1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2011-2013 Solarflare Communications Inc. 5 */ 6 7 /* Theory of operation: 8 * 9 * PTP support is assisted by firmware running on the MC, which provides 10 * the hardware timestamping capabilities. Both transmitted and received 11 * PTP event packets are queued onto internal queues for subsequent processing; 12 * this is because the MC operations are relatively long and would block 13 * block NAPI/interrupt operation. 14 * 15 * Receive event processing: 16 * The event contains the packet's UUID and sequence number, together 17 * with the hardware timestamp. The PTP receive packet queue is searched 18 * for this UUID/sequence number and, if found, put on a pending queue. 19 * Packets not matching are delivered without timestamps (MCDI events will 20 * always arrive after the actual packet). 21 * It is important for the operation of the PTP protocol that the ordering 22 * of packets between the event and general port is maintained. 23 * 24 * Work queue processing: 25 * If work waiting, synchronise host/hardware time 26 * 27 * Transmit: send packet through MC, which returns the transmission time 28 * that is converted to an appropriate timestamp. 29 * 30 * Receive: the packet's reception time is converted to an appropriate 31 * timestamp. 32 */ 33 #include <linux/ip.h> 34 #include <linux/udp.h> 35 #include <linux/time.h> 36 #include <linux/ktime.h> 37 #include <linux/module.h> 38 #include <linux/net_tstamp.h> 39 #include <linux/pps_kernel.h> 40 #include <linux/ptp_clock_kernel.h> 41 #include "net_driver.h" 42 #include "efx.h" 43 #include "mcdi.h" 44 #include "mcdi_pcol.h" 45 #include "io.h" 46 #include "farch_regs.h" 47 #include "nic.h" 48 49 /* Maximum number of events expected to make up a PTP event */ 50 #define MAX_EVENT_FRAGS 3 51 52 /* Maximum delay, ms, to begin synchronisation */ 53 #define MAX_SYNCHRONISE_WAIT_MS 2 54 55 /* How long, at most, to spend synchronising */ 56 #define SYNCHRONISE_PERIOD_NS 250000 57 58 /* How often to update the shared memory time */ 59 #define SYNCHRONISATION_GRANULARITY_NS 200 60 61 /* Minimum permitted length of a (corrected) synchronisation time */ 62 #define DEFAULT_MIN_SYNCHRONISATION_NS 120 63 64 /* Maximum permitted length of a (corrected) synchronisation time */ 65 #define MAX_SYNCHRONISATION_NS 1000 66 67 /* How many (MC) receive events that can be queued */ 68 #define MAX_RECEIVE_EVENTS 8 69 70 /* Length of (modified) moving average. */ 71 #define AVERAGE_LENGTH 16 72 73 /* How long an unmatched event or packet can be held */ 74 #define PKT_EVENT_LIFETIME_MS 10 75 76 /* Offsets into PTP packet for identification. These offsets are from the 77 * start of the IP header, not the MAC header. Note that neither PTP V1 nor 78 * PTP V2 permit the use of IPV4 options. 79 */ 80 #define PTP_DPORT_OFFSET 22 81 82 #define PTP_V1_VERSION_LENGTH 2 83 #define PTP_V1_VERSION_OFFSET 28 84 85 #define PTP_V1_UUID_LENGTH 6 86 #define PTP_V1_UUID_OFFSET 50 87 88 #define PTP_V1_SEQUENCE_LENGTH 2 89 #define PTP_V1_SEQUENCE_OFFSET 58 90 91 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: 92 * includes IP header. 93 */ 94 #define PTP_V1_MIN_LENGTH 64 95 96 #define PTP_V2_VERSION_LENGTH 1 97 #define PTP_V2_VERSION_OFFSET 29 98 99 #define PTP_V2_UUID_LENGTH 8 100 #define PTP_V2_UUID_OFFSET 48 101 102 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2), 103 * the MC only captures the last six bytes of the clock identity. These values 104 * reflect those, not the ones used in the standard. The standard permits 105 * mapping of V1 UUIDs to V2 UUIDs with these same values. 106 */ 107 #define PTP_V2_MC_UUID_LENGTH 6 108 #define PTP_V2_MC_UUID_OFFSET 50 109 110 #define PTP_V2_SEQUENCE_LENGTH 2 111 #define PTP_V2_SEQUENCE_OFFSET 58 112 113 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: 114 * includes IP header. 115 */ 116 #define PTP_V2_MIN_LENGTH 63 117 118 #define PTP_MIN_LENGTH 63 119 120 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */ 121 #define PTP_EVENT_PORT 319 122 #define PTP_GENERAL_PORT 320 123 124 /* Annoyingly the format of the version numbers are different between 125 * versions 1 and 2 so it isn't possible to simply look for 1 or 2. 126 */ 127 #define PTP_VERSION_V1 1 128 129 #define PTP_VERSION_V2 2 130 #define PTP_VERSION_V2_MASK 0x0f 131 132 enum ptp_packet_state { 133 PTP_PACKET_STATE_UNMATCHED = 0, 134 PTP_PACKET_STATE_MATCHED, 135 PTP_PACKET_STATE_TIMED_OUT, 136 PTP_PACKET_STATE_MATCH_UNWANTED 137 }; 138 139 /* NIC synchronised with single word of time only comprising 140 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. 141 */ 142 #define MC_NANOSECOND_BITS 30 143 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) 144 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) 145 146 /* Maximum parts-per-billion adjustment that is acceptable */ 147 #define MAX_PPB 1000000 148 149 /* Precalculate scale word to avoid long long division at runtime */ 150 /* This is equivalent to 2^66 / 10^9. */ 151 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL) 152 153 /* How much to shift down after scaling to convert to FP40 */ 154 #define PPB_SHIFT_FP40 26 155 /* ... and FP44. */ 156 #define PPB_SHIFT_FP44 22 157 158 #define PTP_SYNC_ATTEMPTS 4 159 160 /** 161 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. 162 * @words: UUID and (partial) sequence number 163 * @expiry: Time after which the packet should be delivered irrespective of 164 * event arrival. 165 * @state: The state of the packet - whether it is ready for processing or 166 * whether that is of no interest. 167 */ 168 struct efx_ptp_match { 169 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)]; 170 unsigned long expiry; 171 enum ptp_packet_state state; 172 }; 173 174 /** 175 * struct efx_ptp_event_rx - A PTP receive event (from MC) 176 * @seq0: First part of (PTP) UUID 177 * @seq1: Second part of (PTP) UUID and sequence number 178 * @hwtimestamp: Event timestamp 179 */ 180 struct efx_ptp_event_rx { 181 struct list_head link; 182 u32 seq0; 183 u32 seq1; 184 ktime_t hwtimestamp; 185 unsigned long expiry; 186 }; 187 188 /** 189 * struct efx_ptp_timeset - Synchronisation between host and MC 190 * @host_start: Host time immediately before hardware timestamp taken 191 * @major: Hardware timestamp, major 192 * @minor: Hardware timestamp, minor 193 * @host_end: Host time immediately after hardware timestamp taken 194 * @wait: Number of NIC clock ticks between hardware timestamp being read and 195 * host end time being seen 196 * @window: Difference of host_end and host_start 197 * @valid: Whether this timeset is valid 198 */ 199 struct efx_ptp_timeset { 200 u32 host_start; 201 u32 major; 202 u32 minor; 203 u32 host_end; 204 u32 wait; 205 u32 window; /* Derived: end - start, allowing for wrap */ 206 }; 207 208 /** 209 * struct efx_ptp_data - Precision Time Protocol (PTP) state 210 * @efx: The NIC context 211 * @channel: The PTP channel (Siena only) 212 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are 213 * separate events) 214 * @rxq: Receive SKB queue (awaiting timestamps) 215 * @txq: Transmit SKB queue 216 * @evt_list: List of MC receive events awaiting packets 217 * @evt_free_list: List of free events 218 * @evt_lock: Lock for manipulating evt_list and evt_free_list 219 * @rx_evts: Instantiated events (on evt_list and evt_free_list) 220 * @workwq: Work queue for processing pending PTP operations 221 * @work: Work task 222 * @reset_required: A serious error has occurred and the PTP task needs to be 223 * reset (disable, enable). 224 * @rxfilter_event: Receive filter when operating 225 * @rxfilter_general: Receive filter when operating 226 * @config: Current timestamp configuration 227 * @enabled: PTP operation enabled 228 * @mode: Mode in which PTP operating (PTP version) 229 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time 230 * @nic_to_kernel_time: Function to convert from NIC to kernel time 231 * @nic_time.minor_max: Wrap point for NIC minor times 232 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time 233 * in packet prefix and last MCDI time sync event i.e. how much earlier than 234 * the last sync event time a packet timestamp can be. 235 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time 236 * in packet prefix and last MCDI time sync event i.e. how much later than 237 * the last sync event time a packet timestamp can be. 238 * @nic_time.sync_event_minor_shift: Shift required to make minor time from 239 * field in MCDI time sync event. 