xref: /openbmc/linux/drivers/net/ethernet/sfc/ptp.c (revision ccc319dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2011-2013 Solarflare Communications Inc.
5  */
6 
7 /* Theory of operation:
8  *
9  * PTP support is assisted by firmware running on the MC, which provides
10  * the hardware timestamping capabilities.  Both transmitted and received
11  * PTP event packets are queued onto internal queues for subsequent processing;
12  * this is because the MC operations are relatively long and would block
13  * block NAPI/interrupt operation.
14  *
15  * Receive event processing:
16  *	The event contains the packet's UUID and sequence number, together
17  *	with the hardware timestamp.  The PTP receive packet queue is searched
18  *	for this UUID/sequence number and, if found, put on a pending queue.
19  *	Packets not matching are delivered without timestamps (MCDI events will
20  *	always arrive after the actual packet).
21  *	It is important for the operation of the PTP protocol that the ordering
22  *	of packets between the event and general port is maintained.
23  *
24  * Work queue processing:
25  *	If work waiting, synchronise host/hardware time
26  *
27  *	Transmit: send packet through MC, which returns the transmission time
28  *	that is converted to an appropriate timestamp.
29  *
30  *	Receive: the packet's reception time is converted to an appropriate
31  *	timestamp.
32  */
33 #include <linux/ip.h>
34 #include <linux/udp.h>
35 #include <linux/time.h>
36 #include <linux/ktime.h>
37 #include <linux/module.h>
38 #include <linux/pps_kernel.h>
39 #include <linux/ptp_clock_kernel.h>
40 #include "net_driver.h"
41 #include "efx.h"
42 #include "mcdi.h"
43 #include "mcdi_pcol.h"
44 #include "io.h"
45 #include "farch_regs.h"
46 #include "tx.h"
47 #include "nic.h" /* indirectly includes ptp.h */
48 #include "efx_channels.h"
49 
50 /* Maximum number of events expected to make up a PTP event */
51 #define	MAX_EVENT_FRAGS			3
52 
53 /* Maximum delay, ms, to begin synchronisation */
54 #define	MAX_SYNCHRONISE_WAIT_MS		2
55 
56 /* How long, at most, to spend synchronising */
57 #define	SYNCHRONISE_PERIOD_NS		250000
58 
59 /* How often to update the shared memory time */
60 #define	SYNCHRONISATION_GRANULARITY_NS	200
61 
62 /* Minimum permitted length of a (corrected) synchronisation time */
63 #define	DEFAULT_MIN_SYNCHRONISATION_NS	120
64 
65 /* Maximum permitted length of a (corrected) synchronisation time */
66 #define	MAX_SYNCHRONISATION_NS		1000
67 
68 /* How many (MC) receive events that can be queued */
69 #define	MAX_RECEIVE_EVENTS		8
70 
71 /* Length of (modified) moving average. */
72 #define	AVERAGE_LENGTH			16
73 
74 /* How long an unmatched event or packet can be held */
75 #define PKT_EVENT_LIFETIME_MS		10
76 
77 /* Offsets into PTP packet for identification.  These offsets are from the
78  * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
79  * PTP V2 permit the use of IPV4 options.
80  */
81 #define PTP_DPORT_OFFSET	22
82 
83 #define PTP_V1_VERSION_LENGTH	2
84 #define PTP_V1_VERSION_OFFSET	28
85 
86 #define PTP_V1_UUID_LENGTH	6
87 #define PTP_V1_UUID_OFFSET	50
88 
89 #define PTP_V1_SEQUENCE_LENGTH	2
90 #define PTP_V1_SEQUENCE_OFFSET	58
91 
92 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
93  * includes IP header.
94  */
95 #define	PTP_V1_MIN_LENGTH	64
96 
97 #define PTP_V2_VERSION_LENGTH	1
98 #define PTP_V2_VERSION_OFFSET	29
99 
100 #define PTP_V2_UUID_LENGTH	8
101 #define PTP_V2_UUID_OFFSET	48
102 
103 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
104  * the MC only captures the last six bytes of the clock identity. These values
105  * reflect those, not the ones used in the standard.  The standard permits
106  * mapping of V1 UUIDs to V2 UUIDs with these same values.
107  */
108 #define PTP_V2_MC_UUID_LENGTH	6
109 #define PTP_V2_MC_UUID_OFFSET	50
110 
111 #define PTP_V2_SEQUENCE_LENGTH	2
112 #define PTP_V2_SEQUENCE_OFFSET	58
113 
114 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
115  * includes IP header.
116  */
117 #define	PTP_V2_MIN_LENGTH	63
118 
119 #define	PTP_MIN_LENGTH		63
120 
121 #define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */
122 #define PTP_EVENT_PORT		319
123 #define PTP_GENERAL_PORT	320
124 
125 /* Annoyingly the format of the version numbers are different between
126  * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
127  */
128 #define	PTP_VERSION_V1		1
129 
130 #define	PTP_VERSION_V2		2
131 #define	PTP_VERSION_V2_MASK	0x0f
132 
133 enum ptp_packet_state {
134 	PTP_PACKET_STATE_UNMATCHED = 0,
135 	PTP_PACKET_STATE_MATCHED,
136 	PTP_PACKET_STATE_TIMED_OUT,
137 	PTP_PACKET_STATE_MATCH_UNWANTED
138 };
139 
140 /* NIC synchronised with single word of time only comprising
141  * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
142  */
143 #define	MC_NANOSECOND_BITS	30
144 #define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
145 #define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
146 
147 /* Maximum parts-per-billion adjustment that is acceptable */
148 #define MAX_PPB			1000000
149 
150 /* Precalculate scale word to avoid long long division at runtime */
151 /* This is equivalent to 2^66 / 10^9. */
152 #define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
153 
154 /* How much to shift down after scaling to convert to FP40 */
155 #define PPB_SHIFT_FP40		26
156 /* ... and FP44. */
157 #define PPB_SHIFT_FP44		22
158 
159 #define PTP_SYNC_ATTEMPTS	4
160 
161 /**
162  * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
163  * @words: UUID and (partial) sequence number
164  * @expiry: Time after which the packet should be delivered irrespective of
165  *            event arrival.
166  * @state: The state of the packet - whether it is ready for processing or
167  *         whether that is of no interest.
168  */
169 struct efx_ptp_match {
170 	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
171 	unsigned long expiry;
172 	enum ptp_packet_state state;
173 };
174 
175 /**
176  * struct efx_ptp_event_rx - A PTP receive event (from MC)
177  * @link: list of events
178  * @seq0: First part of (PTP) UUID
179  * @seq1: Second part of (PTP) UUID and sequence number
180  * @hwtimestamp: Event timestamp
181  * @expiry: Time which the packet arrived
182  */
183 struct efx_ptp_event_rx {
184 	struct list_head link;
185 	u32 seq0;
186 	u32 seq1;
187 	ktime_t hwtimestamp;
188 	unsigned long expiry;
189 };
190 
191 /**
192  * struct efx_ptp_timeset - Synchronisation between host and MC
193  * @host_start: Host time immediately before hardware timestamp taken
194  * @major: Hardware timestamp, major
195  * @minor: Hardware timestamp, minor
196  * @host_end: Host time immediately after hardware timestamp taken
197  * @wait: Number of NIC clock ticks between hardware timestamp being read and
198  *          host end time being seen
199  * @window: Difference of host_end and host_start
200  * @valid: Whether this timeset is valid
201  */
202 struct efx_ptp_timeset {
203 	u32 host_start;
204 	u32 major;
205 	u32 minor;
206 	u32 host_end;
207 	u32 wait;
208 	u32 window;	/* Derived: end - start, allowing for wrap */
209 };
210 
211 /**
212  * struct efx_ptp_data - Precision Time Protocol (PTP) state
213  * @efx: The NIC context
214  * @channel: The PTP channel (Siena only)
215  * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
216  *	separate events)
217  * @rxq: Receive SKB queue (awaiting timestamps)
218  * @txq: Transmit SKB queue
219  * @evt_list: List of MC receive events awaiting packets
220  * @evt_free_list: List of free events
221  * @evt_lock: Lock for manipulating evt_list and evt_free_list
222  * @rx_evts: Instantiated events (on evt_list and evt_free_list)
223  * @workwq: Work queue for processing pending PTP operations
224  * @work: Work task
225  * @reset_required: A serious error has occurred and the PTP task needs to be
226  *                  reset (disable, enable).
227  * @rxfilter_event: Receive filter when operating
228  * @rxfilter_general: Receive filter when operating
229  * @rxfilter_installed: Receive filter installed
230  * @config: Current timestamp configuration
231  * @enabled: PTP operation enabled
232  * @mode: Mode in which PTP operating (PTP version)
233  * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
234  * @nic_to_kernel_time: Function to convert from NIC to kernel time
235  * @nic_time: contains time details
236  * @nic_time.minor_max: Wrap point for NIC minor times
237  * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
238  * in packet prefix and last MCDI time sync event i.e. how much earlier than
239  * the last sync event time a packet timestamp can be.
240  * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
241  * in packet prefix and last MCDI time sync event i.e. how much later than
242  * the last sync event time a packet timestamp can be.
