1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2011-2013 Solarflare Communications Inc. 5 */ 6 7 /* Theory of operation: 8 * 9 * PTP support is assisted by firmware running on the MC, which provides 10 * the hardware timestamping capabilities. Both transmitted and received 11 * PTP event packets are queued onto internal queues for subsequent processing; 12 * this is because the MC operations are relatively long and would block 13 * block NAPI/interrupt operation. 14 * 15 * Receive event processing: 16 * The event contains the packet's UUID and sequence number, together 17 * with the hardware timestamp. The PTP receive packet queue is searched 18 * for this UUID/sequence number and, if found, put on a pending queue. 19 * Packets not matching are delivered without timestamps (MCDI events will 20 * always arrive after the actual packet). 21 * It is important for the operation of the PTP protocol that the ordering 22 * of packets between the event and general port is maintained. 23 * 24 * Work queue processing: 25 * If work waiting, synchronise host/hardware time 26 * 27 * Transmit: send packet through MC, which returns the transmission time 28 * that is converted to an appropriate timestamp. 29 * 30 * Receive: the packet's reception time is converted to an appropriate 31 * timestamp. 32 */ 33 #include <linux/ip.h> 34 #include <linux/udp.h> 35 #include <linux/time.h> 36 #include <linux/ktime.h> 37 #include <linux/module.h> 38 #include <linux/pps_kernel.h> 39 #include <linux/ptp_clock_kernel.h> 40 #include "net_driver.h" 41 #include "efx.h" 42 #include "mcdi.h" 43 #include "mcdi_pcol.h" 44 #include "io.h" 45 #include "farch_regs.h" 46 #include "nic.h" /* indirectly includes ptp.h */ 47 48 /* Maximum number of events expected to make up a PTP event */ 49 #define MAX_EVENT_FRAGS 3 50 51 /* Maximum delay, ms, to begin synchronisation */ 52 #define MAX_SYNCHRONISE_WAIT_MS 2 53 54 /* How long, at most, to spend synchronising */ 55 #define SYNCHRONISE_PERIOD_NS 250000 56 57 /* How often to update the shared memory time */ 58 #define SYNCHRONISATION_GRANULARITY_NS 200 59 60 /* Minimum permitted length of a (corrected) synchronisation time */ 61 #define DEFAULT_MIN_SYNCHRONISATION_NS 120 62 63 /* Maximum permitted length of a (corrected) synchronisation time */ 64 #define MAX_SYNCHRONISATION_NS 1000 65 66 /* How many (MC) receive events that can be queued */ 67 #define MAX_RECEIVE_EVENTS 8 68 69 /* Length of (modified) moving average. */ 70 #define AVERAGE_LENGTH 16 71 72 /* How long an unmatched event or packet can be held */ 73 #define PKT_EVENT_LIFETIME_MS 10 74 75 /* Offsets into PTP packet for identification. These offsets are from the 76 * start of the IP header, not the MAC header. Note that neither PTP V1 nor 77 * PTP V2 permit the use of IPV4 options. 78 */ 79 #define PTP_DPORT_OFFSET 22 80 81 #define PTP_V1_VERSION_LENGTH 2 82 #define PTP_V1_VERSION_OFFSET 28 83 84 #define PTP_V1_UUID_LENGTH 6 85 #define PTP_V1_UUID_OFFSET 50 86 87 #define PTP_V1_SEQUENCE_LENGTH 2 88 #define PTP_V1_SEQUENCE_OFFSET 58 89 90 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: 91 * includes IP header. 92 */ 93 #define PTP_V1_MIN_LENGTH 64 94 95 #define PTP_V2_VERSION_LENGTH 1 96 #define PTP_V2_VERSION_OFFSET 29 97 98 #define PTP_V2_UUID_LENGTH 8 99 #define PTP_V2_UUID_OFFSET 48 100 101 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2), 102 * the MC only captures the last six bytes of the clock identity. These values 103 * reflect those, not the ones used in the standard. The standard permits 104 * mapping of V1 UUIDs to V2 UUIDs with these same values. 105 */ 106 #define PTP_V2_MC_UUID_LENGTH 6 107 #define PTP_V2_MC_UUID_OFFSET 50 108 109 #define PTP_V2_SEQUENCE_LENGTH 2 110 #define PTP_V2_SEQUENCE_OFFSET 58 111 112 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: 113 * includes IP header. 114 */ 115 #define PTP_V2_MIN_LENGTH 63 116 117 #define PTP_MIN_LENGTH 63 118 119 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */ 120 #define PTP_EVENT_PORT 319 121 #define PTP_GENERAL_PORT 320 122 123 /* Annoyingly the format of the version numbers are different between 124 * versions 1 and 2 so it isn't possible to simply look for 1 or 2. 125 */ 126 #define PTP_VERSION_V1 1 127 128 #define PTP_VERSION_V2 2 129 #define PTP_VERSION_V2_MASK 0x0f 130 131 enum ptp_packet_state { 132 PTP_PACKET_STATE_UNMATCHED = 0, 133 PTP_PACKET_STATE_MATCHED, 134 PTP_PACKET_STATE_TIMED_OUT, 135 PTP_PACKET_STATE_MATCH_UNWANTED 136 }; 137 138 /* NIC synchronised with single word of time only comprising 139 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. 140 */ 141 #define MC_NANOSECOND_BITS 30 142 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) 143 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) 144 145 /* Maximum parts-per-billion adjustment that is acceptable */ 146 #define MAX_PPB 1000000 147 148 /* Precalculate scale word to avoid long long division at runtime */ 149 /* This is equivalent to 2^66 / 10^9. */ 150 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL) 151 152 /* How much to shift down after scaling to convert to FP40 */ 153 #define PPB_SHIFT_FP40 26 154 /* ... and FP44. */ 155 #define PPB_SHIFT_FP44 22 156 157 #define PTP_SYNC_ATTEMPTS 4 158 159 /** 160 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. 161 * @words: UUID and (partial) sequence number 162 * @expiry: Time after which the packet should be delivered irrespective of 163 * event arrival. 