240 * @min_synchronisation_ns: Minimum acceptable corrected sync window 241 * @capabilities: Capabilities flags from the NIC 242 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit 243 * timestamps 244 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive 245 * timestamps 246 * @ts_corrections.pps_out: PPS output error (information only) 247 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps 248 * @ts_corrections.general_tx: Required driver correction of general packet 249 * transmit timestamps 250 * @ts_corrections.general_rx: Required driver correction of general packet 251 * receive timestamps 252 * @evt_frags: Partly assembled PTP events 253 * @evt_frag_idx: Current fragment number 254 * @evt_code: Last event code 255 * @start: Address at which MC indicates ready for synchronisation 256 * @host_time_pps: Host time at last PPS 257 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion 258 * frequency adjustment into a fixed point fractional nanosecond format. 259 * @current_adjfreq: Current ppb adjustment. 260 * @phc_clock: Pointer to registered phc device (if primary function) 261 * @phc_clock_info: Registration structure for phc device 262 * @pps_work: pps work task for handling pps events 263 * @pps_workwq: pps work queue 264 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled 265 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids 266 * allocations in main data path). 267 * @good_syncs: Number of successful synchronisations. 268 * @fast_syncs: Number of synchronisations requiring short delay 269 * @bad_syncs: Number of failed synchronisations. 270 * @sync_timeouts: Number of synchronisation timeouts 271 * @no_time_syncs: Number of synchronisations with no good times. 272 * @invalid_sync_windows: Number of sync windows with bad durations. 273 * @undersize_sync_windows: Number of corrected sync windows that are too small 274 * @oversize_sync_windows: Number of corrected sync windows that are too large 275 * @rx_no_timestamp: Number of packets received without a timestamp. 276 * @timeset: Last set of synchronisation statistics. 277 * @xmit_skb: Transmit SKB function. 278 */ 279 struct efx_ptp_data { 280 struct efx_nic *efx; 281 struct efx_channel *channel; 282 bool rx_ts_inline; 283 struct sk_buff_head rxq; 284 struct sk_buff_head txq; 285 struct list_head evt_list; 286 struct list_head evt_free_list; 287 spinlock_t evt_lock; 288 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS]; 289 struct workqueue_struct *workwq; 290 struct work_struct work; 291 bool reset_required; 292 u32 rxfilter_event; 293 u32 rxfilter_general; 294 bool rxfilter_installed; 295 struct hwtstamp_config config; 296 bool enabled; 297 unsigned int mode; 298 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); 299 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, 300 s32 correction); 301 struct { 302 u32 minor_max; 303 u32 sync_event_diff_min; 304 u32 sync_event_diff_max; 305 unsigned int sync_event_minor_shift; 306 } nic_time; 307 unsigned int min_synchronisation_ns; 308 unsigned int capabilities; 309 struct { 310 s32 ptp_tx; 311 s32 ptp_rx; 312 s32 pps_out; 313 s32 pps_in; 314 s32 general_tx; 315 s32 general_rx; 316 } ts_corrections; 317 efx_qword_t evt_frags[MAX_EVENT_FRAGS]; 318 int evt_frag_idx; 319 int evt_code; 320 struct efx_buffer start; 321 struct pps_event_time host_time_pps; 322 unsigned int adjfreq_ppb_shift; 323 s64 current_adjfreq; 324 struct ptp_clock *phc_clock; 325 struct ptp_clock_info phc_clock_info; 326 struct work_struct pps_work; 327 struct workqueue_struct *pps_workwq; 328 bool nic_ts_enabled; 329 _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX); 330 331 unsigned int good_syncs; 332 unsigned int fast_syncs; 333 unsigned int bad_syncs; 334 unsigned int sync_timeouts; 335 unsigned int no_time_syncs; 336 unsigned int invalid_sync_windows; 337 unsigned int undersize_sync_windows; 338 unsigned int oversize_sync_windows; 339 unsigned int rx_no_timestamp; 340 struct efx_ptp_timeset 341 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; 342 void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb); 343 }; 344 345 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta); 346 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); 347 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts); 348 static int efx_phc_settime(struct ptp_clock_info *ptp, 349 const struct timespec64 *e_ts); 350 static int efx_phc_enable(struct ptp_clock_info *ptp, 351 struct ptp_clock_request *request, int on); 352 353 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx) 354 { 355 return efx_has_cap(efx, TX_MAC_TIMESTAMPING, FLAGS2); 356 } 357 358 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues 359 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit. 360 */ 361 static bool efx_ptp_want_txqs(struct efx_channel *channel) 362 { 363 return efx_ptp_use_mac_tx_timestamps(channel->efx); 364 } 365 366 #define PTP_SW_STAT(ext_name, field_name) \ 367 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } 368 #define PTP_MC_STAT(ext_name, mcdi_name) \ 369 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } 370 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { 371 PTP_SW_STAT(ptp_good_syncs, good_syncs), 372 PTP_SW_STAT(ptp_fast_syncs, fast_syncs), 373 PTP_SW_STAT(ptp_bad_syncs, bad_syncs), 374 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), 375 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), 376 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), 377 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), 378 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), 379 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), 380 PTP_MC_STAT(ptp_tx_timestamp_packets, TX), 381 PTP_MC_STAT(ptp_rx_timestamp_packets, RX), 382 PTP_MC_STAT(ptp_timestamp_packets, TS), 383 PTP_MC_STAT(ptp_filter_matches, FM), 384 PTP_MC_STAT(ptp_non_filter_matches, NFM), 385 }; 386 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) 387 static const unsigned long efx_ptp_stat_mask[] = { 388 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, 389 }; 390 391 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings) 392 { 393 if (!efx->ptp_data) 394 return 0; 395 396 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 397 efx_ptp_stat_mask, strings); 398 } 399 400 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats) 401 { 402 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); 403 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); 404 size_t i; 405 int rc; 406 407 if (!efx->ptp_data) 408 return 0; 409 410 /* Copy software statistics */ 411 for (i = 0; i < PTP_STAT_COUNT; i++) { 412 if (efx_ptp_stat_desc[i].dma_width) 413 continue; 414 stats[i] = *(unsigned int *)((char *)efx->ptp_data + 415 efx_ptp_stat_desc[i].offset); 416 } 417 418 /* Fetch MC statistics. We *must* fill in all statistics or 419 * risk leaking kernel memory to userland, so if the MCDI 420 * request fails we pretend we got zeroes. 421 */ 422 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); 423 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 424 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 425 outbuf, sizeof(outbuf), NULL); 426 if (rc) 427 memset(outbuf, 0, sizeof(outbuf)); 428 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 429 efx_ptp_stat_mask, 430 stats, _MCDI_PTR(outbuf, 0), false); 431 432 return PTP_STAT_COUNT; 433 } 434 435 /* For Siena platforms NIC time is s and ns */ 436 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor) 437 { 438 struct timespec64 ts = ns_to_timespec64(ns); 439 *nic_major = (u32)ts.tv_sec; 440 *nic_minor = ts.tv_nsec; 441 } 442 443 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor, 444 s32 correction) 445 { 446 ktime_t kt = ktime_set(nic_major, nic_minor); 447 if (correction >= 0) 448 kt = ktime_add_ns(kt, (u64)correction); 449 else 450 kt = ktime_sub_ns(kt, (u64)-correction); 451 return kt; 452 } 453 454 /* To convert from s27 format to ns we multiply then divide by a power of 2. 455 * For the conversion from ns to s27, the operation is also converted to a 456 * multiply and shift. 457 */ 458 #define S27_TO_NS_SHIFT (27) 459 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) 460 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT) 461 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT) 462 463 /* For Huntington platforms NIC time is in seconds and fractions of a second 464 * where the minor register only uses 27 bits in units of 2^-27s. 465 */ 466 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) 467 { 468 struct timespec64 ts = ns_to_timespec64(ns); 469 u32 maj = (u32)ts.tv_sec; 470 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + 471 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); 472 473 /* The conversion can result in the minor value exceeding the maximum. 474 * In this case, round up to the next second. 