243  * @nic_time.sync_event_minor_shift: Shift required to make minor time from
244  * field in MCDI time sync event.
245  * @min_synchronisation_ns: Minimum acceptable corrected sync window
246  * @capabilities: Capabilities flags from the NIC
247  * @ts_corrections: contains corrections details
248  * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
249  *                         timestamps
250  * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
251  *                         timestamps
252  * @ts_corrections.pps_out: PPS output error (information only)
253  * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
254  * @ts_corrections.general_tx: Required driver correction of general packet
255  *                             transmit timestamps
256  * @ts_corrections.general_rx: Required driver correction of general packet
257  *                             receive timestamps
258  * @evt_frags: Partly assembled PTP events
259  * @evt_frag_idx: Current fragment number
260  * @evt_code: Last event code
261  * @start: Address at which MC indicates ready for synchronisation
262  * @host_time_pps: Host time at last PPS
263  * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
264  * frequency adjustment into a fixed point fractional nanosecond format.
265  * @current_adjfreq: Current ppb adjustment.
266  * @phc_clock: Pointer to registered phc device (if primary function)
267  * @phc_clock_info: Registration structure for phc device
268  * @pps_work: pps work task for handling pps events
269  * @pps_workwq: pps work queue
270  * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
271  * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
272  *         allocations in main data path).
273  * @good_syncs: Number of successful synchronisations.
274  * @fast_syncs: Number of synchronisations requiring short delay
275  * @bad_syncs: Number of failed synchronisations.
276  * @sync_timeouts: Number of synchronisation timeouts
277  * @no_time_syncs: Number of synchronisations with no good times.
278  * @invalid_sync_windows: Number of sync windows with bad durations.
279  * @undersize_sync_windows: Number of corrected sync windows that are too small
280  * @oversize_sync_windows: Number of corrected sync windows that are too large
281  * @rx_no_timestamp: Number of packets received without a timestamp.
282  * @timeset: Last set of synchronisation statistics.
283  * @xmit_skb: Transmit SKB function.
284  */
285 struct efx_ptp_data {
286 	struct efx_nic *efx;
287 	struct efx_channel *channel;
288 	bool rx_ts_inline;
289 	struct sk_buff_head rxq;
290 	struct sk_buff_head txq;
291 	struct list_head evt_list;
292 	struct list_head evt_free_list;
293 	spinlock_t evt_lock;
294 	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
295 	struct workqueue_struct *workwq;
296 	struct work_struct work;
297 	bool reset_required;
298 	u32 rxfilter_event;
299 	u32 rxfilter_general;
300 	bool rxfilter_installed;
301 	struct hwtstamp_config config;
302 	bool enabled;
303 	unsigned int mode;
304 	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
305 	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
306 				      s32 correction);
307 	struct {
308 		u32 minor_max;
309 		u32 sync_event_diff_min;
310 		u32 sync_event_diff_max;
311 		unsigned int sync_event_minor_shift;
312 	} nic_time;
313 	unsigned int min_synchronisation_ns;
314 	unsigned int capabilities;
315 	struct {
316 		s32 ptp_tx;
317 		s32 ptp_rx;
318 		s32 pps_out;
319 		s32 pps_in;
320 		s32 general_tx;
321 		s32 general_rx;
322 	} ts_corrections;
323 	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
324 	int evt_frag_idx;
325 	int evt_code;
326 	struct efx_buffer start;
327 	struct pps_event_time host_time_pps;
328 	unsigned int adjfreq_ppb_shift;
329 	s64 current_adjfreq;
330 	struct ptp_clock *phc_clock;
331 	struct ptp_clock_info phc_clock_info;
332 	struct work_struct pps_work;
333 	struct workqueue_struct *pps_workwq;
334 	bool nic_ts_enabled;
335 	efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
336 
337 	unsigned int good_syncs;
338 	unsigned int fast_syncs;
339 	unsigned int bad_syncs;
340 	unsigned int sync_timeouts;
341 	unsigned int no_time_syncs;
342 	unsigned int invalid_sync_windows;
343 	unsigned int undersize_sync_windows;
344 	unsigned int oversize_sync_windows;
345 	unsigned int rx_no_timestamp;
346 	struct efx_ptp_timeset
347 	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
348 	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
349 };
350 
351 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
352 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
353 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
354 static int efx_phc_settime(struct ptp_clock_info *ptp,
355 			   const struct timespec64 *e_ts);
356 static int efx_phc_enable(struct ptp_clock_info *ptp,
357 			  struct ptp_clock_request *request, int on);
358 
359 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
360 {
361 	return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
362 }
363 
364 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
365  * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
366  */
367 static bool efx_ptp_want_txqs(struct efx_channel *channel)
368 {
369 	return efx_ptp_use_mac_tx_timestamps(channel->efx);
370 }
371 
372 #define PTP_SW_STAT(ext_name, field_name)				\
373 	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
374 #define PTP_MC_STAT(ext_name, mcdi_name)				\
375 	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
376 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
377 	PTP_SW_STAT(ptp_good_syncs, good_syncs),
378 	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
379 	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
380 	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
381 	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
382 	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
383 	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
384 	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
385 	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
386 	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
387 	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
388 	PTP_MC_STAT(ptp_timestamp_packets, TS),
389 	PTP_MC_STAT(ptp_filter_matches, FM),
390 	PTP_MC_STAT(ptp_non_filter_matches, NFM),
391 };
392 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
393 static const unsigned long efx_ptp_stat_mask[] = {
394 	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
395 };
396 
397 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
398 {
399 	if (!efx->ptp_data)
400 		return 0;
401 
402 	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
403 				      efx_ptp_stat_mask, strings);
404 }
405 
406 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
407 {
408 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
409 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
410 	size_t i;
411 	int rc;
412 
413 	if (!efx->ptp_data)
414 		return 0;
415 
416 	/* Copy software statistics */
417 	for (i = 0; i < PTP_STAT_COUNT; i++) {
418 		if (efx_ptp_stat_desc[i].dma_width)
419 			continue;
420 		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
421 					     efx_ptp_stat_desc[i].offset);
422 	}
423 
424 	/* Fetch MC statistics.  We *must* fill in all statistics or
425 	 * risk leaking kernel memory to userland, so if the MCDI
426 	 * request fails we pretend we got zeroes.
427 	 */
428 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
429 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
430 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
431 			  outbuf, sizeof(outbuf), NULL);
432 	if (rc)
433 		memset(outbuf, 0, sizeof(outbuf));
434 	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
435 			     efx_ptp_stat_mask,
436 			     stats, _MCDI_PTR(outbuf, 0), false);
437 
438 	return PTP_STAT_COUNT;
439 }
440 
441 /* For Siena platforms NIC time is s and ns */
442 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
443 {
444 	struct timespec64 ts = ns_to_timespec64(ns);
445 	*nic_major = (u32)ts.tv_sec;
446 	*nic_minor = ts.tv_nsec;
447 }
448 
449 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
450 						s32 correction)
451 {
452 	ktime_t kt = ktime_set(nic_major, nic_minor);
453 	if (correction >= 0)
454 		kt = ktime_add_ns(kt, (u64)correction);
455 	else
456 		kt = ktime_sub_ns(kt, (u64)-correction);
457 	return kt;
458 }
459 
460 /* To convert from s27 format to ns we multiply then divide by a power of 2.
461  * For the conversion from ns to s27, the operation is also converted to a
462  * multiply and shift.
463  */
464 #define S27_TO_NS_SHIFT	(27)
465 #define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
466 #define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
467 #define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)
468 
469 /* For Huntington platforms NIC time is in seconds and fractions of a second
470  * where the minor register only uses 27 bits in units of 2^-27s.
471  */
472 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
473 {
474 	struct timespec64 ts = ns_to_timespec64(ns);
475 	u32 maj = (u32)ts.tv_sec;
476 	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
477 			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
478 
479 	/* The conversion can result in the minor value exceeding the maximum.
480 	 * In this case, round up to the next second.
481 	 */
482 	if (min >= S27_MINOR_MAX) {
483 		min -= S27_MINOR_MAX;
484 		maj++;
485 	}
486 
487 	*nic_major = maj;
488 	*nic_minor = min;
489 }
490 
491 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
492 {
493 	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
494 			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
495 	return ktime_set(nic_major, ns);
496 }
497 
498 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
499 					       s32 correction)
500 {
501 	/* Apply the correction and deal with carry */
502 	nic_minor += correction;
503 	if ((s32)nic_minor < 0) {
504 		nic_minor += S27_MINOR_MAX;
505 		nic_major--;
506 	} else if (nic_minor >= S27_MINOR_MAX) {
507 		nic_minor -= S27_MINOR_MAX;
508 		nic_major++;
509 	}
510 
511 	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
512 }
513 
514 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
515 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
516 {
517 	struct timespec64 ts = ns_to_timespec64(ns);
518 
519 	*nic_major = (u32)ts.tv_sec;
520 	*nic_minor = ts.tv_nsec * 4;
521 }
522 
523 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
524 						 s32 correction)
525 {
526 	ktime_t kt;
527 
528 	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
529 	correction = DIV_ROUND_CLOSEST(correction, 4);
530 
531 	kt = ktime_set(nic_major, nic_minor);
532 
533 	if (correction >= 0)
534 		kt = ktime_add_ns(kt, (u64)correction);
535 	else
536 		kt = ktime_sub_ns(kt, (u64)-correction);
537 	return kt;
538 }
539 
540 struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
541 {
542 	return efx->ptp_data ? efx->ptp_data->channel : NULL;
543 }
544 
545 void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel)
546 {
547 	if (efx->ptp_data)
548 		efx->ptp_data->channel = channel;
549 }
550 
551 static u32 last_sync_timestamp_major(struct efx_nic *efx)
552 {
553 	struct efx_channel *channel = efx_ptp_channel(efx);
554 	u32 major = 0;
555 
556 	if (channel)
557 		major = channel->sync_timestamp_major;
558 	return major;
559 }
560 
561 /* The 8000 series and later can provide the time from the MAC, which is only
562  * 48 bits long and provides meta-information in the top 2 bits.