164 * @state: The state of the packet - whether it is ready for processing or 165 * whether that is of no interest. 166 */ 167 struct efx_ptp_match { 168 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)]; 169 unsigned long expiry; 170 enum ptp_packet_state state; 171 }; 172 173 /** 174 * struct efx_ptp_event_rx - A PTP receive event (from MC) 175 * @seq0: First part of (PTP) UUID 176 * @seq1: Second part of (PTP) UUID and sequence number 177 * @hwtimestamp: Event timestamp 178 */ 179 struct efx_ptp_event_rx { 180 struct list_head link; 181 u32 seq0; 182 u32 seq1; 183 ktime_t hwtimestamp; 184 unsigned long expiry; 185 }; 186 187 /** 188 * struct efx_ptp_timeset - Synchronisation between host and MC 189 * @host_start: Host time immediately before hardware timestamp taken 190 * @major: Hardware timestamp, major 191 * @minor: Hardware timestamp, minor 192 * @host_end: Host time immediately after hardware timestamp taken 193 * @wait: Number of NIC clock ticks between hardware timestamp being read and 194 * host end time being seen 195 * @window: Difference of host_end and host_start 196 * @valid: Whether this timeset is valid 197 */ 198 struct efx_ptp_timeset { 199 u32 host_start; 200 u32 major; 201 u32 minor; 202 u32 host_end; 203 u32 wait; 204 u32 window; /* Derived: end - start, allowing for wrap */ 205 }; 206 207 /** 208 * struct efx_ptp_data - Precision Time Protocol (PTP) state 209 * @efx: The NIC context 210 * @channel: The PTP channel (Siena only) 211 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are 212 * separate events) 213 * @rxq: Receive SKB queue (awaiting timestamps) 214 * @txq: Transmit SKB queue 215 * @evt_list: List of MC receive events awaiting packets 216 * @evt_free_list: List of free events 217 * @evt_lock: Lock for manipulating evt_list and evt_free_list 218 * @rx_evts: Instantiated events (on evt_list and evt_free_list) 219 * @workwq: Work queue for processing pending PTP operations 220 * @work: Work task 221 * @reset_required: A serious error has occurred and the PTP task needs to be 222 * reset (disable, enable). 223 * @rxfilter_event: Receive filter when operating 224 * @rxfilter_general: Receive filter when operating 225 * @config: Current timestamp configuration 226 * @enabled: PTP operation enabled 227 * @mode: Mode in which PTP operating (PTP version) 228 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time 229 * @nic_to_kernel_time: Function to convert from NIC to kernel time 230 * @nic_time.minor_max: Wrap point for NIC minor times 231 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time 232 * in packet prefix and last MCDI time sync event i.e. how much earlier than 233 * the last sync event time a packet timestamp can be. 234 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time 235 * in packet prefix and last MCDI time sync event i.e. how much later than 236 * the last sync event time a packet timestamp can be. 237 * @nic_time.sync_event_minor_shift: Shift required to make minor time from 238 * field in MCDI time sync event. 239 * @min_synchronisation_ns: Minimum acceptable corrected sync window 240 * @capabilities: Capabilities flags from the NIC 241 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit 242 * timestamps 243 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive 244 * timestamps 245 * @ts_corrections.pps_out: PPS output error (information only) 246 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps 247 * @ts_corrections.general_tx: Required driver correction of general packet 248 * transmit timestamps 249 * @ts_corrections.general_rx: Required driver correction of general packet 250 * receive timestamps 251 * @evt_frags: Partly assembled PTP events 252 * @evt_frag_idx: Current fragment number 253 * @evt_code: Last event code 254 * @start: Address at which MC indicates ready for synchronisation 255 * @host_time_pps: Host time at last PPS 256 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion 257 * frequency adjustment into a fixed point fractional nanosecond format. 258 * @current_adjfreq: Current ppb adjustment. 259 * @phc_clock: Pointer to registered phc device (if primary function) 260 * @phc_clock_info: Registration structure for phc device 261 * @pps_work: pps work task for handling pps events 262 * @pps_workwq: pps work queue 263 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled 264 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids 265 * allocations in main data path). 266 * @good_syncs: Number of successful synchronisations. 267 * @fast_syncs: Number of synchronisations requiring short delay 268 * @bad_syncs: Number of failed synchronisations. 269 * @sync_timeouts: Number of synchronisation timeouts 270 * @no_time_syncs: Number of synchronisations with no good times. 271 * @invalid_sync_windows: Number of sync windows with bad durations. 272 * @undersize_sync_windows: Number of corrected sync windows that are too small 273 * @oversize_sync_windows: Number of corrected sync windows that are too large 274 * @rx_no_timestamp: Number of packets received without a timestamp. 275 * @timeset: Last set of synchronisation statistics. 276 * @xmit_skb: Transmit SKB function. 