475 */ 476 if (min >= S27_MINOR_MAX) { 477 min -= S27_MINOR_MAX; 478 maj++; 479 } 480 481 *nic_major = maj; 482 *nic_minor = min; 483 } 484 485 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) 486 { 487 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + 488 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); 489 return ktime_set(nic_major, ns); 490 } 491 492 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, 493 s32 correction) 494 { 495 /* Apply the correction and deal with carry */ 496 nic_minor += correction; 497 if ((s32)nic_minor < 0) { 498 nic_minor += S27_MINOR_MAX; 499 nic_major--; 500 } else if (nic_minor >= S27_MINOR_MAX) { 501 nic_minor -= S27_MINOR_MAX; 502 nic_major++; 503 } 504 505 return efx_ptp_s27_to_ktime(nic_major, nic_minor); 506 } 507 508 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */ 509 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor) 510 { 511 struct timespec64 ts = ns_to_timespec64(ns); 512 513 *nic_major = (u32)ts.tv_sec; 514 *nic_minor = ts.tv_nsec * 4; 515 } 516 517 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor, 518 s32 correction) 519 { 520 ktime_t kt; 521 522 nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4); 523 correction = DIV_ROUND_CLOSEST(correction, 4); 524 525 kt = ktime_set(nic_major, nic_minor); 526 527 if (correction >= 0) 528 kt = ktime_add_ns(kt, (u64)correction); 529 else 530 kt = ktime_sub_ns(kt, (u64)-correction); 531 return kt; 532 } 533 534 struct efx_channel *efx_ptp_channel(struct efx_nic *efx) 535 { 536 return efx->ptp_data ? efx->ptp_data->channel : NULL; 537 } 538 539 static u32 last_sync_timestamp_major(struct efx_nic *efx) 540 { 541 struct efx_channel *channel = efx_ptp_channel(efx); 542 u32 major = 0; 543 544 if (channel) 545 major = channel->sync_timestamp_major; 546 return major; 547 } 548 549 /* The 8000 series and later can provide the time from the MAC, which is only 550 * 48 bits long and provides meta-information in the top 2 bits. 551 */ 552 static ktime_t 553 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx, 554 struct efx_ptp_data *ptp, 555 u32 nic_major, u32 nic_minor, 556 s32 correction) 557 { 558 u32 sync_timestamp; 559 ktime_t kt = { 0 }; 560 s16 delta; 561 562 if (!(nic_major & 0x80000000)) { 563 WARN_ON_ONCE(nic_major >> 16); 564 565 /* Medford provides 48 bits of timestamp, so we must get the top 566 * 16 bits from the timesync event state. 567 * 568 * We only have the lower 16 bits of the time now, but we do 569 * have a full resolution timestamp at some point in past. As 570 * long as the difference between the (real) now and the sync 571 * is less than 2^15, then we can reconstruct the difference 572 * between those two numbers using only the lower 16 bits of 573 * each. 574 * 575 * Put another way 576 * 577 * a - b = ((a mod k) - b) mod k 578 * 579 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know 580 * (a mod k) and b, so can calculate the delta, a - b. 581 * 582 */ 583 sync_timestamp = last_sync_timestamp_major(efx); 584 585 /* Because delta is s16 this does an implicit mask down to 586 * 16 bits which is what we need, assuming 587 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that 588 * we can deal with the (unlikely) case of sync timestamps 589 * arriving from the future. 590 */ 591 delta = nic_major - sync_timestamp; 592 593 /* Recover the fully specified time now, by applying the offset 594 * to the (fully specified) sync time. 595 */ 596 nic_major = sync_timestamp + delta; 597 598 kt = ptp->nic_to_kernel_time(nic_major, nic_minor, 599 correction); 600 } 601 return kt; 602 } 603 604 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue) 605 { 606 struct efx_nic *efx = tx_queue->efx; 607 struct efx_ptp_data *ptp = efx->ptp_data; 608 ktime_t kt; 609 610 if (efx_ptp_use_mac_tx_timestamps(efx)) 611 kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp, 612 tx_queue->completed_timestamp_major, 613 tx_queue->completed_timestamp_minor, 614 ptp->ts_corrections.general_tx); 615 else 616 kt = ptp->nic_to_kernel_time( 617 tx_queue->completed_timestamp_major, 618 tx_queue->completed_timestamp_minor, 619 ptp->ts_corrections.general_tx); 620 return kt; 621 } 622 623 /* Get PTP attributes and set up time conversions */ 624 static int efx_ptp_get_attributes(struct efx_nic *efx) 625 { 626 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); 627 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); 628 struct efx_ptp_data *ptp = efx->ptp_data; 629 int rc; 630 u32 fmt; 631 size_t out_len; 632 633 /* Get the PTP attributes. If the NIC doesn't support the operation we 634 * use the default format for compatibility with older NICs i.e. 635 * seconds and nanoseconds. 636 */ 637 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); 638 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 639 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 640 outbuf, sizeof(outbuf), &out_len); 641 if (rc == 0) { 642 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); 643 } else if (rc == -EINVAL) { 644 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; 645 } else if (rc == -EPERM) { 646 netif_info(efx, probe, efx->net_dev, "no PTP support\n"); 647 return rc; 648 } else { 649 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), 650 outbuf, sizeof(outbuf), rc); 651 return rc; 652 } 653 654 switch (fmt) { 655 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION: 656 ptp->ns_to_nic_time = efx_ptp_ns_to_s27; 657 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; 658 ptp->nic_time.minor_max = 1 << 27; 659 ptp->nic_time.sync_event_minor_shift = 19; 660 break; 661 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS: 662 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns; 663 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction; 664 ptp->nic_time.minor_max = 1000000000; 665 ptp->nic_time.sync_event_minor_shift = 22; 666 break; 667 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS: 668 ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns; 669 ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction; 670 ptp->nic_time.minor_max = 4000000000UL; 671 ptp->nic_time.sync_event_minor_shift = 24; 672 break; 673 default: 674 return -ERANGE; 675 } 676 677 /* Precalculate acceptable difference between the minor time in the 678 * packet prefix and the last MCDI time sync event. We expect the 679 * packet prefix timestamp to be after of sync event by up to one 680 * sync event interval (0.25s) but we allow it to exceed this by a 681 * fuzz factor of (0.1s) 682 */ 683 ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max 684 - (ptp->nic_time.minor_max / 10); 685 ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4) 686 + (ptp->nic_time.minor_max / 10); 687 688 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older 689 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return 690 * a value to use for the minimum acceptable corrected synchronization 691 * window and may return further capabilities. 692 * If we have the extra information store it. For older firmware that 693 * does not implement the extended command use the default value. 694 */ 695 if (rc == 0 && 696 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST) 697 ptp->min_synchronisation_ns = 698 MCDI_DWORD(outbuf, 699 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); 700 else 701 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; 702 703 if (rc == 0 && 704 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) 705 ptp->capabilities = MCDI_DWORD(outbuf, 706 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES); 707 else 708 ptp->capabilities = 0; 709 710 /* Set up the shift for conversion between frequency 711 * adjustments in parts-per-billion and the fixed-point 712 * fractional ns format that the adapter uses. 713 */ 714 if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN)) 715 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44; 716 else 717 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40; 718 719 return 0; 720 } 721 722 /* Get PTP timestamp corrections */ 723 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) 724 { 725 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); 726 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN); 727 int rc; 728 size_t out_len; 729 730 /* Get the timestamp corrections from the NIC. If this operation is 731 * not supported (older NICs) then no correction is required. 732 */ 733 MCDI_SET_DWORD(inbuf, PTP_IN_OP, 734 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); 735 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 736 737 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 738 outbuf, sizeof(outbuf), &out_len); 739 if (rc == 0) { 740 efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf, 741 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); 742 efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf, 743 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); 744 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, 745 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); 746 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, 747 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); 748 749 if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) { 750 efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD( 751 outbuf, 752 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX); 753 efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD( 754 outbuf, 755 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX); 756 } else { 757 efx->ptp_data->ts_corrections.general_tx = 758 efx->ptp_data->ts_corrections.ptp_tx; 759 efx->ptp_data->ts_corrections.general_rx = 760 efx->ptp_data->ts_corrections.ptp_rx; 761 } 762 } else if (rc == -EINVAL) { 763 efx->ptp_data->ts_corrections.ptp_tx = 0; 764 efx->ptp_data->ts_corrections.ptp_rx = 0; 765 efx->ptp_data->ts_corrections.pps_out = 0; 766 efx->ptp_data->ts_corrections.pps_in = 0; 767 efx->ptp_data->ts_corrections.general_tx = 0; 768 efx->ptp_data->ts_corrections.general_rx = 0; 769 } else { 770 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, 771 sizeof(outbuf), rc); 772 return rc; 773 } 774 775 return 0; 776 } 777 778 /* Enable MCDI PTP support. */ 779 static int efx_ptp_enable(struct efx_nic *efx) 780 { 781 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); 782 MCDI_DECLARE_BUF_ERR(outbuf); 783 int rc; 784 785 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); 786 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 787 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, 788 efx->ptp_data->channel ? 