563  */
564 static ktime_t
565 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
566 				    struct efx_ptp_data *ptp,
567 				    u32 nic_major, u32 nic_minor,
568 				    s32 correction)
569 {
570 	u32 sync_timestamp;
571 	ktime_t kt = { 0 };
572 	s16 delta;
573 
574 	if (!(nic_major & 0x80000000)) {
575 		WARN_ON_ONCE(nic_major >> 16);
576 
577 		/* Medford provides 48 bits of timestamp, so we must get the top
578 		 * 16 bits from the timesync event state.
579 		 *
580 		 * We only have the lower 16 bits of the time now, but we do
581 		 * have a full resolution timestamp at some point in past. As
582 		 * long as the difference between the (real) now and the sync
583 		 * is less than 2^15, then we can reconstruct the difference
584 		 * between those two numbers using only the lower 16 bits of
585 		 * each.
586 		 *
587 		 * Put another way
588 		 *
589 		 * a - b = ((a mod k) - b) mod k
590 		 *
591 		 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
592 		 * (a mod k) and b, so can calculate the delta, a - b.
593 		 *
594 		 */
595 		sync_timestamp = last_sync_timestamp_major(efx);
596 
597 		/* Because delta is s16 this does an implicit mask down to
598 		 * 16 bits which is what we need, assuming
599 		 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
600 		 * we can deal with the (unlikely) case of sync timestamps
601 		 * arriving from the future.
602 		 */
603 		delta = nic_major - sync_timestamp;
604 
605 		/* Recover the fully specified time now, by applying the offset
606 		 * to the (fully specified) sync time.
607 		 */
608 		nic_major = sync_timestamp + delta;
609 
610 		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
611 					     correction);
612 	}
613 	return kt;
614 }
615 
616 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
617 {
618 	struct efx_nic *efx = tx_queue->efx;
619 	struct efx_ptp_data *ptp = efx->ptp_data;
620 	ktime_t kt;
621 
622 	if (efx_ptp_use_mac_tx_timestamps(efx))
623 		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
624 				tx_queue->completed_timestamp_major,
625 				tx_queue->completed_timestamp_minor,
626 				ptp->ts_corrections.general_tx);
627 	else
628 		kt = ptp->nic_to_kernel_time(
629 				tx_queue->completed_timestamp_major,
630 				tx_queue->completed_timestamp_minor,
631 				ptp->ts_corrections.general_tx);
632 	return kt;
633 }
634 
635 /* Get PTP attributes and set up time conversions */
636 static int efx_ptp_get_attributes(struct efx_nic *efx)
637 {
638 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
639 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
640 	struct efx_ptp_data *ptp = efx->ptp_data;
641 	int rc;
642 	u32 fmt;
643 	size_t out_len;
644 
645 	/* Get the PTP attributes. If the NIC doesn't support the operation we
646 	 * use the default format for compatibility with older NICs i.e.
647 	 * seconds and nanoseconds.
648 	 */
649 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
650 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
651 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
652 				outbuf, sizeof(outbuf), &out_len);
653 	if (rc == 0) {
654 		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
655 	} else if (rc == -EINVAL) {
656 		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
657 	} else if (rc == -EPERM) {
658 		pci_info(efx->pci_dev, "no PTP support\n");
659 		return rc;
660 	} else {
661 		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
662 				       outbuf, sizeof(outbuf), rc);
663 		return rc;
664 	}
665 
666 	switch (fmt) {
667 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
668 		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
669 		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
670 		ptp->nic_time.minor_max = 1 << 27;
671 		ptp->nic_time.sync_event_minor_shift = 19;
672 		break;
673 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
674 		ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
675 		ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
676 		ptp->nic_time.minor_max = 1000000000;
677 		ptp->nic_time.sync_event_minor_shift = 22;
678 		break;
679 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
680 		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
681 		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
682 		ptp->nic_time.minor_max = 4000000000UL;
683 		ptp->nic_time.sync_event_minor_shift = 24;
684 		break;
685 	default:
686 		return -ERANGE;
687 	}
688 
689 	/* Precalculate acceptable difference between the minor time in the
690 	 * packet prefix and the last MCDI time sync event. We expect the
691 	 * packet prefix timestamp to be after of sync event by up to one
692 	 * sync event interval (0.25s) but we allow it to exceed this by a
693 	 * fuzz factor of (0.1s)
694 	 */
695 	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
696 		- (ptp->nic_time.minor_max / 10);
697 	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
698 		+ (ptp->nic_time.minor_max / 10);
699 
700 	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
701 	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
702 	 * a value to use for the minimum acceptable corrected synchronization
703 	 * window and may return further capabilities.
704 	 * If we have the extra information store it. For older firmware that
705 	 * does not implement the extended command use the default value.
706 	 */
707 	if (rc == 0 &&
708 	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
709 		ptp->min_synchronisation_ns =
710 			MCDI_DWORD(outbuf,
711 				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
712 	else
713 		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
714 
715 	if (rc == 0 &&
716 	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
717 		ptp->capabilities = MCDI_DWORD(outbuf,
718 					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
719 	else
720 		ptp->capabilities = 0;
721 
722 	/* Set up the shift for conversion between frequency
723 	 * adjustments in parts-per-billion and the fixed-point
724 	 * fractional ns format that the adapter uses.
725 	 */
726 	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
727 		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
728 	else
729 		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
730 
731 	return 0;
732 }
733 
734 /* Get PTP timestamp corrections */
735 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
736 {
737 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
738 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
739 	int rc;
740 	size_t out_len;
741 
742 	/* Get the timestamp corrections from the NIC. If this operation is
743 	 * not supported (older NICs) then no correction is required.
744 	 */
745 	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
746 		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
747 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
748 
749 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
750 				outbuf, sizeof(outbuf), &out_len);
751 	if (rc == 0) {
752 		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
753 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
754 		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
755 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
756 		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
757 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
758 		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
759 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
760 
761 		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
762 			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
763 				outbuf,
764 				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
765 			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
766 				outbuf,
767 				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
768 		} else {
769 			efx->ptp_data->ts_corrections.general_tx =
770 				efx->ptp_data->ts_corrections.ptp_tx;
771 			efx->ptp_data->ts_corrections.general_rx =
772 				efx->ptp_data->ts_corrections.ptp_rx;
773 		}
774 	} else if (rc == -EINVAL) {
775 		efx->ptp_data->ts_corrections.ptp_tx = 0;
776 		efx->ptp_data->ts_corrections.ptp_rx = 0;
777 		efx->ptp_data->ts_corrections.pps_out = 0;
778 		efx->ptp_data->ts_corrections.pps_in = 0;
779 		efx->ptp_data->ts_corrections.general_tx = 0;
780 		efx->ptp_data->ts_corrections.general_rx = 0;
781 	} else {
782 		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
783 				       sizeof(outbuf), rc);
784 		return rc;
785 	}
786 
787 	return 0;
788 }
789 
790 /* Enable MCDI PTP support. */
791 static int efx_ptp_enable(struct efx_nic *efx)
792 {
793 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
794 	MCDI_DECLARE_BUF_ERR(outbuf);
795 	int rc;
796 
797 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
798 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
799 	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
800 		       efx->ptp_data->channel ?
801 		       efx->ptp_data->channel->channel : 0);
802 	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
803 
804 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
805 				outbuf, sizeof(outbuf), NULL);
806 	rc = (rc == -EALREADY) ? 0 : rc;
807 	if (rc)
808 		efx_mcdi_display_error(efx, MC_CMD_PTP,
809 				       MC_CMD_PTP_IN_ENABLE_LEN,
810 				       outbuf, sizeof(outbuf), rc);
811 	return rc;
812 }
813 
814 /* Disable MCDI PTP support.
815  *
816  * Note that this function should never rely on the presence of ptp_data -
817  * may be called before that exists.
818  */
819 static int efx_ptp_disable(struct efx_nic *efx)
820 {
821 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
822 	MCDI_DECLARE_BUF_ERR(outbuf);
823 	int rc;
824 
825 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
826 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
827 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
828 				outbuf, sizeof(outbuf), NULL);
829 	rc = (rc == -EALREADY) ? 0 : rc;
830 	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
831 	 * should only have been called during probe.