277 */ 278 struct efx_ptp_data { 279 struct efx_nic *efx; 280 struct efx_channel *channel; 281 bool rx_ts_inline; 282 struct sk_buff_head rxq; 283 struct sk_buff_head txq; 284 struct list_head evt_list; 285 struct list_head evt_free_list; 286 spinlock_t evt_lock; 287 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS]; 288 struct workqueue_struct *workwq; 289 struct work_struct work; 290 bool reset_required; 291 u32 rxfilter_event; 292 u32 rxfilter_general; 293 bool rxfilter_installed; 294 struct hwtstamp_config config; 295 bool enabled; 296 unsigned int mode; 297 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); 298 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, 299 s32 correction); 300 struct { 301 u32 minor_max; 302 u32 sync_event_diff_min; 303 u32 sync_event_diff_max; 304 unsigned int sync_event_minor_shift; 305 } nic_time; 306 unsigned int min_synchronisation_ns; 307 unsigned int capabilities; 308 struct { 309 s32 ptp_tx; 310 s32 ptp_rx; 311 s32 pps_out; 312 s32 pps_in; 313 s32 general_tx; 314 s32 general_rx; 315 } ts_corrections; 316 efx_qword_t evt_frags[MAX_EVENT_FRAGS]; 317 int evt_frag_idx; 318 int evt_code; 319 struct efx_buffer start; 320 struct pps_event_time host_time_pps; 321 unsigned int adjfreq_ppb_shift; 322 s64 current_adjfreq; 323 struct ptp_clock *phc_clock; 324 struct ptp_clock_info phc_clock_info; 325 struct work_struct pps_work; 326 struct workqueue_struct *pps_workwq; 327 bool nic_ts_enabled; 328 _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX); 329 330 unsigned int good_syncs; 331 unsigned int fast_syncs; 332 unsigned int bad_syncs; 333 unsigned int sync_timeouts; 334 unsigned int no_time_syncs; 335 unsigned int invalid_sync_windows; 336 unsigned int undersize_sync_windows; 337 unsigned int oversize_sync_windows; 338 unsigned int rx_no_timestamp; 339 struct efx_ptp_timeset 340 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; 341 void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb); 342 }; 343 344 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta); 345 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); 346 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts); 347 static int efx_phc_settime(struct ptp_clock_info *ptp, 348 const struct timespec64 *e_ts); 349 static int efx_phc_enable(struct ptp_clock_info *ptp, 350 struct ptp_clock_request *request, int on); 351 352 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx) 353 { 354 return efx_has_cap(efx, TX_MAC_TIMESTAMPING); 355 } 356 357 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues 358 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit. 359 */ 360 static bool efx_ptp_want_txqs(struct efx_channel *channel) 361 { 362 return efx_ptp_use_mac_tx_timestamps(channel->efx); 363 } 364 365 #define PTP_SW_STAT(ext_name, field_name) \ 366 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } 367 #define PTP_MC_STAT(ext_name, mcdi_name) \ 368 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } 369 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { 370 PTP_SW_STAT(ptp_good_syncs, good_syncs), 371 PTP_SW_STAT(ptp_fast_syncs, fast_syncs), 372 PTP_SW_STAT(ptp_bad_syncs, bad_syncs), 373 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), 374 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), 375 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), 376 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), 377 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), 378 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), 379 PTP_MC_STAT(ptp_tx_timestamp_packets, TX), 380 PTP_MC_STAT(ptp_rx_timestamp_packets, RX), 381 PTP_MC_STAT(ptp_timestamp_packets, TS), 382 PTP_MC_STAT(ptp_filter_matches, FM), 383 PTP_MC_STAT(ptp_non_filter_matches, NFM), 384 }; 385 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) 386 static const unsigned long efx_ptp_stat_mask[] = { 387 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, 388 }; 389 390 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings) 391 { 392 if (!efx->ptp_data) 393 return 0; 394 395 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 396 efx_ptp_stat_mask, strings); 397 } 398 399 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats) 400 { 401 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); 402 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); 403 size_t i; 404 int rc; 405 406 if (!efx->ptp_data) 407 return 0; 408 409 /* Copy software statistics */ 410 for (i = 0; i < PTP_STAT_COUNT; i++) { 411 if (efx_ptp_stat_desc[i].dma_width) 412 continue; 413 stats[i] = *(unsigned int *)((char *)efx->ptp_data + 414 efx_ptp_stat_desc[i].offset); 415 } 416 417 /* Fetch MC statistics. We *must* fill in all statistics or 418 * risk leaking kernel memory to userland, so if the MCDI 419 * request fails we pretend we got zeroes. 420 */ 421 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); 422 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 423 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 424 outbuf, sizeof(outbuf), NULL); 425 if (rc) 426 memset(outbuf, 0, sizeof(outbuf)); 427 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 428 efx_ptp_stat_mask, 429 stats, _MCDI_PTR(outbuf, 0), false); 430 431 return PTP_STAT_COUNT; 432 } 433 434 /* For Siena platforms NIC time is s and ns */ 435 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor) 436 { 437 struct timespec64 ts = ns_to_timespec64(ns); 438 *nic_major = (u32)ts.tv_sec; 439 *nic_minor = ts.tv_nsec; 440 } 441 442 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor, 443 s32 correction) 444 { 445 ktime_t kt = ktime_set(nic_major, nic_minor); 446 if (correction >= 0) 447 kt = ktime_add_ns(kt, (u64)correction); 448 else 449 kt = ktime_sub_ns(kt, (u64)-correction); 450 return kt; 451 } 452 453 /* To convert from s27 format to ns we multiply then divide by a power of 2. 