789 efx->ptp_data->channel->channel : 0); 790 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); 791 792 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 793 outbuf, sizeof(outbuf), NULL); 794 rc = (rc == -EALREADY) ? 0 : rc; 795 if (rc) 796 efx_mcdi_display_error(efx, MC_CMD_PTP, 797 MC_CMD_PTP_IN_ENABLE_LEN, 798 outbuf, sizeof(outbuf), rc); 799 return rc; 800 } 801 802 /* Disable MCDI PTP support. 803 * 804 * Note that this function should never rely on the presence of ptp_data - 805 * may be called before that exists. 806 */ 807 static int efx_ptp_disable(struct efx_nic *efx) 808 { 809 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); 810 MCDI_DECLARE_BUF_ERR(outbuf); 811 int rc; 812 813 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); 814 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 815 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 816 outbuf, sizeof(outbuf), NULL); 817 rc = (rc == -EALREADY) ? 0 : rc; 818 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function 819 * should only have been called during probe. 820 */ 821 if (rc == -ENOSYS || rc == -EPERM) 822 netif_info(efx, probe, efx->net_dev, "no PTP support\n"); 823 else if (rc) 824 efx_mcdi_display_error(efx, MC_CMD_PTP, 825 MC_CMD_PTP_IN_DISABLE_LEN, 826 outbuf, sizeof(outbuf), rc); 827 return rc; 828 } 829 830 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) 831 { 832 struct sk_buff *skb; 833 834 while ((skb = skb_dequeue(q))) { 835 local_bh_disable(); 836 netif_receive_skb(skb); 837 local_bh_enable(); 838 } 839 } 840 841 static void efx_ptp_handle_no_channel(struct efx_nic *efx) 842 { 843 netif_err(efx, drv, efx->net_dev, 844 "ERROR: PTP requires MSI-X and 1 additional interrupt" 845 "vector. PTP disabled\n"); 846 } 847 848 /* Repeatedly send the host time to the MC which will capture the hardware 849 * time. 850 */ 851 static void efx_ptp_send_times(struct efx_nic *efx, 852 struct pps_event_time *last_time) 853 { 854 struct pps_event_time now; 855 struct timespec64 limit; 856 struct efx_ptp_data *ptp = efx->ptp_data; 857 int *mc_running = ptp->start.addr; 858 859 pps_get_ts(&now); 860 limit = now.ts_real; 861 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS); 862 863 /* Write host time for specified period or until MC is done */ 864 while ((timespec64_compare(&now.ts_real, &limit) < 0) && 865 READ_ONCE(*mc_running)) { 866 struct timespec64 update_time; 867 unsigned int host_time; 868 869 /* Don't update continuously to avoid saturating the PCIe bus */ 870 update_time = now.ts_real; 871 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); 872 do { 873 pps_get_ts(&now); 874 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) && 875 READ_ONCE(*mc_running)); 876 877 /* Synchronise NIC with single word of time only */ 878 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | 879 now.ts_real.tv_nsec); 880 /* Update host time in NIC memory */ 881 efx->type->ptp_write_host_time(efx, host_time); 882 } 883 *last_time = now; 884 } 885 886 /* Read a timeset from the MC's results and partial process. */ 887 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), 888 struct efx_ptp_timeset *timeset) 889 { 890 unsigned start_ns, end_ns; 891 892 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); 893 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); 894 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); 895 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), 896 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); 897 898 /* Ignore seconds */ 899 start_ns = timeset->host_start & MC_NANOSECOND_MASK; 900 end_ns = timeset->host_end & MC_NANOSECOND_MASK; 901 /* Allow for rollover */ 902 if (end_ns < start_ns) 903 end_ns += NSEC_PER_SEC; 904 /* Determine duration of operation */ 905 timeset->window = end_ns - start_ns; 906 } 907 908 /* Process times received from MC. 909 * 910 * Extract times from returned results, and establish the minimum value 911 * seen. The minimum value represents the "best" possible time and events 912 * too much greater than this are rejected - the machine is, perhaps, too 913 * busy. A number of readings are taken so that, hopefully, at least one good 914 * synchronisation will be seen in the results. 915 */ 916 static int 917 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), 918 size_t response_length, 919 const struct pps_event_time *last_time) 920 { 921 unsigned number_readings = 922 MCDI_VAR_ARRAY_LEN(response_length, 923 PTP_OUT_SYNCHRONIZE_TIMESET); 924 unsigned i; 925 unsigned ngood = 0; 926 unsigned last_good = 0; 927 struct efx_ptp_data *ptp = efx->ptp_data; 928 u32 last_sec; 929 u32 start_sec; 930 struct timespec64 delta; 931 ktime_t mc_time; 932 933 if (number_readings == 0) 934 return -EAGAIN; 935 936 /* Read the set of results and find the last good host-MC 937 * synchronization result. The MC times when it finishes reading the 938 * host time so the corrected window time should be fairly constant 939 * for a given platform. Increment stats for any results that appear 940 * to be erroneous. 941 */ 942 for (i = 0; i < number_readings; i++) { 943 s32 window, corrected; 944 struct timespec64 wait; 945 946 efx_ptp_read_timeset( 947 MCDI_ARRAY_STRUCT_PTR(synch_buf, 948 PTP_OUT_SYNCHRONIZE_TIMESET, i), 949 &ptp->timeset[i]); 950 951 wait = ktime_to_timespec64( 952 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); 953 window = ptp->timeset[i].window; 954 corrected = window - wait.tv_nsec; 955 956 /* We expect the uncorrected synchronization window to be at 957 * least as large as the interval between host start and end 958 * times. If it is smaller than this then this is mostly likely 959 * to be a consequence of the host's time being adjusted. 960 * Check that the corrected sync window is in a reasonable 961 * range. If it is out of range it is likely to be because an 962 * interrupt or other delay occurred between reading the system 963 * time and writing it to MC memory. 964 */ 965 if (window < SYNCHRONISATION_GRANULARITY_NS) { 966 ++ptp->invalid_sync_windows; 967 } else if (corrected >= MAX_SYNCHRONISATION_NS) { 968 ++ptp->oversize_sync_windows; 969 } else if (corrected < ptp->min_synchronisation_ns) { 970 ++ptp->undersize_sync_windows; 971 } else { 972 ngood++; 973 last_good = i; 974 } 975 } 976 977 if (ngood == 0) { 978 netif_warn(efx, drv, efx->net_dev, 979 "PTP no suitable synchronisations\n"); 980 return -EAGAIN; 981 } 982 983 /* Calculate delay from last good sync (host time) to last_time. 984 * It is possible that the seconds rolled over between taking 985 * the start reading and the last value written by the host. The 986 * timescales are such that a gap of more than one second is never 987 * expected. delta is *not* normalised. 988 */ 989 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; 990 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; 991 if (start_sec != last_sec && 992 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { 993 netif_warn(efx, hw, efx->net_dev, 994 "PTP bad synchronisation seconds\n"); 995 return -EAGAIN; 996 } 997 delta.tv_sec = (last_sec - start_sec) & 1; 998 delta.tv_nsec = 999 last_time->ts_real.tv_nsec - 1000 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); 1001 1002 /* Convert the NIC time at last good sync into kernel time. 1003 * No correction is required - this time is the output of a 1004 * firmware process. 