832 	 */
833 	if (rc == -ENOSYS || rc == -EPERM)
834 		pci_info(efx->pci_dev, "no PTP support\n");
835 	else if (rc)
836 		efx_mcdi_display_error(efx, MC_CMD_PTP,
837 				       MC_CMD_PTP_IN_DISABLE_LEN,
838 				       outbuf, sizeof(outbuf), rc);
839 	return rc;
840 }
841 
842 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
843 {
844 	struct sk_buff *skb;
845 
846 	while ((skb = skb_dequeue(q))) {
847 		local_bh_disable();
848 		netif_receive_skb(skb);
849 		local_bh_enable();
850 	}
851 }
852 
853 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
854 {
855 	netif_err(efx, drv, efx->net_dev,
856 		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
857 		  "vector. PTP disabled\n");
858 }
859 
860 /* Repeatedly send the host time to the MC which will capture the hardware
861  * time.
862  */
863 static void efx_ptp_send_times(struct efx_nic *efx,
864 			       struct pps_event_time *last_time)
865 {
866 	struct pps_event_time now;
867 	struct timespec64 limit;
868 	struct efx_ptp_data *ptp = efx->ptp_data;
869 	int *mc_running = ptp->start.addr;
870 
871 	pps_get_ts(&now);
872 	limit = now.ts_real;
873 	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
874 
875 	/* Write host time for specified period or until MC is done */
876 	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
877 	       READ_ONCE(*mc_running)) {
878 		struct timespec64 update_time;
879 		unsigned int host_time;
880 
881 		/* Don't update continuously to avoid saturating the PCIe bus */
882 		update_time = now.ts_real;
883 		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
884 		do {
885 			pps_get_ts(&now);
886 		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
887 			 READ_ONCE(*mc_running));
888 
889 		/* Synchronise NIC with single word of time only */
890 		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
891 			     now.ts_real.tv_nsec);
892 		/* Update host time in NIC memory */
893 		efx->type->ptp_write_host_time(efx, host_time);
894 	}
895 	*last_time = now;
896 }
897 
898 /* Read a timeset from the MC's results and partial process. */
899 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
900 				 struct efx_ptp_timeset *timeset)
901 {
902 	unsigned start_ns, end_ns;
903 
904 	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
905 	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
906 	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
907 	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
908 	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
909 
910 	/* Ignore seconds */
911 	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
912 	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
913 	/* Allow for rollover */
914 	if (end_ns < start_ns)
915 		end_ns += NSEC_PER_SEC;
916 	/* Determine duration of operation */
917 	timeset->window = end_ns - start_ns;
918 }
919 
920 /* Process times received from MC.
921  *
922  * Extract times from returned results, and establish the minimum value
923  * seen.  The minimum value represents the "best" possible time and events
924  * too much greater than this are rejected - the machine is, perhaps, too
925  * busy. A number of readings are taken so that, hopefully, at least one good
926  * synchronisation will be seen in the results.
927  */
928 static int
929 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
930 		      size_t response_length,
931 		      const struct pps_event_time *last_time)
932 {
933 	unsigned number_readings =
934 		MCDI_VAR_ARRAY_LEN(response_length,
935 				   PTP_OUT_SYNCHRONIZE_TIMESET);
936 	unsigned i;
937 	unsigned ngood = 0;
938 	unsigned last_good = 0;
939 	struct efx_ptp_data *ptp = efx->ptp_data;
940 	u32 last_sec;
941 	u32 start_sec;
942 	struct timespec64 delta;
943 	ktime_t mc_time;
944 
945 	if (number_readings == 0)
946 		return -EAGAIN;
947 
948 	/* Read the set of results and find the last good host-MC
949 	 * synchronization result. The MC times when it finishes reading the
950 	 * host time so the corrected window time should be fairly constant
951 	 * for a given platform. Increment stats for any results that appear
952 	 * to be erroneous.
953 	 */
954 	for (i = 0; i < number_readings; i++) {
955 		s32 window, corrected;
956 		struct timespec64 wait;
957 
958 		efx_ptp_read_timeset(
959 			MCDI_ARRAY_STRUCT_PTR(synch_buf,
960 					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
961 			&ptp->timeset[i]);
962 
963 		wait = ktime_to_timespec64(
964 			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
965 		window = ptp->timeset[i].window;
966 		corrected = window - wait.tv_nsec;
967 
968 		/* We expect the uncorrected synchronization window to be at
969 		 * least as large as the interval between host start and end
970 		 * times. If it is smaller than this then this is mostly likely
971 		 * to be a consequence of the host's time being adjusted.
972 		 * Check that the corrected sync window is in a reasonable
973 		 * range. If it is out of range it is likely to be because an
974 		 * interrupt or other delay occurred between reading the system
975 		 * time and writing it to MC memory.
976 		 */
977 		if (window < SYNCHRONISATION_GRANULARITY_NS) {
978 			++ptp->invalid_sync_windows;
979 		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
980 			++ptp->oversize_sync_windows;
981 		} else if (corrected < ptp->min_synchronisation_ns) {
982 			++ptp->undersize_sync_windows;
983 		} else {
984 			ngood++;
985 			last_good = i;
986 		}
987 	}
988 
989 	if (ngood == 0) {
990 		netif_warn(efx, drv, efx->net_dev,
991 			   "PTP no suitable synchronisations\n");
992 		return -EAGAIN;
993 	}
994 
995 	/* Calculate delay from last good sync (host time) to last_time.
996 	 * It is possible that the seconds rolled over between taking
997 	 * the start reading and the last value written by the host.  The
998 	 * timescales are such that a gap of more than one second is never
999 	 * expected.  delta is *not* normalised.
1000 	 */
1001 	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
1002 	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
1003 	if (start_sec != last_sec &&
1004 	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
1005 		netif_warn(efx, hw, efx->net_dev,
1006 			   "PTP bad synchronisation seconds\n");
1007 		return -EAGAIN;
1008 	}
1009 	delta.tv_sec = (last_sec - start_sec) & 1;
1010 	delta.tv_nsec =
1011 		last_time->ts_real.tv_nsec -
1012 		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1013 
1014 	/* Convert the NIC time at last good sync into kernel time.
1015 	 * No correction is required - this time is the output of a
1016 	 * firmware process.
1017 	 */
1018 	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1019 					  ptp->timeset[last_good].minor, 0);
1020 
1021 	/* Calculate delay from NIC top of second to last_time */
1022 	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1023 
1024 	/* Set PPS timestamp to match NIC top of second */
1025 	ptp->host_time_pps = *last_time;
1026 	pps_sub_ts(&ptp->host_time_pps, delta);
1027 
1028 	return 0;
1029 }
1030 
1031 /* Synchronize times between the host and the MC */
1032 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1033 {
1034 	struct efx_ptp_data *ptp = efx->ptp_data;
1035 	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1036 	size_t response_length;
1037 	int rc;
1038 	unsigned long timeout;
1039 	struct pps_event_time last_time = {};
1040 	unsigned int loops = 0;
1041 	int *start = ptp->start.addr;
1042 
1043 	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1044 	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1045 	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1046 		       num_readings);
1047 	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1048 		       ptp->start.dma_addr);
1049 
1050 	/* Clear flag that signals MC ready */
1051 	WRITE_ONCE(*start, 0);
1052 	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1053 				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1054 	EFX_WARN_ON_ONCE_PARANOID(rc);
1055 
1056 	/* Wait for start from MCDI (or timeout) */
1057 	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1058 	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1059 		udelay(20);	/* Usually start MCDI execution quickly */
1060 		loops++;
1061 	}
1062 
1063 	if (loops <= 1)
1064 		++ptp->fast_syncs;
1065 	if (!time_before(jiffies, timeout))
1066 		++ptp->sync_timeouts;
1067 
1068 	if (READ_ONCE(*start))
1069 		efx_ptp_send_times(efx, &last_time);
1070 
1071 	/* Collect results */
1072 	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1073 				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1074 				 synch_buf, sizeof(synch_buf),
1075 				 &response_length);
1076 	if (rc == 0) {
1077 		rc = efx_ptp_process_times(efx, synch_buf, response_length,
1078 					   &last_time);
1079 		if (rc == 0)
1080 			++ptp->good_syncs;
1081 		else
1082 			++ptp->no_time_syncs;
1083 	}
1084 
1085 	/* Increment the bad syncs counter if the synchronize fails, whatever
1086 	 * the reason.