454 * For the conversion from ns to s27, the operation is also converted to a 455 * multiply and shift. 456 */ 457 #define S27_TO_NS_SHIFT (27) 458 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) 459 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT) 460 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT) 461 462 /* For Huntington platforms NIC time is in seconds and fractions of a second 463 * where the minor register only uses 27 bits in units of 2^-27s. 464 */ 465 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) 466 { 467 struct timespec64 ts = ns_to_timespec64(ns); 468 u32 maj = (u32)ts.tv_sec; 469 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + 470 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); 471 472 /* The conversion can result in the minor value exceeding the maximum. 473 * In this case, round up to the next second. 474 */ 475 if (min >= S27_MINOR_MAX) { 476 min -= S27_MINOR_MAX; 477 maj++; 478 } 479 480 *nic_major = maj; 481 *nic_minor = min; 482 } 483 484 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) 485 { 486 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + 487 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); 488 return ktime_set(nic_major, ns); 489 } 490 491 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, 492 s32 correction) 493 { 494 /* Apply the correction and deal with carry */ 495 nic_minor += correction; 496 if ((s32)nic_minor < 0) { 497 nic_minor += S27_MINOR_MAX; 498 nic_major--; 499 } else if (nic_minor >= S27_MINOR_MAX) { 500 nic_minor -= S27_MINOR_MAX; 501 nic_major++; 502 } 503 504 return efx_ptp_s27_to_ktime(nic_major, nic_minor); 505 } 506 507 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */ 508 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor) 509 { 510 struct timespec64 ts = ns_to_timespec64(ns); 511 512 *nic_major = (u32)ts.tv_sec; 513 *nic_minor = ts.tv_nsec * 4; 514 } 515 516 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor, 517 s32 correction) 518 { 519 ktime_t kt; 520 521 nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4); 522 correction = DIV_ROUND_CLOSEST(correction, 4); 523 524 kt = ktime_set(nic_major, nic_minor); 525 526 if (correction >= 0) 527 kt = ktime_add_ns(kt, (u64)correction); 528 else 529 kt = ktime_sub_ns(kt, (u64)-correction); 530 return kt; 531 } 532 533 struct efx_channel *efx_ptp_channel(struct efx_nic *efx) 534 { 535 return efx->ptp_data ? efx->ptp_data->channel : NULL; 536 } 537 538 static u32 last_sync_timestamp_major(struct efx_nic *efx) 539 { 540 struct efx_channel *channel = efx_ptp_channel(efx); 541 u32 major = 0; 542 543 if (channel) 544 major = channel->sync_timestamp_major; 545 return major; 546 } 547 548 /* The 8000 series and later can provide the time from the MAC, which is only 549 * 48 bits long and provides meta-information in the top 2 bits. 550 */ 551 static ktime_t 552 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx, 553 struct efx_ptp_data *ptp, 554 u32 nic_major, u32 nic_minor, 555 s32 correction) 556 { 557 u32 sync_timestamp; 558 ktime_t kt = { 0 }; 559 s16 delta; 560 561 if (!(nic_major & 0x80000000)) { 562 WARN_ON_ONCE(nic_major >> 16); 563 564 /* Medford provides 48 bits of timestamp, so we must get the top 565 * 16 bits from the timesync event state. 566 * 567 * We only have the lower 16 bits of the time now, but we do 568 * have a full resolution timestamp at some point in past. As 569 * long as the difference between the (real) now and the sync 570 * is less than 2^15, then we can reconstruct the difference 571 * between those two numbers using only the lower 16 bits of 572 * each. 573 * 574 * Put another way 575 * 576 * a - b = ((a mod k) - b) mod k 577 * 578 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know 579 * (a mod k) and b, so can calculate the delta, a - b. 580 * 581 */ 582 sync_timestamp = last_sync_timestamp_major(efx); 583 584 /* Because delta is s16 this does an implicit mask down to 585 * 16 bits which is what we need, assuming 586 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that 587 * we can deal with the (unlikely) case of sync timestamps 588 * arriving from the future. 589 */ 590 delta = nic_major - sync_timestamp; 591 592 /* Recover the fully specified time now, by applying the offset 593 * to the (fully specified) sync time. 594 */ 595 nic_major = sync_timestamp + delta; 596 597 kt = ptp->nic_to_kernel_time(nic_major, nic_minor, 598 correction); 599 } 600 return kt; 601 } 602 603 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue) 604 { 605 struct efx_nic *efx = tx_queue->efx; 606 struct efx_ptp_data *ptp = efx->ptp_data; 607 ktime_t kt; 608 609 if (efx_ptp_use_mac_tx_timestamps(efx)) 610 kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp, 611 tx_queue->completed_timestamp_major, 612 tx_queue->completed_timestamp_minor, 613 ptp->ts_corrections.general_tx); 614 else 615 kt = ptp->nic_to_kernel_time( 616 tx_queue->completed_timestamp_major, 617 tx_queue->completed_timestamp_minor, 618 ptp->ts_corrections.general_tx); 619 return kt; 620 } 621 622 /* Get PTP attributes and set up time conversions */ 623 static int efx_ptp_get_attributes(struct efx_nic *efx) 624 { 625 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); 626 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); 627 struct efx_ptp_data *ptp = efx->ptp_data; 628 int rc; 629 u32 fmt; 630 size_t out_len; 631 632 /* Get the PTP attributes. If the NIC doesn't support the operation we 633 * use the default format for compatibility with older NICs i.e. 634 * seconds and nanoseconds. 