1005 */ 1006 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, 1007 ptp->timeset[last_good].minor, 0); 1008 1009 /* Calculate delay from NIC top of second to last_time */ 1010 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec; 1011 1012 /* Set PPS timestamp to match NIC top of second */ 1013 ptp->host_time_pps = *last_time; 1014 pps_sub_ts(&ptp->host_time_pps, delta); 1015 1016 return 0; 1017 } 1018 1019 /* Synchronize times between the host and the MC */ 1020 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) 1021 { 1022 struct efx_ptp_data *ptp = efx->ptp_data; 1023 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); 1024 size_t response_length; 1025 int rc; 1026 unsigned long timeout; 1027 struct pps_event_time last_time = {}; 1028 unsigned int loops = 0; 1029 int *start = ptp->start.addr; 1030 1031 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); 1032 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); 1033 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, 1034 num_readings); 1035 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, 1036 ptp->start.dma_addr); 1037 1038 /* Clear flag that signals MC ready */ 1039 WRITE_ONCE(*start, 0); 1040 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, 1041 MC_CMD_PTP_IN_SYNCHRONIZE_LEN); 1042 EFX_WARN_ON_ONCE_PARANOID(rc); 1043 1044 /* Wait for start from MCDI (or timeout) */ 1045 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); 1046 while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) { 1047 udelay(20); /* Usually start MCDI execution quickly */ 1048 loops++; 1049 } 1050 1051 if (loops <= 1) 1052 ++ptp->fast_syncs; 1053 if (!time_before(jiffies, timeout)) 1054 ++ptp->sync_timeouts; 1055 1056 if (READ_ONCE(*start)) 1057 efx_ptp_send_times(efx, &last_time); 1058 1059 /* Collect results */ 1060 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, 1061 MC_CMD_PTP_IN_SYNCHRONIZE_LEN, 1062 synch_buf, sizeof(synch_buf), 1063 &response_length); 1064 if (rc == 0) { 1065 rc = efx_ptp_process_times(efx, synch_buf, response_length, 1066 &last_time); 1067 if (rc == 0) 1068 ++ptp->good_syncs; 1069 else 1070 ++ptp->no_time_syncs; 1071 } 1072 1073 /* Increment the bad syncs counter if the synchronize fails, whatever 1074 * the reason. 1075 */ 1076 if (rc != 0) 1077 ++ptp->bad_syncs; 1078 1079 return rc; 1080 } 1081 1082 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */ 1083 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb) 1084 { 1085 struct efx_ptp_data *ptp_data = efx->ptp_data; 1086 struct efx_tx_queue *tx_queue; 1087 u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; 1088 1089 tx_queue = &ptp_data->channel->tx_queue[type]; 1090 if (tx_queue && tx_queue->timestamping) { 1091 efx_enqueue_skb(tx_queue, skb); 1092 } else { 1093 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n"); 1094 dev_kfree_skb_any(skb); 1095 } 1096 } 1097 1098 /* Transmit a PTP packet, via the MCDI interface, to the wire. */ 1099 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb) 1100 { 1101 struct efx_ptp_data *ptp_data = efx->ptp_data; 1102 struct skb_shared_hwtstamps timestamps; 1103 int rc = -EIO; 1104 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); 1105 size_t len; 1106 1107 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); 1108 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); 1109 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); 1110 if (skb_shinfo(skb)->nr_frags != 0) { 1111 rc = skb_linearize(skb); 1112 if (rc != 0) 1113 goto fail; 1114 } 1115 1116 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1117 rc = skb_checksum_help(skb); 1118 if (rc != 0) 1119 goto fail; 1120 } 1121 skb_copy_from_linear_data(skb, 1122 MCDI_PTR(ptp_data->txbuf, 1123 PTP_IN_TRANSMIT_PACKET), 1124 skb->len); 1125 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, 1126 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 1127 txtime, sizeof(txtime), &len); 1128 if (rc != 0) 1129 goto fail; 1130 1131 memset(×tamps, 0, sizeof(timestamps)); 1132 timestamps.hwtstamp = ptp_data->nic_to_kernel_time( 1133 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), 1134 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), 1135 ptp_data->ts_corrections.ptp_tx); 1136 1137 skb_tstamp_tx(skb, ×tamps); 1138 1139 rc = 0; 1140 1141 fail: 1142 dev_kfree_skb_any(skb); 1143 1144 return; 1145 } 1146 1147 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx) 1148 { 1149 struct efx_ptp_data *ptp = efx->ptp_data; 1150 struct list_head *cursor; 1151 struct list_head *next; 1152 1153 if (ptp->rx_ts_inline) 1154 return; 1155 1156 /* Drop time-expired events */ 1157 spin_lock_bh(&ptp->evt_lock); 1158 if (!list_empty(&ptp->evt_list)) { 1159 list_for_each_safe(cursor, next, &ptp->evt_list) { 1160 struct efx_ptp_event_rx *evt; 1161 1162 evt = list_entry(cursor, struct efx_ptp_event_rx, 1163 link); 1164 if (time_after(jiffies, evt->expiry)) { 1165 list_move(&evt->link, &ptp->evt_free_list); 1166 netif_warn(efx, hw, efx->net_dev, 1167 "PTP rx event dropped\n"); 1168 } 1169 } 1170 } 1171 spin_unlock_bh(&ptp->evt_lock); 1172 } 1173 1174 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx, 1175 struct sk_buff *skb) 1176 { 1177 struct efx_ptp_data *ptp = efx->ptp_data; 1178 bool evts_waiting; 1179 struct list_head *cursor; 1180 struct list_head *next; 1181 struct efx_ptp_match *match; 1182 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED; 1183 1184 WARN_ON_ONCE(ptp->rx_ts_inline); 1185 1186 spin_lock_bh(&ptp->evt_lock); 1187 evts_waiting = !list_empty(&ptp->evt_list); 1188 spin_unlock_bh(&ptp->evt_lock); 1189 1190 if (!evts_waiting) 1191 return PTP_PACKET_STATE_UNMATCHED; 1192 1193 match = (struct efx_ptp_match *)skb->cb; 1194 /* Look for a matching timestamp in the event queue */ 1195 spin_lock_bh(&ptp->evt_lock); 1196 list_for_each_safe(cursor, next, &ptp->evt_list) { 1197 struct efx_ptp_event_rx *evt; 1198 1199 evt = list_entry(cursor, struct efx_ptp_event_rx, link); 1200 if ((evt->seq0 == match->words[0]) && 1201 (evt->seq1 == match->words[1])) { 1202 struct skb_shared_hwtstamps *timestamps; 1203 1204 /* Match - add in hardware timestamp */ 1205 timestamps = skb_hwtstamps(skb); 1206 timestamps->hwtstamp = evt->hwtimestamp; 1207 1208 match->state = PTP_PACKET_STATE_MATCHED; 1209 rc = PTP_PACKET_STATE_MATCHED; 1210 list_move(&evt->link, &ptp->evt_free_list); 1211 break; 1212 } 1213 } 1214 spin_unlock_bh(&ptp->evt_lock); 1215 1216 return rc; 1217 } 1218 1219 /* Process any queued receive events and corresponding packets 1220 * 1221 * q is returned with all the packets that are ready for delivery. 1222 */ 1223 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) 1224 { 1225 struct efx_ptp_data *ptp = efx->ptp_data; 1226 struct sk_buff *skb; 1227 1228 while ((skb = skb_dequeue(&ptp->rxq))) { 1229 struct efx_ptp_match *match; 1230 1231 match = (struct efx_ptp_match *)skb->cb; 1232 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { 1233 __skb_queue_tail(q, skb); 1234 } else if (efx_ptp_match_rx(efx, skb) == 1235 PTP_PACKET_STATE_MATCHED) { 1236 __skb_queue_tail(q, skb); 1237 } else if (time_after(jiffies, match->expiry)) { 1238 match->state = PTP_PACKET_STATE_TIMED_OUT; 1239 ++ptp->rx_no_timestamp; 1240 __skb_queue_tail(q, skb); 1241 } else { 1242 /* Replace unprocessed entry and stop */ 1243 skb_queue_head(&ptp->rxq, skb); 1244 break; 1245 } 1246 } 1247 } 1248 1249 /* Complete processing of a received packet */ 1250 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) 1251 { 1252 local_bh_disable(); 1253 netif_receive_skb(skb); 1254 local_bh_enable(); 1255 } 1256 1257 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx) 1258 { 1259 struct efx_ptp_data *ptp = efx->ptp_data; 1260 1261 if (ptp->rxfilter_installed) { 1262 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1263 ptp->rxfilter_general); 1264 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1265 ptp->rxfilter_event); 1266 ptp->rxfilter_installed = false; 1267 } 1268 } 1269 1270 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) 1271 { 1272 struct efx_ptp_data *ptp = efx->ptp_data; 1273 struct efx_filter_spec rxfilter; 1274 int rc; 1275 1276 if (!ptp->channel || ptp->rxfilter_installed) 1277 return 0; 1278 1279 /* Must filter on both event and general ports to ensure 1280 * that there is no packet re-ordering. 