1087 	 */
1088 	if (rc != 0)
1089 		++ptp->bad_syncs;
1090 
1091 	return rc;
1092 }
1093 
1094 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1095 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1096 {
1097 	struct efx_ptp_data *ptp_data = efx->ptp_data;
1098 	u8 type = efx_tx_csum_type_skb(skb);
1099 	struct efx_tx_queue *tx_queue;
1100 
1101 	tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
1102 	if (tx_queue && tx_queue->timestamping) {
1103 		efx_enqueue_skb(tx_queue, skb);
1104 	} else {
1105 		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1106 		dev_kfree_skb_any(skb);
1107 	}
1108 }
1109 
1110 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
1111 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1112 {
1113 	struct efx_ptp_data *ptp_data = efx->ptp_data;
1114 	struct skb_shared_hwtstamps timestamps;
1115 	int rc = -EIO;
1116 	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1117 	size_t len;
1118 
1119 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1120 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1121 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1122 	if (skb_shinfo(skb)->nr_frags != 0) {
1123 		rc = skb_linearize(skb);
1124 		if (rc != 0)
1125 			goto fail;
1126 	}
1127 
1128 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1129 		rc = skb_checksum_help(skb);
1130 		if (rc != 0)
1131 			goto fail;
1132 	}
1133 	skb_copy_from_linear_data(skb,
1134 				  MCDI_PTR(ptp_data->txbuf,
1135 					   PTP_IN_TRANSMIT_PACKET),
1136 				  skb->len);
1137 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1138 			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1139 			  txtime, sizeof(txtime), &len);
1140 	if (rc != 0)
1141 		goto fail;
1142 
1143 	memset(&timestamps, 0, sizeof(timestamps));
1144 	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1145 		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1146 		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1147 		ptp_data->ts_corrections.ptp_tx);
1148 
1149 	skb_tstamp_tx(skb, &timestamps);
1150 
1151 	rc = 0;
1152 
1153 fail:
1154 	dev_kfree_skb_any(skb);
1155 
1156 	return;
1157 }
1158 
1159 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1160 {
1161 	struct efx_ptp_data *ptp = efx->ptp_data;
1162 	struct list_head *cursor;
1163 	struct list_head *next;
1164 
1165 	if (ptp->rx_ts_inline)
1166 		return;
1167 
1168 	/* Drop time-expired events */
1169 	spin_lock_bh(&ptp->evt_lock);
1170 	list_for_each_safe(cursor, next, &ptp->evt_list) {
1171 		struct efx_ptp_event_rx *evt;
1172 
1173 		evt = list_entry(cursor, struct efx_ptp_event_rx,
1174 				 link);
1175 		if (time_after(jiffies, evt->expiry)) {
1176 			list_move(&evt->link, &ptp->evt_free_list);
1177 			netif_warn(efx, hw, efx->net_dev,
1178 				   "PTP rx event dropped\n");
1179 		}
1180 	}
1181 	spin_unlock_bh(&ptp->evt_lock);
1182 }
1183 
1184 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1185 					      struct sk_buff *skb)
1186 {
1187 	struct efx_ptp_data *ptp = efx->ptp_data;
1188 	bool evts_waiting;
1189 	struct list_head *cursor;
1190 	struct list_head *next;
1191 	struct efx_ptp_match *match;
1192 	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1193 
1194 	WARN_ON_ONCE(ptp->rx_ts_inline);
1195 
1196 	spin_lock_bh(&ptp->evt_lock);
1197 	evts_waiting = !list_empty(&ptp->evt_list);
1198 	spin_unlock_bh(&ptp->evt_lock);
1199 
1200 	if (!evts_waiting)
1201 		return PTP_PACKET_STATE_UNMATCHED;
1202 
1203 	match = (struct efx_ptp_match *)skb->cb;
1204 	/* Look for a matching timestamp in the event queue */
1205 	spin_lock_bh(&ptp->evt_lock);
1206 	list_for_each_safe(cursor, next, &ptp->evt_list) {
1207 		struct efx_ptp_event_rx *evt;
1208 
1209 		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1210 		if ((evt->seq0 == match->words[0]) &&
1211 		    (evt->seq1 == match->words[1])) {
1212 			struct skb_shared_hwtstamps *timestamps;
1213 
1214 			/* Match - add in hardware timestamp */
1215 			timestamps = skb_hwtstamps(skb);
1216 			timestamps->hwtstamp = evt->hwtimestamp;
1217 
1218 			match->state = PTP_PACKET_STATE_MATCHED;
1219 			rc = PTP_PACKET_STATE_MATCHED;
1220 			list_move(&evt->link, &ptp->evt_free_list);
1221 			break;
1222 		}
1223 	}
1224 	spin_unlock_bh(&ptp->evt_lock);
1225 
1226 	return rc;
1227 }
1228 
1229 /* Process any queued receive events and corresponding packets
1230  *
1231  * q is returned with all the packets that are ready for delivery.
1232  */
1233 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1234 {
1235 	struct efx_ptp_data *ptp = efx->ptp_data;
1236 	struct sk_buff *skb;
1237 
1238 	while ((skb = skb_dequeue(&ptp->rxq))) {
1239 		struct efx_ptp_match *match;
1240 
1241 		match = (struct efx_ptp_match *)skb->cb;
1242 		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1243 			__skb_queue_tail(q, skb);
1244 		} else if (efx_ptp_match_rx(efx, skb) ==
1245 			   PTP_PACKET_STATE_MATCHED) {
1246 			__skb_queue_tail(q, skb);
1247 		} else if (time_after(jiffies, match->expiry)) {
1248 			match->state = PTP_PACKET_STATE_TIMED_OUT;
1249 			++ptp->rx_no_timestamp;
1250 			__skb_queue_tail(q, skb);
1251 		} else {
1252 			/* Replace unprocessed entry and stop */
1253 			skb_queue_head(&ptp->rxq, skb);
1254 			break;
1255 		}
1256 	}
1257 }
1258 
1259 /* Complete processing of a received packet */
1260 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1261 {
1262 	local_bh_disable();
1263 	netif_receive_skb(skb);
1264 	local_bh_enable();
1265 }
1266 
1267 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1268 {
1269 	struct efx_ptp_data *ptp = efx->ptp_data;
1270 
1271 	if (ptp->rxfilter_installed) {
1272 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1273 					  ptp->rxfilter_general);
1274 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1275 					  ptp->rxfilter_event);
1276 		ptp->rxfilter_installed = false;
1277 	}
1278 }
1279 
1280 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1281 {
1282 	struct efx_ptp_data *ptp = efx->ptp_data;
1283 	struct efx_filter_spec rxfilter;
1284 	int rc;
1285 
1286 	if (!ptp->channel || ptp->rxfilter_installed)
1287 		return 0;
1288 
1289 	/* Must filter on both event and general ports to ensure
1290 	 * that there is no packet re-ordering.
1291 	 */
1292 	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1293 			   efx_rx_queue_index(
1294 				   efx_channel_get_rx_queue(ptp->channel)));
1295 	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1296 				       htonl(PTP_ADDRESS),
1297 				       htons(PTP_EVENT_PORT));
1298 	if (rc != 0)
1299 		return rc;
1300 
1301 	rc = efx_filter_insert_filter(efx, &rxfilter, true);
1302 	if (rc < 0)
1303 		return rc;
1304 	ptp->rxfilter_event = rc;
1305 
1306 	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1307 			   efx_rx_queue_index(
1308 				   efx_channel_get_rx_queue(ptp->channel)));
1309 	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1310 				       htonl(PTP_ADDRESS),
1311 				       htons(PTP_GENERAL_PORT));
1312 	if (rc != 0)
1313 		goto fail;
1314 
1315 	rc = efx_filter_insert_filter(efx, &rxfilter, true);
1316 	if (rc < 0)
1317 		goto fail;
1318 	ptp->rxfilter_general = rc;
1319 
1320 	ptp->rxfilter_installed = true;
1321 	return 0;
1322 
1323 fail:
1324 	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1325 				  ptp->rxfilter_event);
1326 	return rc;
1327 }
1328 
1329 static int efx_ptp_start(struct efx_nic *efx)
1330 {
1331 	struct efx_ptp_data *ptp = efx->ptp_data;
1332 	int rc;
1333 
1334 	ptp->reset_required = false;
1335 
1336 	rc = efx_ptp_insert_multicast_filters(efx);
1337 	if (rc)
1338 		return rc;
1339 
1340 	rc = efx_ptp_enable(efx);
1341 	if (rc != 0)
1342 		goto fail;
1343 
1344 	ptp->evt_frag_idx = 0;
1345 	ptp->current_adjfreq = 0;
1346 
1347 	return 0;
1348 
1349 fail:
1350 	efx_ptp_remove_multicast_filters(efx);
1351 	return rc;
1352 }
1353 
1354 static int efx_ptp_stop(struct efx_nic *efx)
1355 {
1356 	struct efx_ptp_data *ptp = efx->ptp_data;
1357 	struct list_head *cursor;
1358 	struct list_head *next;
1359 	int rc;
1360 
1361 	if (ptp == NULL)
1362 		return 0;
1363 
1364 	rc = efx_ptp_disable(efx);
1365 
1366 	efx_ptp_remove_multicast_filters(efx);
1367 
1368 	/* Make sure RX packets are really delivered */
1369 	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1370 	skb_queue_purge(&efx->ptp_data->txq);
1371 
1372 	/* Drop any pending receive events */
1373 	spin_lock_bh(&efx->ptp_data->evt_lock);
1374 	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1375 		list_move(cursor, &efx->ptp_data->evt_free_list);
1376 	}
1377 	spin_unlock_bh(&efx->ptp_data->evt_lock);
1378 
1379 	return rc;
1380 }
1381 
1382 static int efx_ptp_restart(struct efx_nic *efx)
1383 {
1384 	if (efx->ptp_data && efx->ptp_data->enabled)
1385 		return efx_ptp_start(efx);