635 */ 636 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); 637 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 638 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 639 outbuf, sizeof(outbuf), &out_len); 640 if (rc == 0) { 641 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); 642 } else if (rc == -EINVAL) { 643 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; 644 } else if (rc == -EPERM) { 645 netif_info(efx, probe, efx->net_dev, "no PTP support\n"); 646 return rc; 647 } else { 648 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), 649 outbuf, sizeof(outbuf), rc); 650 return rc; 651 } 652 653 switch (fmt) { 654 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION: 655 ptp->ns_to_nic_time = efx_ptp_ns_to_s27; 656 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; 657 ptp->nic_time.minor_max = 1 << 27; 658 ptp->nic_time.sync_event_minor_shift = 19; 659 break; 660 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS: 661 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns; 662 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction; 663 ptp->nic_time.minor_max = 1000000000; 664 ptp->nic_time.sync_event_minor_shift = 22; 665 break; 666 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS: 667 ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns; 668 ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction; 669 ptp->nic_time.minor_max = 4000000000UL; 670 ptp->nic_time.sync_event_minor_shift = 24; 671 break; 672 default: 673 return -ERANGE; 674 } 675 676 /* Precalculate acceptable difference between the minor time in the 677 * packet prefix and the last MCDI time sync event. We expect the 678 * packet prefix timestamp to be after of sync event by up to one 679 * sync event interval (0.25s) but we allow it to exceed this by a 680 * fuzz factor of (0.1s) 681 */ 682 ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max 683 - (ptp->nic_time.minor_max / 10); 684 ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4) 685 + (ptp->nic_time.minor_max / 10); 686 687 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older 688 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return 689 * a value to use for the minimum acceptable corrected synchronization 690 * window and may return further capabilities. 691 * If we have the extra information store it. For older firmware that 692 * does not implement the extended command use the default value. 693 */ 694 if (rc == 0 && 695 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST) 696 ptp->min_synchronisation_ns = 697 MCDI_DWORD(outbuf, 698 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); 699 else 700 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; 701 702 if (rc == 0 && 703 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) 704 ptp->capabilities = MCDI_DWORD(outbuf, 705 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES); 706 else 707 ptp->capabilities = 0; 708 709 /* Set up the shift for conversion between frequency 710 * adjustments in parts-per-billion and the fixed-point 711 * fractional ns format that the adapter uses. 712 */ 713 if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN)) 714 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44; 715 else 716 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40; 717 718 return 0; 719 } 720 721 /* Get PTP timestamp corrections */ 722 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) 723 { 724 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); 725 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN); 726 int rc; 727 size_t out_len; 728 729 /* Get the timestamp corrections from the NIC. If this operation is 730 * not supported (older NICs) then no correction is required. 731 */ 732 MCDI_SET_DWORD(inbuf, PTP_IN_OP, 733 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); 734 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 735 736 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 737 outbuf, sizeof(outbuf), &out_len); 738 if (rc == 0) { 739 efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf, 740 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); 741 efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf, 742 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); 743 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, 744 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); 745 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, 746 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); 747 748 if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) { 749 efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD( 750 outbuf, 751 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX); 752 efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD( 753 outbuf, 754 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX); 755 } else { 756 efx->ptp_data->ts_corrections.general_tx = 757 efx->ptp_data->ts_corrections.ptp_tx; 758 efx->ptp_data->ts_corrections.general_rx = 759 efx->ptp_data->ts_corrections.ptp_rx; 760 } 761 } else if (rc == -EINVAL) { 762 efx->ptp_data->ts_corrections.ptp_tx = 0; 763 efx->ptp_data->ts_corrections.ptp_rx = 0; 764 efx->ptp_data->ts_corrections.pps_out = 0; 765 efx->ptp_data->ts_corrections.pps_in = 0; 766 efx->ptp_data->ts_corrections.general_tx = 0; 767 efx->ptp_data->ts_corrections.general_rx = 0; 768 } else { 769 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, 770 sizeof(outbuf), rc); 771 return rc; 772 } 773 774 return 0; 775 } 776 777 /* Enable MCDI PTP support. */ 778 static int efx_ptp_enable(struct efx_nic *efx) 779 { 780 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); 781 MCDI_DECLARE_BUF_ERR(outbuf); 782 int rc; 783 784 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); 785 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 786 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, 787 efx->ptp_data->channel ? 788 efx->ptp_data->channel->channel : 0); 789 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); 790 791 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 792 outbuf, sizeof(outbuf), NULL); 793 rc = (rc == -EALREADY) ? 0 : rc; 794 if (rc) 795 efx_mcdi_display_error(efx, MC_CMD_PTP, 796 MC_CMD_PTP_IN_ENABLE_LEN, 797 outbuf, sizeof(outbuf), rc); 798 return rc; 799 } 800 801 /* Disable MCDI PTP support. 802 * 803 * Note that this function should never rely on the presence of ptp_data - 804 * may be called before that exists. 805 */ 806 static int efx_ptp_disable(struct efx_nic *efx) 807 { 808 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); 809 MCDI_DECLARE_BUF_ERR(outbuf); 810 int rc; 811 812 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); 813 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 814 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 815 outbuf, sizeof(outbuf), NULL); 816 rc = (rc == -EALREADY) ? 0 : rc; 817 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function 818 * should only have been called during probe. 819 */ 820 if (rc == -ENOSYS || rc == -EPERM) 821 netif_info(efx, probe, efx->net_dev, "no PTP support\n"); 822 else if (rc) 823 efx_mcdi_display_error(efx, MC_CMD_PTP, 824 MC_CMD_PTP_IN_DISABLE_LEN, 825 outbuf, sizeof(outbuf), rc); 826 return rc; 827 } 828 829 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) 830 { 831 struct sk_buff *skb; 832 833 while ((skb = skb_dequeue(q))) { 834 local_bh_disable(); 835 netif_receive_skb(skb); 836 local_bh_enable(); 837 } 838 } 839 840 static void efx_ptp_handle_no_channel(struct efx_nic *efx) 841 { 842 netif_err(efx, drv, efx->net_dev, 843 "ERROR: PTP requires MSI-X and 1 additional interrupt" 844 "vector. PTP disabled\n"); 845 } 846 847 /* Repeatedly send the host time to the MC which will capture the hardware 848 * time. 849 */ 850 static void efx_ptp_send_times(struct efx_nic *efx, 851 struct pps_event_time *last_time) 852 { 853 struct pps_event_time now; 854 struct timespec64 limit; 855 struct efx_ptp_data *ptp = efx->ptp_data; 856 int *mc_running = ptp->start.addr; 857 858 pps_get_ts(&now); 859 limit = now.ts_real; 860 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS); 861 862 /* Write host time for specified period or until MC is done */ 863 while ((timespec64_compare(&now.ts_real, &limit) < 0) && 864 READ_ONCE(*mc_running)) { 865 struct timespec64 update_time; 866 unsigned int host_time; 867 868 /* Don't update continuously to avoid saturating the PCIe bus */ 869 update_time = now.ts_real; 870 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); 871 do { 872 pps_get_ts(&now); 873 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) && 874 READ_ONCE(*mc_running)); 875 876 /* Synchronise NIC with single word of time only */ 877 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | 878 now.ts_real.tv_nsec); 879 /* Update host time in NIC memory */ 880 efx->type->ptp_write_host_time(efx, host_time); 881 } 882 *last_time = now; 883 } 884 885 /* Read a timeset from the MC's results and partial process. */ 886 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), 887 struct efx_ptp_timeset *timeset) 888 { 889 unsigned start_ns, end_ns; 890 891 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); 892 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); 893 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); 894 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), 895 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); 896 897 /* Ignore seconds */ 898 start_ns = timeset->host_start & MC_NANOSECOND_MASK; 899 end_ns = timeset->host_end & MC_NANOSECOND_MASK; 900 /* Allow for rollover */ 901 if (end_ns < start_ns) 902 end_ns += NSEC_PER_SEC; 903 /* Determine duration of operation */ 904 timeset->window = end_ns - start_ns; 905 } 906 907 /* Process times received from MC. 908 * 909 * Extract times from returned results, and establish the minimum value 910 * seen. The minimum value represents the "best" possible time and events 911 * too much greater than this are rejected - the machine is, perhaps, too 912 * busy. A number of readings are taken so that, hopefully, at least one good 913 * synchronisation will be seen in the results. 