ptp,
1417 						     struct efx_ptp_data,
1418 						     phc_clock_info);
1419 	struct efx_nic *efx = ptp_data->channel->efx;
1420 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
1421 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
1422 	int rc;
1423 
1424 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1425 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1426 
1427 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1428 			  outbuf, sizeof(outbuf), NULL);
1429 	if (rc != 0)
1430 		return rc;
1431 
1432 	ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
1433 	ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
1434 	return 0;
1435 }
1436 
1437 static int efx_phc_settime(struct ptp_clock_info *ptp,
1438 			   const struct timespec *e_ts)
1439 {
1440 	/* Get the current NIC time, efx_phc_gettime.
1441 	 * Subtract from the desired time to get the offset
1442 	 * call efx_phc_adjtime with the offset
1443 	 */
1444 	int rc;
1445 	struct timespec time_now;
1446 	struct timespec delta;
1447 
1448 	rc = efx_phc_gettime(ptp, &time_now);
1449 	if (rc != 0)
1450 		return rc;
1451 
1452 	delta = timespec_sub(*e_ts, time_now);
1453 
1454 	rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
1455 	if (rc != 0)
1456 		return rc;
1457 
1458 	return 0;
1459 }
1460 
1461 static int efx_phc_enable(struct ptp_clock_info *ptp,
1462 			  struct ptp_clock_request *request,
1463 			  int enable)
1464 {
1465 	struct efx_ptp_data *ptp_data = container_of(ptp,
1466 						     struct efx_ptp_data,
1467 						     phc_clock_info);
1468 	if (request->type != PTP_CLK_REQ_PPS)
1469 		return -EOPNOTSUPP;
1470 
1471 	ptp_data->nic_ts_enabled = !!enable;
1472 	return 0;
1473 }
1474 
1475 static const struct efx_channel_type efx_ptp_channel_type = {
1476 	.handle_no_channel	= efx_ptp_handle_no_channel,
1477 	.pre_probe		= efx_ptp_probe_channel,
1478 	.post_remove		= efx_ptp_remove_channel,
1479 	.get_name		= efx_ptp_get_channel_name,
1480 	/* no copy operation; there is no need to reallocate this channel */
1481 	.receive_skb		= efx_ptp_rx,
1482 	.keep_eventq		= false,
1483 };
1484 
1485 void efx_ptp_probe(struct efx_nic *efx)
1486 {
1487 	/* Check whether PTP is implemented on this NIC.  The DISABLE
1488 	 * operation will succeed if and only if it is implemented.
1489 	 */
1490 	if (efx_ptp_disable(efx) == 0)
1491 		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1492 			&efx_ptp_channel_type;
1493 }
1494