1281 */ 1282 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1283 efx_rx_queue_index( 1284 efx_channel_get_rx_queue(ptp->channel))); 1285 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, 1286 htonl(PTP_ADDRESS), 1287 htons(PTP_EVENT_PORT)); 1288 if (rc != 0) 1289 return rc; 1290 1291 rc = efx_filter_insert_filter(efx, &rxfilter, true); 1292 if (rc < 0) 1293 return rc; 1294 ptp->rxfilter_event = rc; 1295 1296 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1297 efx_rx_queue_index( 1298 efx_channel_get_rx_queue(ptp->channel))); 1299 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, 1300 htonl(PTP_ADDRESS), 1301 htons(PTP_GENERAL_PORT)); 1302 if (rc != 0) 1303 goto fail; 1304 1305 rc = efx_filter_insert_filter(efx, &rxfilter, true); 1306 if (rc < 0) 1307 goto fail; 1308 ptp->rxfilter_general = rc; 1309 1310 ptp->rxfilter_installed = true; 1311 return 0; 1312 1313 fail: 1314 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1315 ptp->rxfilter_event); 1316 return rc; 1317 } 1318 1319 static int efx_ptp_start(struct efx_nic *efx) 1320 { 1321 struct efx_ptp_data *ptp = efx->ptp_data; 1322 int rc; 1323 1324 ptp->reset_required = false; 1325 1326 rc = efx_ptp_insert_multicast_filters(efx); 1327 if (rc) 1328 return rc; 1329 1330 rc = efx_ptp_enable(efx); 1331 if (rc != 0) 1332 goto fail; 1333 1334 ptp->evt_frag_idx = 0; 1335 ptp->current_adjfreq = 0; 1336 1337 return 0; 1338 1339 fail: 1340 efx_ptp_remove_multicast_filters(efx); 1341 return rc; 1342 } 1343 1344 static int efx_ptp_stop(struct efx_nic *efx) 1345 { 1346 struct efx_ptp_data *ptp = efx->ptp_data; 1347 struct list_head *cursor; 1348 struct list_head *next; 1349 int rc; 1350 1351 if (ptp == NULL) 1352 return 0; 1353 1354 rc = efx_ptp_disable(efx); 1355 1356 efx_ptp_remove_multicast_filters(efx); 1357 1358 /* Make sure RX packets are really delivered */ 1359 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); 1360 skb_queue_purge(&efx->ptp_data->txq); 1361 1362 /* Drop any pending receive events */ 1363 spin_lock_bh(&efx->ptp_data->evt_lock); 1364 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) { 1365 list_move(cursor, &efx->ptp_data->evt_free_list); 1366 } 1367 spin_unlock_bh(&efx->ptp_data->evt_lock); 1368 1369 return rc; 1370 } 1371 1372 static int efx_ptp_restart(struct efx_nic *efx) 1373 { 1374 if (efx->ptp_data && efx->ptp_data->enabled) 1375 return efx_ptp_start(efx); 1376 return 0; 1377 } 1378 1379 static void efx_ptp_pps_worker(struct work_struct *work) 1380 { 1381 struct efx_ptp_data *ptp = 1382 container_of(work, struct efx_ptp_data, pps_work); 1383 struct efx_nic *efx = ptp->efx; 1384 struct ptp_clock_event ptp_evt; 1385 1386 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) 1387 return; 1388 1389 ptp_evt.type = PTP_CLOCK_PPSUSR; 1390 ptp_evt.pps_times = ptp->host_time_pps; 1391 ptp_clock_event(ptp->phc_clock, &ptp_evt); 1392 } 1393 1394 static void efx_ptp_worker(struct work_struct *work) 1395 { 1396 struct efx_ptp_data *ptp_data = 1397 container_of(work, struct efx_ptp_data, work); 1398 struct efx_nic *efx = ptp_data->efx; 1399 struct sk_buff *skb; 1400 struct sk_buff_head tempq; 1401 1402 if (ptp_data->reset_required) { 1403 efx_ptp_stop(efx); 1404 efx_ptp_start(efx); 1405 return; 1406 } 1407 1408 efx_ptp_drop_time_expired_events(efx); 1409 1410 __skb_queue_head_init(&tempq); 1411 efx_ptp_process_events(efx, &tempq); 1412 1413 while ((skb = skb_dequeue(&ptp_data->txq))) 1414 ptp_data->xmit_skb(efx, skb); 1415 1416 while ((skb = __skb_dequeue(&tempq))) 1417 efx_ptp_process_rx(efx, skb); 1418 } 1419 1420 static const struct ptp_clock_info efx_phc_clock_info = { 1421 .owner = THIS_MODULE, 1422 .name = "sfc", 1423 .max_adj = MAX_PPB, 1424 .n_alarm = 0, 1425 .n_ext_ts = 0, 1426 .n_per_out = 0, 1427 .n_pins = 0, 1428 .pps = 1, 1429 .adjfreq = efx_phc_adjfreq, 1430 .adjtime = efx_phc_adjtime, 1431 .gettime64 = efx_phc_gettime, 1432 .settime64 = efx_phc_settime, 1433 .enable = efx_phc_enable, 1434 }; 1435 1436 /* Initialise PTP state. */ 1437 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) 1438 { 1439 struct efx_ptp_data *ptp; 1440 int rc = 0; 1441 unsigned int pos; 1442 1443 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); 1444 efx->ptp_data = ptp; 1445 if (!efx->ptp_data) 1446 return -ENOMEM; 1447 1448 ptp->efx = efx; 1449 ptp->channel = channel; 1450 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0; 1451 1452 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); 1453 if (rc != 0) 1454 goto fail1; 1455 1456 skb_queue_head_init(&ptp->rxq); 1457 skb_queue_head_init(&ptp->txq); 1458 ptp->workwq = create_singlethread_workqueue("sfc_ptp"); 1459 if (!ptp->workwq) { 1460 rc = -ENOMEM; 1461 goto fail2; 1462 } 1463 1464 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1465 ptp->xmit_skb = efx_ptp_xmit_skb_queue; 1466 /* Request sync events on this channel. */ 1467 channel->sync_events_state = SYNC_EVENTS_QUIESCENT; 1468 } else { 1469 ptp->xmit_skb = efx_ptp_xmit_skb_mc; 1470 } 1471 1472 INIT_WORK(&ptp->work, efx_ptp_worker); 1473 ptp->config.flags = 0; 1474 ptp->config.tx_type = HWTSTAMP_TX_OFF; 1475 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; 1476 INIT_LIST_HEAD(&ptp->evt_list); 1477 INIT_LIST_HEAD(&ptp->evt_free_list); 1478 spin_lock_init(&ptp->evt_lock); 1479 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++) 1480 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list); 1481 1482 /* Get the NIC PTP attributes and set up time conversions */ 1483 rc = efx_ptp_get_attributes(efx); 1484 if (rc < 0) 1485 goto fail3; 1486 1487 /* Get the timestamp corrections */ 1488 rc = efx_ptp_get_timestamp_corrections(efx); 1489 if (rc < 0) 1490 goto fail3; 1491 1492 if (efx->mcdi->fn_flags & 1493 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { 1494 ptp->phc_clock_info = efx_phc_clock_info; 1495 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, 1496 &efx->pci_dev->dev); 1497 if (IS_ERR(ptp->phc_clock)) { 1498 rc = PTR_ERR(ptp->phc_clock); 1499 goto fail3; 1500 } else if (ptp->phc_clock) { 1501 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); 1502 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); 1503 if (!ptp->pps_workwq) { 1504 rc = -ENOMEM; 1505 goto fail4; 1506 } 1507 } 1508 } 1509 ptp->nic_ts_enabled = false; 1510 1511 return 0; 1512 fail4: 1513 ptp_clock_unregister(efx->ptp_data->phc_clock); 1514 1515 fail3: 1516 destroy_workqueue(efx->ptp_data->workwq); 1517 1518 fail2: 1519 efx_nic_free_buffer(efx, &ptp->start); 1520 1521 fail1: 1522 kfree(efx->ptp_data); 1523 efx->ptp_data = NULL; 1524 1525 return rc; 1526 } 1527 1528 /* Initialise PTP channel. 1529 * 1530 * Setting core_index to zero causes the queue to be initialised and doesn't 1531 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. 1532 */ 1533 static int efx_ptp_probe_channel(struct efx_channel *channel) 1534 { 1535 struct efx_nic *efx = channel->efx; 1536 int rc; 1537 1538 channel->irq_moderation_us = 0; 1539 channel->rx_queue.core_index = 0; 1540 1541 rc = efx_ptp_probe(efx, channel); 1542 /* Failure to probe PTP is not fatal; this channel will just not be 1543 * used for anything. 1544 * In the case of EPERM, efx_ptp_probe will print its own message (in 1545 * efx_ptp_get_attributes()), so we don't need to. 1546 */ 1547 if (rc && rc != -EPERM) 1548 netif_warn(efx, drv, efx->net_dev, 1549 "Failed to probe PTP, rc=%d\n", rc); 1550 return 0; 1551 } 1552 1553 void efx_ptp_remove(struct efx_nic *efx) 1554 { 1555 if (!efx->ptp_data) 1556 return; 1557 1558 (void)efx_ptp_disable(efx); 1559 1560 cancel_work_sync(&efx->ptp_data->work); 1561 if (efx->ptp_data->pps_workwq) 1562 cancel_work_sync(&efx->ptp_data->pps_work); 1563 1564 skb_queue_purge(&efx->ptp_data->rxq); 1565 skb_queue_purge(&efx->ptp_data->txq); 1566 1567 if (efx->ptp_data->phc_clock) { 1568 destroy_workqueue(efx->ptp_data->pps_workwq); 1569 ptp_clock_unregister(efx->ptp_data->phc_clock); 1570 } 1571 1572 destroy_workqueue(efx->ptp_data->workwq); 1573 1574 efx_nic_free_buffer(efx, &efx->ptp_data->start); 1575 kfree(efx->ptp_data); 1576 efx->ptp_data = NULL; 1577 } 1578 1579 static void efx_ptp_remove_channel(struct efx_channel *channel) 1580 { 1581 efx_ptp_remove(channel->efx); 1582 } 1583 1584 static void efx_ptp_get_channel_name(struct efx_channel *channel, 1585 char *buf, size_t len) 1586 { 1587 snprintf(buf, len, "%s-ptp", channel->efx->name); 1588 } 1589 1590 /* Determine whether this packet should be processed by the PTP module 1591 * or transmitted conventionally. 1592 */ 1593 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1594 { 1595 return efx->ptp_data && 1596 efx->ptp_data->enabled && 1597 skb->len >= PTP_MIN_LENGTH && 1598 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && 1599 likely(skb->protocol == htons(ETH_P_IP)) && 1600 skb_transport_header_was_set(skb) && 1601 skb_network_header_len(skb) >= sizeof(struct iphdr) && 1602 ip_hdr(skb)->protocol == IPPROTO_UDP && 1603 skb_headlen(skb) >= 1604 skb_transport_offset(skb) + sizeof(struct udphdr) && 1605 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); 1606 } 1607 1608 /* Receive a PTP packet. Packets are queued until the arrival of 1609 * the receive timestamp from the MC - this will probably occur after the 1610 * packet arrival because of the processing in the MC. 1611 */ 1612 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) 1613 { 1614 struct efx_nic *efx = channel->efx; 1615 struct efx_ptp_data *ptp = efx->ptp_data; 1616 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; 1617 u8 *match_data_012, *match_data_345; 1618 unsigned int version; 1619 u8 *data; 1620 1621 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1622 1623 /* Correct version? */ 1624 if (ptp->mode == MC_CMD_PTP_MODE_V1) { 1625 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { 1626 return false; 1627 } 1628 data = skb->data; 1629 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); 1630 if (version != PTP_VERSION_V1) { 1631 return false; 1632 } 1633 1634 /* PTP V1 uses all six bytes of the UUID to match the packet 1635 * to the timestamp 1636 */ 1637 match_data_012 = data + PTP_V1_UUID_OFFSET; 1638 match_data_345 = data + PTP_V1_UUID_OFFSET + 3; 1639 } else { 1640 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { 1641 return false; 1642 } 1643 data = skb->data; 1644 version = data[PTP_V2_VERSION_OFFSET]; 1645 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { 1646 return false; 1647 } 1648 1649 /* The original V2 implementation uses bytes 2-7 of 1650 * the UUID to match the packet to the timestamp. This 1651 * discards two of the bytes of the MAC address used 1652 * to create the UUID (SF bug 33070). The PTP V2 1653 * enhanced mode fixes this issue and uses bytes 0-2 1654 * and byte 5-7 of the UUID. 1655 */ 1656 match_data_345 = data + PTP_V2_UUID_OFFSET + 5; 1657 if (ptp->mode == MC_CMD_PTP_MODE_V2) { 1658 match_data_012 = data + PTP_V2_UUID_OFFSET + 2; 1659 } else { 1660 match_data_012 = data + PTP_V2_UUID_OFFSET + 0; 1661 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED); 1662 } 1663 } 1664 1665 /* Does this packet require timestamping? */ 1666 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { 1667 match->state = PTP_PACKET_STATE_UNMATCHED; 1668 1669 /* We expect the sequence number to be in the same position in 1670 * the packet for PTP V1 and V2 1671 */ 1672 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); 1673 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); 1674 1675 /* Extract UUID/Sequence information */ 1676 match->words[0] = (match_data_012[0] | 1677 (match_data_012[1] << 8) | 1678 (match_data_012[2] << 16) | 1679 (match_data_345[0] << 24)); 1680 match->words[1] = (match_data_345[1] | 1681 (match_data_345[2] << 8) | 1682 (data[PTP_V1_SEQUENCE_OFFSET + 1683 PTP_V1_SEQUENCE_LENGTH - 1] << 1684 16)); 1685 } else { 1686 match->state = PTP_PACKET_STATE_MATCH_UNWANTED; 1687 } 1688 1689 skb_queue_tail(&ptp->rxq, skb); 1690 queue_work(ptp->workwq, &ptp->work); 1691 1692 return true; 1693 } 1694 1695 /* Transmit a PTP packet. This has to be transmitted by the MC 1696 * itself, through an MCDI call. MCDI calls aren't permitted 1697 * in the transmit path so defer the actual transmission to a suitable worker. 1698 */ 1699 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1700 { 1701 struct efx_ptp_data *ptp = efx->ptp_data; 1702 1703 skb_queue_tail(&ptp->txq, skb); 1704 1705 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && 1706 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) 1707 efx_xmit_hwtstamp_pending(skb); 1708 queue_work(ptp->workwq, &ptp->work); 1709 1710 return NETDEV_TX_OK; 1711 } 1712 1713 int efx_ptp_get_mode(struct efx_nic *efx) 1714 { 1715 return efx->ptp_data->mode; 1716 } 1717 1718 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, 1719 unsigned int new_mode) 1720 { 1721 if ((enable_wanted != efx->ptp_data->enabled) || 1722 (enable_wanted && (efx->ptp_data->mode != new_mode))) { 1723 int rc = 0; 1724 1725 if (enable_wanted) { 1726 /* Change of mode requires disable */ 1727 if (efx->ptp_data->enabled && 1728 (efx->ptp_data->mode != new_mode)) { 1729 efx->ptp_data->enabled = false; 1730 rc = efx_ptp_stop(efx); 1731 if (rc != 0) 1732 return rc; 1733 } 1734 1735 /* Set new operating mode and establish 1736 * baseline synchronisation, which must 1737 * succeed. 1738 */ 1739 efx->ptp_data->mode = new_mode; 1740 if (netif_running(efx->net_dev)) 1741 rc = efx_ptp_start(efx); 1742 if (rc == 0) { 1743 rc = efx_ptp_synchronize(efx, 1744 PTP_SYNC_ATTEMPTS * 2); 1745 if (rc != 0) 1746 efx_ptp_stop(efx); 1747 } 1748 } else { 1749 rc = efx_ptp_stop(efx); 1750 } 1751 1752 if (rc != 0) 1753 return rc; 1754 1755 efx->ptp_data->enabled = enable_wanted; 1756 } 1757 1758 return 0; 1759 } 1760 1761 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init) 1762 { 1763 int rc; 1764 1765 if (init->flags) 1766 return -EINVAL; 1767 1768 if ((init->tx_type != HWTSTAMP_TX_OFF) && 1769 (init->tx_type != HWTSTAMP_TX_ON)) 1770 return -ERANGE; 1771 1772 rc = efx->type->ptp_set_ts_config(efx, init); 1773 if (rc) 1774 return rc; 1775 1776 efx->ptp_data->config = *init; 1777 return 0; 1778 } 1779 1780 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info) 1781 { 1782 struct efx_ptp_data *ptp = efx->ptp_data; 1783 struct efx_nic *primary = efx->primary; 1784 1785 ASSERT_RTNL(); 1786 1787 if (!ptp) 1788 return; 1789 1790 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 1791 SOF_TIMESTAMPING_RX_HARDWARE | 1792 SOF_TIMESTAMPING_RAW_HARDWARE); 1793 /* Check licensed features. If we don't have the license for TX 1794 * timestamps, the NIC will not support them. 1795 */ 1796 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1797 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1798 1799 if (!(nic_data->licensed_features & 1800 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) 1801 ts_info->so_timestamping &= 1802 ~SOF_TIMESTAMPING_TX_HARDWARE; 1803 } 1804 if (primary && primary->ptp_data && primary->ptp_data->phc_clock) 1805 ts_info->phc_index = 1806 ptp_clock_index(primary->ptp_data->phc_clock); 1807 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; 1808 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; 1809 } 1810 1811 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1812 { 1813 struct hwtstamp_config config; 1814 int rc; 1815 1816 /* Not a PTP enabled port */ 1817 if (!efx->ptp_data) 1818 return -EOPNOTSUPP; 1819 1820 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1821 return -EFAULT; 1822 1823 rc = efx_ptp_ts_init(efx, &config); 1824 if (rc != 0) 1825 return rc; 1826 1827 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) 1828 ? -EFAULT : 0; 1829 } 1830 1831 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1832 { 1833 if (!efx->ptp_data) 1834 return -EOPNOTSUPP; 1835 1836 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config, 1837 sizeof(efx->ptp_data->config)) ? -EFAULT : 0; 1838 } 1839 1840 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) 1841 { 1842 struct efx_ptp_data *ptp = efx->ptp_data; 1843 1844 netif_err(efx, hw, efx->net_dev, 1845 "PTP unexpected event length: got %d expected %d\n", 1846 ptp->evt_frag_idx, expected_frag_len); 1847 ptp->reset_required = true; 1848 queue_work(ptp->workwq, &ptp->work); 1849 } 1850 1851 /* Process a completed receive event. Put it on the event queue and 1852 * start worker thread. This is required because event and their 1853 * correspoding packets may come in either order. 1854 */ 1855 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp) 1856 { 1857 struct efx_ptp_event_rx *evt = NULL; 1858 1859 if (WARN_ON_ONCE(ptp->rx_ts_inline)) 1860 return; 1861 1862 if (ptp->evt_frag_idx != 3) { 1863 ptp_event_failure(efx, 3); 1864 return; 1865 } 1866 1867 spin_lock_bh(&ptp->evt_lock); 1868 if (!list_empty(&ptp->evt_free_list)) { 1869 evt = list_first_entry(&ptp->evt_free_list, 1870 struct efx_ptp_event_rx, link); 1871 list_del(&evt->link); 1872 1873 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA); 1874 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2], 1875 MCDI_EVENT_SRC) | 1876 (EFX_QWORD_FIELD(ptp->evt_frags[1], 1877 MCDI_EVENT_SRC) << 8) | 1878 (EFX_QWORD_FIELD(ptp->evt_frags[0], 1879 MCDI_EVENT_SRC) << 16)); 1880 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time( 1881 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA), 1882 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA), 1883 ptp->ts_corrections.ptp_rx); 1884 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1885 list_add_tail(&evt->link, &ptp->evt_list); 1886 1887 queue_work(ptp->workwq, &ptp->work); 1888 } else if (net_ratelimit()) { 1889 /* Log a rate-limited warning message. */ 1890 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n"); 1891 } 1892 spin_unlock_bh(&ptp->evt_lock); 1893 } 1894 1895 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) 1896 { 1897 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); 1898 if (ptp->evt_frag_idx != 1) { 1899 ptp_event_failure(efx, 1); 1900 return; 1901 } 1902 1903 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); 1904 } 1905 1906 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) 1907 { 1908 if (ptp->nic_ts_enabled) 1909 queue_work(ptp->pps_workwq, &ptp->pps_work); 1910 } 1911 1912 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) 1913 { 1914 struct efx_ptp_data *ptp = efx->ptp_data; 1915 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); 1916 1917 if (!ptp) { 1918 if (!efx->ptp_warned) { 1919 netif_warn(efx, drv, efx->net_dev, 1920 "Received PTP event but PTP not set up\n"); 1921 efx->ptp_warned = true; 1922 } 1923 return; 1924 } 1925 1926 if (!ptp->enabled) 1927 return; 1928 1929 if (ptp->evt_frag_idx == 0) { 1930 ptp->evt_code = code; 1931 } else if (ptp->evt_code != code) { 1932 netif_err(efx, hw, efx->net_dev, 1933 "PTP out of sequence event %d\n", code); 1934 ptp->evt_frag_idx = 0; 1935 } 1936 1937 ptp->evt_frags[ptp->evt_frag_idx++] = *ev; 1938 if (!MCDI_EVENT_FIELD(*ev, CONT)) { 1939 /* Process resulting event */ 1940 switch (code) { 1941 case MCDI_EVENT_CODE_PTP_RX: 1942 ptp_event_rx(efx, ptp); 1943 break; 1944 case MCDI_EVENT_CODE_PTP_FAULT: 1945 ptp_event_fault(efx, ptp); 1946 break; 1947 case MCDI_EVENT_CODE_PTP_PPS: 1948 ptp_event_pps(efx, ptp); 1949 break; 1950 default: 1951 netif_err(efx, hw, efx->net_dev, 1952 "PTP unknown event %d\n", code); 1953 break; 1954 } 1955 ptp->evt_frag_idx = 0; 1956 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { 1957 netif_err(efx, hw, efx->net_dev, 1958 "PTP too many event fragments\n"); 1959 ptp->evt_frag_idx = 0; 1960 } 1961 } 1962 1963 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) 1964 { 1965 struct efx_nic *efx = channel->efx; 1966 struct efx_ptp_data *ptp = efx->ptp_data; 1967 1968 /* When extracting the sync timestamp minor value, we should discard 1969 * the least significant two bits. These are not required in order 1970 * to reconstruct full-range timestamps and they are optionally used 1971 * to report status depending on the options supplied when subscribing 1972 * for sync events. 