914 */ 915 static int 916 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), 917 size_t response_length, 918 const struct pps_event_time *last_time) 919 { 920 unsigned number_readings = 921 MCDI_VAR_ARRAY_LEN(response_length, 922 PTP_OUT_SYNCHRONIZE_TIMESET); 923 unsigned i; 924 unsigned ngood = 0; 925 unsigned last_good = 0; 926 struct efx_ptp_data *ptp = efx->ptp_data; 927 u32 last_sec; 928 u32 start_sec; 929 struct timespec64 delta; 930 ktime_t mc_time; 931 932 if (number_readings == 0) 933 return -EAGAIN; 934 935 /* Read the set of results and find the last good host-MC 936 * synchronization result. The MC times when it finishes reading the 937 * host time so the corrected window time should be fairly constant 938 * for a given platform. Increment stats for any results that appear 939 * to be erroneous. 940 */ 941 for (i = 0; i < number_readings; i++) { 942 s32 window, corrected; 943 struct timespec64 wait; 944 945 efx_ptp_read_timeset( 946 MCDI_ARRAY_STRUCT_PTR(synch_buf, 947 PTP_OUT_SYNCHRONIZE_TIMESET, i), 948 &ptp->timeset[i]); 949 950 wait = ktime_to_timespec64( 951 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); 952 window = ptp->timeset[i].window; 953 corrected = window - wait.tv_nsec; 954 955 /* We expect the uncorrected synchronization window to be at 956 * least as large as the interval between host start and end 957 * times. If it is smaller than this then this is mostly likely 958 * to be a consequence of the host's time being adjusted. 959 * Check that the corrected sync window is in a reasonable 960 * range. If it is out of range it is likely to be because an 961 * interrupt or other delay occurred between reading the system 962 * time and writing it to MC memory. 963 */ 964 if (window < SYNCHRONISATION_GRANULARITY_NS) { 965 ++ptp->invalid_sync_windows; 966 } else if (corrected >= MAX_SYNCHRONISATION_NS) { 967 ++ptp->oversize_sync_windows; 968 } else if (corrected < ptp->min_synchronisation_ns) { 969 ++ptp->undersize_sync_windows; 970 } else { 971 ngood++; 972 last_good = i; 973 } 974 } 975 976 if (ngood == 0) { 977 netif_warn(efx, drv, efx->net_dev, 978 "PTP no suitable synchronisations\n"); 979 return -EAGAIN; 980 } 981 982 /* Calculate delay from last good sync (host time) to last_time. 983 * It is possible that the seconds rolled over between taking 984 * the start reading and the last value written by the host. The 985 * timescales are such that a gap of more than one second is never 986 * expected. delta is *not* normalised. 987 */ 988 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; 989 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; 990 if (start_sec != last_sec && 991 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { 992 netif_warn(efx, hw, efx->net_dev, 993 "PTP bad synchronisation seconds\n"); 994 return -EAGAIN; 995 } 996 delta.tv_sec = (last_sec - start_sec) & 1; 997 delta.tv_nsec = 998 last_time->ts_real.tv_nsec - 999 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); 1000 1001 /* Convert the NIC time at last good sync into kernel time. 1002 * No correction is required - this time is the output of a 1003 * firmware process. 1004 */ 1005 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, 1006 ptp->timeset[last_good].minor, 0); 1007 1008 /* Calculate delay from NIC top of second to last_time */ 1009 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec; 1010 1011 /* Set PPS timestamp to match NIC top of second */ 1012 ptp->host_time_pps = *last_time; 1013 pps_sub_ts(&ptp->host_time_pps, delta); 1014 1015 return 0; 1016 } 1017 1018 /* Synchronize times between the host and the MC */ 1019 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) 1020 { 1021 struct efx_ptp_data *ptp = efx->ptp_data; 1022 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); 1023 size_t response_length; 1024 int rc; 1025 unsigned long timeout; 1026 struct pps_event_time last_time = {}; 1027 unsigned int loops = 0; 1028 int *start = ptp->start.addr; 1029 1030 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); 1031 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); 1032 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, 1033 num_readings); 1034 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, 1035 ptp->start.dma_addr); 1036 1037 /* Clear flag that signals MC ready */ 1038 WRITE_ONCE(*start, 0); 1039 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, 1040 MC_CMD_PTP_IN_SYNCHRONIZE_LEN); 1041 EFX_WARN_ON_ONCE_PARANOID(rc); 1042 1043 /* Wait for start from MCDI (or timeout) */ 1044 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); 1045 while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) { 1046 udelay(20); /* Usually start MCDI execution quickly */ 1047 loops++; 1048 } 1049 1050 if (loops <= 1) 1051 ++ptp->fast_syncs; 1052 if (!time_before(jiffies, timeout)) 1053 ++ptp->sync_timeouts; 1054 1055 if (READ_ONCE(*start)) 1056 efx_ptp_send_times(efx, &last_time); 1057 1058 /* Collect results */ 1059 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, 1060 MC_CMD_PTP_IN_SYNCHRONIZE_LEN, 1061 synch_buf, sizeof(synch_buf), 1062 &response_length); 1063 if (rc == 0) { 1064 rc = efx_ptp_process_times(efx, synch_buf, response_length, 1065 &last_time); 1066 if (rc == 0) 1067 ++ptp->good_syncs; 1068 else 1069 ++ptp->no_time_syncs; 1070 } 1071 1072 /* Increment the bad syncs counter if the synchronize fails, whatever 1073 * the reason. 