1386 	return 0;
1387 }
1388 
1389 static void efx_ptp_pps_worker(struct work_struct *work)
1390 {
1391 	struct efx_ptp_data *ptp =
1392 		container_of(work, struct efx_ptp_data, pps_work);
1393 	struct efx_nic *efx = ptp->efx;
1394 	struct ptp_clock_event ptp_evt;
1395 
1396 	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1397 		return;
1398 
1399 	ptp_evt.type = PTP_CLOCK_PPSUSR;
1400 	ptp_evt.pps_times = ptp->host_time_pps;
1401 	ptp_clock_event(ptp->phc_clock, &ptp_evt);
1402 }
1403 
1404 static void efx_ptp_worker(struct work_struct *work)
1405 {
1406 	struct efx_ptp_data *ptp_data =
1407 		container_of(work, struct efx_ptp_data, work);
1408 	struct efx_nic *efx = ptp_data->efx;
1409 	struct sk_buff *skb;
1410 	struct sk_buff_head tempq;
1411 
1412 	if (ptp_data->reset_required) {
1413 		efx_ptp_stop(efx);
1414 		efx_ptp_start(efx);
1415 		return;
1416 	}
1417 
1418 	efx_ptp_drop_time_expired_events(efx);
1419 
1420 	__skb_queue_head_init(&tempq);
1421 	efx_ptp_process_events(efx, &tempq);
1422 
1423 	while ((skb = skb_dequeue(&ptp_data->txq)))
1424 		ptp_data->xmit_skb(efx, skb);
1425 
1426 	while ((skb = __skb_dequeue(&tempq)))
1427 		efx_ptp_process_rx(efx, skb);
1428 }
1429 
1430 static const struct ptp_clock_info efx_phc_clock_info = {
1431 	.owner		= THIS_MODULE,
1432 	.name		= "sfc",
1433 	.max_adj	= MAX_PPB,
1434 	.n_alarm	= 0,
1435 	.n_ext_ts	= 0,
1436 	.n_per_out	= 0,
1437 	.n_pins		= 0,
1438 	.pps		= 1,
1439 	.adjfreq	= efx_phc_adjfreq,
1440 	.adjtime	= efx_phc_adjtime,
1441 	.gettime64	= efx_phc_gettime,
1442 	.settime64	= efx_phc_settime,
1443 	.enable		= efx_phc_enable,
1444 };
1445 
1446 /* Initialise PTP state. */
1447 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1448 {
1449 	struct efx_ptp_data *ptp;
1450 	int rc = 0;
1451 	unsigned int pos;
1452 
1453 	if (efx->ptp_data) {
1454 		efx->ptp_data->channel = channel;
1455 		return 0;
1456 	}
1457 
1458 	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1459 	efx->ptp_data = ptp;
1460 	if (!efx->ptp_data)
1461 		return -ENOMEM;
1462 
1463 	ptp->efx = efx;
1464 	ptp->channel = channel;
1465 	ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1466 
1467 	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1468 	if (rc != 0)
1469 		goto fail1;
1470 
1471 	skb_queue_head_init(&ptp->rxq);
1472 	skb_queue_head_init(&ptp->txq);
1473 	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1474 	if (!ptp->workwq) {
1475 		rc = -ENOMEM;
1476 		goto fail2;
1477 	}
1478 
1479 	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1480 		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1481 		/* Request sync events on this channel. */
1482 		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1483 	} else {
1484 		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1485 	}
1486 
1487 	INIT_WORK(&ptp->work, efx_ptp_worker);
1488 	ptp->config.flags = 0;
1489 	ptp->config.tx_type = HWTSTAMP_TX_OFF;
1490 	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1491 	INIT_LIST_HEAD(&ptp->evt_list);
1492 	INIT_LIST_HEAD(&ptp->evt_free_list);
1493 	spin_lock_init(&ptp->evt_lock);
1494 	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1495 		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1496 
1497 	/* Get the NIC PTP attributes and set up time conversions */
1498 	rc = efx_ptp_get_attributes(efx);
1499 	if (rc < 0)
1500 		goto fail3;
1501 
1502 	/* Get the timestamp corrections */
1503 	rc = efx_ptp_get_timestamp_corrections(efx);
1504 	if (rc < 0)
1505 		goto fail3;
1506 
1507 	if (efx->mcdi->fn_flags &
1508 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1509 		ptp->phc_clock_info = efx_phc_clock_info;
1510 		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1511 						    &efx->pci_dev->dev);
1512 		if (IS_ERR(ptp->phc_clock)) {
1513 			rc = PTR_ERR(ptp->phc_clock);
1514 			goto fail3;
1515 		} else if (ptp->phc_clock) {
1516 			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1517 			ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1518 			if (!ptp->pps_workwq) {
1519 				rc = -ENOMEM;
1520 				goto fail4;
1521 			}
1522 		}
1523 	}
1524 	ptp->nic_ts_enabled = false;
1525 
1526 	return 0;
1527 fail4:
1528 	ptp_clock_unregister(efx->ptp_data->phc_clock);
1529 
1530 fail3:
1531 	destroy_workqueue(efx->ptp_data->workwq);
1532 
1533 fail2:
1534 	efx_nic_free_buffer(efx, &ptp->start);
1535 
1536 fail1:
1537 	kfree(efx->ptp_data);
1538 	efx->ptp_data = NULL;
1539 
1540 	return rc;
1541 }
1542 
1543 /* Initialise PTP channel.
1544  *
1545  * Setting core_index to zero causes the queue to be initialised and doesn't
1546  * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1547  */
1548 static int efx_ptp_probe_channel(struct efx_channel *channel)
1549 {
1550 	struct efx_nic *efx = channel->efx;
1551 	int rc;
1552 
1553 	channel->irq_moderation_us = 0;
1554 	channel->rx_queue.core_index = 0;
1555 
1556 	rc = efx_ptp_probe(efx, channel);
1557 	/* Failure to probe PTP is not fatal; this channel will just not be
1558 	 * used for anything.
1559 	 * In the case of EPERM, efx_ptp_probe will print its own message (in
1560 	 * efx_ptp_get_attributes()), so we don't need to.
1561 	 */
1562 	if (rc && rc != -EPERM)
1563 		netif_warn(efx, drv, efx->net_dev,
1564 			   "Failed to probe PTP, rc=%d\n", rc);
1565 	return 0;
1566 }
1567 
1568 void efx_ptp_remove(struct efx_nic *efx)
1569 {
1570 	if (!efx->ptp_data)
1571 		return;
1572 
1573 	(void)efx_ptp_disable(efx);
1574 
1575 	cancel_work_sync(&efx->ptp_data->work);
1576 	if (efx->ptp_data->pps_workwq)
1577 		cancel_work_sync(&efx->ptp_data->pps_work);
1578 
1579 	skb_queue_purge(&efx->ptp_data->rxq);
1580 	skb_queue_purge(&efx->ptp_data->txq);
1581 
1582 	if (efx->ptp_data->phc_clock) {
1583 		destroy_workqueue(efx->ptp_data->pps_workwq);
1584 		ptp_clock_unregister(efx->ptp_data->phc_clock);
1585 	}
1586 
1587 	destroy_workqueue(efx->ptp_data->workwq);
1588 
1589 	efx_nic_free_buffer(efx, &efx->ptp_data->start);
1590 	kfree(efx->ptp_data);
1591 	efx->ptp_data = NULL;
1592 }
1593 
1594 static void efx_ptp_remove_channel(struct efx_channel *channel)
1595 {
1596 	efx_ptp_remove(channel->efx);
1597 }
1598 
1599 static void efx_ptp_get_channel_name(struct efx_channel *channel,
1600 				     char *buf, size_t len)
1601 {
1602 	snprintf(buf, len, "%s-ptp", channel->efx->name);
1603 }
1604 
1605 /* Determine whether this packet should be processed by the PTP module
1606  * or transmitted conventionally.
1607  */
1608 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1609 {
1610 	return efx->ptp_data &&
1611 		efx->ptp_data->enabled &&
1612 		skb->len >= PTP_MIN_LENGTH &&
1613 		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1614 		likely(skb->protocol == htons(ETH_P_IP)) &&
1615 		skb_transport_header_was_set(skb) &&
1616 		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1617 		ip_hdr(skb)->protocol == IPPROTO_UDP &&
1618 		skb_headlen(skb) >=
1619 		skb_transport_offset(skb) + sizeof(struct udphdr) &&
1620 		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1621 }
1622 
1623 /* Receive a PTP packet.  Packets are queued until the arrival of
1624  * the receive timestamp from the MC - this will probably occur after the
1625  * packet arrival because of the processing in the MC.
1626  */
1627 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1628 {
1629 	struct efx_nic *efx = channel->efx;
1630 	struct efx_ptp_data *ptp = efx->ptp_data;
1631 	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1632 	u8 *match_data_012, *match_data_345;
1633 	unsigned int version;
1634 	u8 *data;
1635 
1636 	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1637 
1638 	/* Correct version? */
1639 	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1640 		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1641 			return false;
1642 		}
1643 		data = skb->data;
1644 		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1645 		if (version != PTP_VERSION_V1) {
1646 			return false;
1647 		}
1648 
1649 		/* PTP V1 uses all six bytes of the UUID to match the packet
1650 		 * to the timestamp
1651 		 */
1652 		match_data_012 = data + PTP_V1_UUID_OFFSET;
1653 		match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1654 	} else {
1655 		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1656 			return false;
1657 		}
1658 		data = skb->data;
1659 		version = data[PTP_V2_VERSION_OFFSET];
1660 		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1661 			return false;
1662 		}
1663 
1664 		/* The original V2 implementation uses bytes 2-7 of
1665 		 * the UUID to match the packet to the timestamp. This
1666 		 * discards two of the bytes of the MAC address used
1667 		 * to create the UUID (SF bug 33070).  The PTP V2
1668 		 * enhanced mode fixes this issue and uses bytes 0-2
1669 		 * and byte 5-7 of the UUID.