1973 */ 1974 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); 1975 channel->sync_timestamp_minor = 1976 (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC) 1977 << ptp->nic_time.sync_event_minor_shift; 1978 1979 /* if sync events have been disabled then we want to silently ignore 1980 * this event, so throw away result. 1981 */ 1982 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, 1983 SYNC_EVENTS_VALID); 1984 } 1985 1986 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) 1987 { 1988 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 1989 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); 1990 #else 1991 const u8 *data = eh + efx->rx_packet_ts_offset; 1992 return (u32)data[0] | 1993 (u32)data[1] << 8 | 1994 (u32)data[2] << 16 | 1995 (u32)data[3] << 24; 1996 #endif 1997 } 1998 1999 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, 2000 struct sk_buff *skb) 2001 { 2002 struct efx_nic *efx = channel->efx; 2003 struct efx_ptp_data *ptp = efx->ptp_data; 2004 u32 pkt_timestamp_major, pkt_timestamp_minor; 2005 u32 diff, carry; 2006 struct skb_shared_hwtstamps *timestamps; 2007 2008 if (channel->sync_events_state != SYNC_EVENTS_VALID) 2009 return; 2010 2011 pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb)); 2012 2013 /* get the difference between the packet and sync timestamps, 2014 * modulo one second 2015 */ 2016 diff = pkt_timestamp_minor - channel->sync_timestamp_minor; 2017 if (pkt_timestamp_minor < channel->sync_timestamp_minor) 2018 diff += ptp->nic_time.minor_max; 2019 2020 /* do we roll over a second boundary and need to carry the one? */ 2021 carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ? 2022 1 : 0; 2023 2024 if (diff <= ptp->nic_time.sync_event_diff_max) { 2025 /* packet is ahead of the sync event by a quarter of a second or 2026 * less (allowing for fuzz) 2027 */ 2028 pkt_timestamp_major = channel->sync_timestamp_major + carry; 2029 } else if (diff >= ptp->nic_time.sync_event_diff_min) { 2030 /* packet is behind the sync event but within the fuzz factor. 2031 * This means the RX packet and sync event crossed as they were 2032 * placed on the event queue, which can sometimes happen. 2033 */ 2034 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; 2035 } else { 2036 /* it's outside tolerance in both directions. this might be 2037 * indicative of us missing sync events for some reason, so 2038 * we'll call it an error rather than risk giving a bogus 2039 * timestamp. 2040 */ 2041 netif_vdbg(efx, drv, efx->net_dev, 2042 "packet timestamp %x too far from sync event %x:%x\n", 2043 pkt_timestamp_minor, channel->sync_timestamp_major, 2044 channel->sync_timestamp_minor); 2045 return; 2046 } 2047 2048 /* attach the timestamps to the skb */ 2049 timestamps = skb_hwtstamps(skb); 2050 timestamps->hwtstamp = 2051 ptp->nic_to_kernel_time(pkt_timestamp_major, 2052 pkt_timestamp_minor, 2053 ptp->ts_corrections.general_rx); 2054 } 2055 2056 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta) 2057 { 2058 struct efx_ptp_data *ptp_data = container_of(ptp, 2059 struct efx_ptp_data, 2060 phc_clock_info); 2061 struct efx_nic *efx = ptp_data->efx; 2062 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); 2063 s64 adjustment_ns; 2064 int rc; 2065 2066 if (delta > MAX_PPB) 2067 delta = MAX_PPB; 2068 else if (delta < -MAX_PPB) 2069 delta = -MAX_PPB; 2070 2071 /* Convert ppb to fixed point ns taking care to round correctly. */ 2072 adjustment_ns = ((s64)delta * PPB_SCALE_WORD + 2073 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >> 2074 ptp_data->adjfreq_ppb_shift; 2075 2076 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2077 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); 2078 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); 2079 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); 2080 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); 2081 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), 2082 NULL, 0, NULL); 2083 if (rc != 0) 2084 return rc; 2085 2086 ptp_data->current_adjfreq = adjustment_ns; 2087 return 0; 2088 } 2089 2090 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) 2091 { 2092 u32 nic_major, nic_minor; 2093 struct efx_ptp_data *ptp_data = container_of(ptp, 2094 struct efx_ptp_data, 2095 phc_clock_info); 2096 struct efx_nic *efx = ptp_data->efx; 2097 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); 2098 2099 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); 2100 2101 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2102 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2103 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); 2104 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); 2105 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); 2106 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2107 NULL, 0, NULL); 2108 } 2109 2110 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 2111 { 2112 struct efx_ptp_data *ptp_data = container_of(ptp, 2113 struct efx_ptp_data, 2114 phc_clock_info); 2115 struct efx_nic *efx = ptp_data->efx; 2116 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); 2117 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); 2118 int rc; 2119 ktime_t kt; 2120 2121 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); 2122 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2123 2124 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2125 outbuf, sizeof(outbuf), NULL); 2126 if (rc != 0) 2127 return rc; 2128 2129 kt = ptp_data->nic_to_kernel_time( 2130 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), 2131 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); 2132 *ts = ktime_to_timespec64(kt); 2133 return 0; 2134 } 2135 2136 static int efx_phc_settime(struct ptp_clock_info *ptp, 2137 const struct timespec64 *e_ts) 2138 { 2139 /* Get the current NIC time, efx_phc_gettime. 2140 * Subtract from the desired time to get the offset 2141 * call efx_phc_adjtime with the offset 2142 */ 2143 int rc; 2144 struct timespec64 time_now; 2145 struct timespec64 delta; 2146 2147 rc = efx_phc_gettime(ptp, &time_now); 2148 if (rc != 0) 2149 return rc; 2150 2151 delta = timespec64_sub(*e_ts, time_now); 2152 2153 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta)); 2154 if (rc != 0) 2155 return rc; 2156 2157 return 0; 2158 } 2159 2160 static int efx_phc_enable(struct ptp_clock_info *ptp, 2161 struct ptp_clock_request *request, 2162 int enable) 2163 { 2164 struct efx_ptp_data *ptp_data = container_of(ptp, 2165 struct efx_ptp_data, 2166 phc_clock_info); 2167 if (request->type != PTP_CLK_REQ_PPS) 2168 return -EOPNOTSUPP; 2169 2170 ptp_data->nic_ts_enabled = !!enable; 2171 return 0; 2172 } 2173 2174 static const struct efx_channel_type efx_ptp_channel_type = { 2175 .handle_no_channel = efx_ptp_handle_no_channel, 2176 .pre_probe = efx_ptp_probe_channel, 2177 .post_remove = efx_ptp_remove_channel, 2178 .get_name = efx_ptp_get_channel_name, 2179 /* no copy operation; there is no need to reallocate this channel */ 2180 .receive_skb = efx_ptp_rx, 2181 .want_txqs = efx_ptp_want_txqs, 2182 .keep_eventq = false, 2183 }; 2184 2185 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx) 2186 { 2187 /* Check whether PTP is implemented on this NIC. The DISABLE 2188 * operation will succeed if and only if it is implemented. 2189 */ 2190 if (efx_ptp_disable(efx) == 0) 2191 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = 2192 &efx_ptp_channel_type; 2193 } 2194 2195 void efx_ptp_start_datapath(struct efx_nic *efx) 2196 { 2197 if (efx_ptp_restart(efx)) 2198 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); 2199 /* re-enable timestamping if it was previously enabled */ 2200 if (efx->type->ptp_set_ts_sync_events) 2201 efx->type->ptp_set_ts_sync_events(efx, true, true); 2202 } 2203 2204 void efx_ptp_stop_datapath(struct efx_nic *efx) 2205 { 2206 /* temporarily disable timestamping */ 2207 if (efx->type->ptp_set_ts_sync_events) 2208 efx->type->ptp_set_ts_sync_events(efx, false, true); 2209 efx_ptp_stop(efx); 2210 } 2211