1670 		 */
1671 		match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1672 		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1673 			match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1674 		} else {
1675 			match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1676 			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1677 		}
1678 	}
1679 
1680 	/* Does this packet require timestamping? */
1681 	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1682 		match->state = PTP_PACKET_STATE_UNMATCHED;
1683 
1684 		/* We expect the sequence number to be in the same position in
1685 		 * the packet for PTP V1 and V2
1686 		 */
1687 		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1688 		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1689 
1690 		/* Extract UUID/Sequence information */
1691 		match->words[0] = (match_data_012[0]         |
1692 				   (match_data_012[1] << 8)  |
1693 				   (match_data_012[2] << 16) |
1694 				   (match_data_345[0] << 24));
1695 		match->words[1] = (match_data_345[1]         |
1696 				   (match_data_345[2] << 8)  |
1697 				   (data[PTP_V1_SEQUENCE_OFFSET +
1698 					 PTP_V1_SEQUENCE_LENGTH - 1] <<
1699 				    16));
1700 	} else {
1701 		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1702 	}
1703 
1704 	skb_queue_tail(&ptp->rxq, skb);
1705 	queue_work(ptp->workwq, &ptp->work);
1706 
1707 	return true;
1708 }
1709 
1710 /* Transmit a PTP packet.  This has to be transmitted by the MC
1711  * itself, through an MCDI call.  MCDI calls aren't permitted
1712  * in the transmit path so defer the actual transmission to a suitable worker.
1713  */
1714 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1715 {
1716 	struct efx_ptp_data *ptp = efx->ptp_data;
1717 
1718 	skb_queue_tail(&ptp->txq, skb);
1719 
1720 	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1721 	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1722 		efx_xmit_hwtstamp_pending(skb);
1723 	queue_work(ptp->workwq, &ptp->work);
1724 
1725 	return NETDEV_TX_OK;
1726 }
1727 
1728 int efx_ptp_get_mode(struct efx_nic *efx)
1729 {
1730 	return efx->ptp_data->mode;
1731 }
1732 
1733 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1734 			unsigned int new_mode)
1735 {
1736 	if ((enable_wanted != efx->ptp_data->enabled) ||
1737 	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1738 		int rc = 0;
1739 
1740 		if (enable_wanted) {
1741 			/* Change of mode requires disable */
1742 			if (efx->ptp_data->enabled &&
1743 			    (efx->ptp_data->mode != new_mode)) {
1744 				efx->ptp_data->enabled = false;
1745 				rc = efx_ptp_stop(efx);
1746 				if (rc != 0)
1747 					return rc;
1748 			}
1749 
1750 			/* Set new operating mode and establish
1751 			 * baseline synchronisation, which must
1752 			 * succeed.
1753 			 */
1754 			efx->ptp_data->mode = new_mode;
1755 			if (netif_running(efx->net_dev))
1756 				rc = efx_ptp_start(efx);
1757 			if (rc == 0) {
1758 				rc = efx_ptp_synchronize(efx,
1759 							 PTP_SYNC_ATTEMPTS * 2);
1760 				if (rc != 0)
1761 					efx_ptp_stop(efx);
1762 			}
1763 		} else {
1764 			rc = efx_ptp_stop(efx);
1765 		}
1766 
1767 		if (rc != 0)
1768 			return rc;
1769 
1770 		efx->ptp_data->enabled = enable_wanted;
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1777 {
1778 	int rc;
1779 
1780 	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1781 	    (init->tx_type != HWTSTAMP_TX_ON))
1782 		return -ERANGE;
1783 
1784 	rc = efx->type->ptp_set_ts_config(efx, init);
1785 	if (rc)
1786 		return rc;
1787 
1788 	efx->ptp_data->config = *init;
1789 	return 0;
1790 }
1791 
1792 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1793 {
1794 	struct efx_ptp_data *ptp = efx->ptp_data;
1795 	struct efx_nic *primary = efx->primary;
1796 
1797 	ASSERT_RTNL();
1798 
1799 	if (!ptp)
1800 		return;
1801 
1802 	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1803 				     SOF_TIMESTAMPING_RX_HARDWARE |
1804 				     SOF_TIMESTAMPING_RAW_HARDWARE);
1805 	/* Check licensed features.  If we don't have the license for TX
1806 	 * timestamps, the NIC will not support them.
1807 	 */
1808 	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1809 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1810 
1811 		if (!(nic_data->licensed_features &
1812 		      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1813 			ts_info->so_timestamping &=
1814 				~SOF_TIMESTAMPING_TX_HARDWARE;
1815 	}
1816 	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1817 		ts_info->phc_index =
1818 			ptp_clock_index(primary->ptp_data->phc_clock);
1819 	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1820 	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1821 }
1822 
1823 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1824 {
1825 	struct hwtstamp_config config;
1826 	int rc;
1827 
1828 	/* Not a PTP enabled port */
1829 	if (!efx->ptp_data)
1830 		return -EOPNOTSUPP;
1831 
1832 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1833 		return -EFAULT;
1834 
1835 	rc = efx_ptp_ts_init(efx, &config);
1836 	if (rc != 0)
1837 		return rc;
1838 
1839 	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1840 		? -EFAULT : 0;
1841 }
1842 
1843 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1844 {
1845 	if (!efx->ptp_data)
1846 		return -EOPNOTSUPP;
1847 
1848 	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1849 			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1850 }
1851 
1852 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1853 {
1854 	struct efx_ptp_data *ptp = efx->ptp_data;
1855 
1856 	netif_err(efx, hw, efx->net_dev,
1857 		"PTP unexpected event length: got %d expected %d\n",
1858 		ptp->evt_frag_idx, expected_frag_len);
1859 	ptp->reset_required = true;
1860 	queue_work(ptp->workwq, &ptp->work);
1861 }
1862 
1863 /* Process a completed receive event.  Put it on the event queue and
1864  * start worker thread.  This is required because event and their
1865  * correspoding packets may come in either order.
1866  */
1867 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1868 {
1869 	struct efx_ptp_event_rx *evt = NULL;
1870 
1871 	if (WARN_ON_ONCE(ptp->rx_ts_inline))
1872 		return;
1873 
1874 	if (ptp->evt_frag_idx != 3) {
1875 		ptp_event_failure(efx, 3);
1876 		return;
1877 	}
1878 
1879 	spin_lock_bh(&ptp->evt_lock);
1880 	if (!list_empty(&ptp->evt_free_list)) {
1881 		evt = list_first_entry(&ptp->evt_free_list,
1882 				       struct efx_ptp_event_rx, link);
1883 		list_del(&evt->link);
1884 
1885 		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1886 		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1887 					     MCDI_EVENT_SRC)        |
1888 			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
1889 					      MCDI_EVENT_SRC) << 8) |
1890 			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
1891 					      MCDI_EVENT_SRC) << 16));
1892 		evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1893 			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1894 			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1895 			ptp->ts_corrections.ptp_rx);
1896 		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1897 		list_add_tail(&evt->link, &ptp->evt_list);
1898 
1899 		queue_work(ptp->workwq, &ptp->work);
1900 	} else if (net_ratelimit()) {
1901 		/* Log a rate-limited warning message. */
1902 		netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1903 	}
1904 	spin_unlock_bh(&ptp->evt_lock);
1905 }
1906 
1907 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1908 {
1909 	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1910 	if (ptp->evt_frag_idx != 1) {
1911 		ptp_event_failure(efx, 1);
1912 		return;
1913 	}
1914 
1915 	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1916 }
1917 
1918 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1919 {
1920 	if (ptp->nic_ts_enabled)
1921 		queue_work(ptp->pps_workwq, &ptp->pps_work);
1922 }
1923 
1924 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1925 {
1926 	struct efx_ptp_data *ptp = efx->ptp_data;
1927 	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1928 
1929 	if (!ptp) {
1930 		if (!efx->ptp_warned) {
1931 			netif_warn(efx, drv, efx->net_dev,
1932 				   "Received PTP event but PTP not set up\n");
1933 			efx->ptp_warned = true;
1934 		}
1935 		return;
1936 	}
1937 
1938 	if (!ptp->enabled)
1939 		return;
1940 
1941 	if (ptp->evt_frag_idx == 0) {
1942 		ptp->evt_code = code;
1943 	} else if (ptp->evt_code != code) {
1944 		netif_err(efx, hw, efx->net_dev,
1945 			  "PTP out of sequence event %d\n", code);
1946 		ptp->evt_frag_idx = 0;
1947 	}
1948 
1949 	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1950 	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1951 		/* Process resulting event */
1952 		switch (code) {
1953 		case MCDI_EVENT_CODE_PTP_RX:
1954 			ptp_event_rx(efx, ptp);
1955 			break;
1956 		case MCDI_EVENT_CODE_PTP_FAULT:
1957 			ptp_event_fault(efx, ptp);
1958 			break;
1959 		case MCDI_EVENT_CODE_PTP_PPS:
1960 			ptp_event_pps(efx, ptp);
1961 			break;
1962 		default:
1963 			netif_err(efx, hw, efx->net_dev,
1964 				  "PTP unknown event %d\n", code);
1965 			break;
1966 		}
1967 		ptp->evt_frag_idx = 0;
1968 	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1969 		netif_err(efx, hw, efx->net_dev,
1970 			  "PTP too many event fragments\n");
1971 		ptp->evt_frag_idx = 0;
1972 	}
1973 }
1974 
1975 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1976 {
1977 	struct efx_nic *efx = channel->efx;
1978 	struct efx_ptp_data *ptp = efx->ptp_data;
1979 
1980 	/* When extracting the sync timestamp minor value, we should discard
1981 	 * the least significant two bits. These are not required in order
1982 	 * to reconstruct full-range timestamps and they are optionally used
1983 	 * to report status depending on the options supplied when subscribing
1984 	 * for sync events.
1985 	 */
1986 	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1987 	channel->sync_timestamp_minor =
1988 		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
1989 			<< ptp->nic_time.sync_event_minor_shift;
1990 
1991 	/* if sync events have been disabled then we want to silently ignore
1992 	 * this event, so throw away result.
1993 	 */
1994 	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1995 		       SYNC_EVENTS_VALID);
1996 }
1997 
1998 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1999 {
2000 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
2001 	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
2002 #else
2003 	const u8 *data = eh + efx->rx_packet_ts_offset;
2004 	return (u32)data[0]       |
2005 	       (u32)data[1] << 8  |
2006 	       (u32)data[2] << 16 |
2007 	       (u32)data[3] << 24;
2008 #endif
2009 }
2010 
2011 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2012 				   struct sk_buff *skb)
2013 {
2014 	struct efx_nic *efx = channel->efx;
2015 	struct efx_ptp_data *ptp = efx->ptp_data;
2016 	u32 pkt_timestamp_major, pkt_timestamp_minor;
2017 	u32 diff, carry;
2018 	struct skb_shared_hwtstamps *timestamps;
2019 
2020 	if (channel->sync_events_state != SYNC_EVENTS_VALID)
2021 		return;
2022 
2023 	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2024 
2025 	/* get the difference between the packet and sync timestamps,
2026 	 * modulo one second
2027 	 */
2028 	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2029 	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2030 		diff += ptp->nic_time.minor_max;
2031 
2032 	/* do we roll over a second boundary and need to carry the one? */
2033 	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2034 		1 : 0;
2035 
2036 	if (diff <= ptp->nic_time.sync_event_diff_max) {
2037 		/* packet is ahead of the sync event by a quarter of a second or
2038 		 * less (allowing for fuzz)
2039 		 */
2040 		pkt_timestamp_major = channel->sync_timestamp_major + carry;
2041 	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
2042 		/* packet is behind the sync event but within the fuzz factor.
2043 		 * This means the RX packet and sync event crossed as they were
2044 		 * placed on the event queue, which can sometimes happen.
2045 		 */
2046 		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2047 	} else {
2048 		/* it's outside tolerance in both directions. this might be
2049 		 * indicative of us missing sync events for some reason, so
2050 		 * we'll call it an error rather than risk giving a bogus
2051 		 * timestamp.
2052 		 */
2053 		netif_vdbg(efx, drv, efx->net_dev,
2054 			  "packet timestamp %x too far from sync event %x:%x\n",
2055 			  pkt_timestamp_minor, channel->sync_timestamp_major,
2056 			  channel->sync_timestamp_minor);
2057 		return;
2058 	}
2059 
2060 	/* attach the timestamps to the skb */
2061 	timestamps = skb_hwtstamps(skb);
2062 	timestamps->hwtstamp =
2063 		ptp->nic_to_kernel_time(pkt_timestamp_major,
2064 					pkt_timestamp_minor,
2065 					ptp->ts_corrections.general_rx);
2066 }
2067 
2068 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2069 {
2070 	struct efx_ptp_data *ptp_data = container_of(ptp,
2071 						     struct efx_ptp_data,
2072 						     phc_clock_info);
2073 	struct efx_nic *efx = ptp_data->efx;
2074 	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2075 	s64 adjustment_ns;
2076 	int rc;
2077 
2078 	if (delta > MAX_PPB)
2079 		delta = MAX_PPB;
2080 	else if (delta < -MAX_PPB)
2081 		delta = -MAX_PPB;
2082 
2083 	/* Convert ppb to fixed point ns taking care to round correctly. */
2084 	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2085 			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2086 			ptp_data->adjfreq_ppb_shift;
2087 
2088 	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2089 	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2090 	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2091 	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2092 	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2093 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2094 			  NULL, 0, NULL);
2095 	if (rc != 0)
2096 		return rc;
2097 
2098 	ptp_data->current_adjfreq = adjustment_ns;
2099 	return 0;
2100 }
2101 
2102 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2103 {
2104 	u32 nic_major, nic_minor;
2105 	struct efx_ptp_data *ptp_data = container_of(ptp,
2106 						     struct efx_ptp_data,
2107 						     phc_clock_info);
2108 	struct efx_nic *efx = ptp_data->efx;
2109 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2110 
2111 	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2112 
2113 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2114 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2115 	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2116 	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2117 	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2118 	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2119 			    NULL, 0, NULL);
2120 }
2121 
2122 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2123 {
2124 	struct efx_ptp_data *ptp_data = container_of(ptp,
2125 						     struct efx_ptp_data,
2126 						     phc_clock_info);
2127 	struct efx_nic *efx = ptp_data->efx;
2128 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2129 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2130 	int rc;
2131 	ktime_t kt;
2132 
2133 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2134 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2135 
2136 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2137 			  outbuf, sizeof(outbuf), NULL);
2138 	if (rc != 0)
2139 		return rc;
2140 
2141 	kt = ptp_data->nic_to_kernel_time(
2142 		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2143 		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2144 	*ts = ktime_to_timespec64(kt);
2145 	return 0;
2146 }
2147 
2148 static int efx_phc_settime(struct ptp_clock_info *ptp,
2149 			   const struct timespec64 *e_ts)
2150 {
2151 	/* Get the current NIC time, efx_phc_gettime.
2152 	 * Subtract from the desired time to get the offset
2153 	 * call efx_phc_adjtime with the offset
2154 	 */
2155 	int rc;
2156 	struct timespec64 time_now;
2157 	struct timespec64 delta;
2158 
2159 	rc = efx_phc_gettime(ptp, &time_now);
2160 	if (rc != 0)
2161 		return rc;
2162 
2163 	delta = timespec64_sub(*e_ts, time_now);
2164 
2165 	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2166 	if (rc != 0)
2167 		return rc;
2168 
2169 	return 0;
2170 }
2171 
2172 static int efx_phc_enable(struct ptp_clock_info *ptp,
2173 			  struct ptp_clock_request *request,
2174 			  int enable)
2175 {
2176 	struct efx_ptp_data *ptp_data = container_of(ptp,
2177 						     struct efx_ptp_data,
2178 						     phc_clock_info);
2179 	if (request->type != PTP_CLK_REQ_PPS)
2180 		return -EOPNOTSUPP;
2181 
2182 	ptp_data->nic_ts_enabled = !!enable;
2183 	return 0;
2184 }
2185 
2186 static const struct efx_channel_type efx_ptp_channel_type = {
2187 	.handle_no_channel	= efx_ptp_handle_no_channel,
2188 	.pre_probe		= efx_ptp_probe_channel,
2189 	.post_remove		= efx_ptp_remove_channel,
2190 	.get_name		= efx_ptp_get_channel_name,
2191 	.copy                   = efx_copy_channel,
2192 	.receive_skb		= efx_ptp_rx,
2193 	.want_txqs		= efx_ptp_want_txqs,
2194 	.keep_eventq		= false,
2195 };
2196 
2197 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2198 {
2199 	/* Check whether PTP is implemented on this NIC.  The DISABLE
2200 	 * operation will succeed if and only if it is implemented.
2201 	 */
2202 	if (efx_ptp_disable(efx) == 0)
2203 		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2204 			&efx_ptp_channel_type;
2205 }
2206 
2207 void efx_ptp_start_datapath(struct efx_nic *efx)
2208 {
2209 	if (efx_ptp_restart(efx))
2210 		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2211 	/* re-enable timestamping if it was previously enabled */
2212 	if (efx->type->ptp_set_ts_sync_events)
2213 		efx->type->ptp_set_ts_sync_events(efx, true, true);
2214 }
2215 
2216 void efx_ptp_stop_datapath(struct efx_nic *efx)
2217 {
2218 	/* temporarily disable timestamping */
2219 	if (efx->type->ptp_set_ts_sync_events)
2220 		efx->type->ptp_set_ts_sync_events(efx, false, true);
2221 	efx_ptp_stop(efx);
2222 }
2223