1074 */ 1075 if (rc != 0) 1076 ++ptp->bad_syncs; 1077 1078 return rc; 1079 } 1080 1081 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */ 1082 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb) 1083 { 1084 struct efx_ptp_data *ptp_data = efx->ptp_data; 1085 struct efx_tx_queue *tx_queue; 1086 u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; 1087 1088 tx_queue = &ptp_data->channel->tx_queue[type]; 1089 if (tx_queue && tx_queue->timestamping) { 1090 efx_enqueue_skb(tx_queue, skb); 1091 } else { 1092 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n"); 1093 dev_kfree_skb_any(skb); 1094 } 1095 } 1096 1097 /* Transmit a PTP packet, via the MCDI interface, to the wire. */ 1098 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb) 1099 { 1100 struct efx_ptp_data *ptp_data = efx->ptp_data; 1101 struct skb_shared_hwtstamps timestamps; 1102 int rc = -EIO; 1103 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); 1104 size_t len; 1105 1106 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); 1107 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); 1108 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); 1109 if (skb_shinfo(skb)->nr_frags != 0) { 1110 rc = skb_linearize(skb); 1111 if (rc != 0) 1112 goto fail; 1113 } 1114 1115 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1116 rc = skb_checksum_help(skb); 1117 if (rc != 0) 1118 goto fail; 1119 } 1120 skb_copy_from_linear_data(skb, 1121 MCDI_PTR(ptp_data->txbuf, 1122 PTP_IN_TRANSMIT_PACKET), 1123 skb->len); 1124 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, 1125 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 1126 txtime, sizeof(txtime), &len); 1127 if (rc != 0) 1128 goto fail; 1129 1130 memset(×tamps, 0, sizeof(timestamps)); 1131 timestamps.hwtstamp = ptp_data->nic_to_kernel_time( 1132 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), 1133 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), 1134 ptp_data->ts_corrections.ptp_tx); 1135 1136 skb_tstamp_tx(skb, ×tamps); 1137 1138 rc = 0; 1139 1140 fail: 1141 dev_kfree_skb_any(skb); 1142 1143 return; 1144 } 1145 1146 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx) 1147 { 1148 struct efx_ptp_data *ptp = efx->ptp_data; 1149 struct list_head *cursor; 1150 struct list_head *next; 1151 1152 if (ptp->rx_ts_inline) 1153 return; 1154 1155 /* Drop time-expired events */ 1156 spin_lock_bh(&ptp->evt_lock); 1157 if (!list_empty(&ptp->evt_list)) { 1158 list_for_each_safe(cursor, next, &ptp->evt_list) { 1159 struct efx_ptp_event_rx *evt; 1160 1161 evt = list_entry(cursor, struct efx_ptp_event_rx, 1162 link); 1163 if (time_after(jiffies, evt->expiry)) { 1164 list_move(&evt->link, &ptp->evt_free_list); 1165 netif_warn(efx, hw, efx->net_dev, 1166 "PTP rx event dropped\n"); 1167 } 1168 } 1169 } 1170 spin_unlock_bh(&ptp->evt_lock); 1171 } 1172 1173 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx, 1174 struct sk_buff *skb) 1175 { 1176 struct efx_ptp_data *ptp = efx->ptp_data; 1177 bool evts_waiting; 1178 struct list_head *cursor; 1179 struct list_head *next; 1180 struct efx_ptp_match *match; 1181 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED; 1182 1183 WARN_ON_ONCE(ptp->rx_ts_inline); 1184 1185 spin_lock_bh(&ptp->evt_lock); 1186 evts_waiting = !list_empty(&ptp->evt_list); 1187 spin_unlock_bh(&ptp->evt_lock); 1188 1189 if (!evts_waiting) 1190 return PTP_PACKET_STATE_UNMATCHED; 1191 1192 match = (struct efx_ptp_match *)skb->cb; 1193 /* Look for a matching timestamp in the event queue */ 1194 spin_lock_bh(&ptp->evt_lock); 1195 list_for_each_safe(cursor, next, &ptp->evt_list) { 1196 struct efx_ptp_event_rx *evt; 1197 1198 evt = list_entry(cursor, struct efx_ptp_event_rx, link); 1199 if ((evt->seq0 == match->words[0]) && 1200 (evt->seq1 == match->words[1])) { 1201 struct skb_shared_hwtstamps *timestamps; 1202 1203 /* Match - add in hardware timestamp */ 1204 timestamps = skb_hwtstamps(skb); 1205 timestamps->hwtstamp = evt->hwtimestamp; 1206 1207 match->state = PTP_PACKET_STATE_MATCHED; 1208 rc = PTP_PACKET_STATE_MATCHED; 1209 list_move(&evt->link, &ptp->evt_free_list); 1210 break; 1211 } 1212 } 1213 spin_unlock_bh(&ptp->evt_lock); 1214 1215 return rc; 1216 } 1217 1218 /* Process any queued receive events and corresponding packets 1219 * 1220 * q is returned with all the packets that are ready for delivery. 1221 */ 1222 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) 1223 { 1224 struct efx_ptp_data *ptp = efx->ptp_data; 1225 struct sk_buff *skb; 1226 1227 while ((skb = skb_dequeue(&ptp->rxq))) { 1228 struct efx_ptp_match *match; 1229 1230 match = (struct efx_ptp_match *)skb->cb; 1231 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { 1232 __skb_queue_tail(q, skb); 1233 } else if (efx_ptp_match_rx(efx, skb) == 1234 PTP_PACKET_STATE_MATCHED) { 1235 __skb_queue_tail(q, skb); 1236 } else if (time_after(jiffies, match->expiry)) { 1237 match->state = PTP_PACKET_STATE_TIMED_OUT; 1238 ++ptp->rx_no_timestamp; 1239 __skb_queue_tail(q, skb); 1240 } else { 1241 /* Replace unprocessed entry and stop */ 1242 skb_queue_head(&ptp->rxq, skb); 1243 break; 1244 } 1245 } 1246 } 1247 1248 /* Complete processing of a received packet */ 1249 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) 1250 { 1251 local_bh_disable(); 1252 netif_receive_skb(skb); 1253 local_bh_enable(); 1254 } 1255 1256 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx) 1257 { 1258 struct efx_ptp_data *ptp = efx->ptp_data; 1259 1260 if (ptp->rxfilter_installed) { 1261 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1262 ptp->rxfilter_general); 1263 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1264 ptp->rxfilter_event); 1265 ptp->rxfilter_installed = false; 1266 } 1267 } 1268 1269 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) 1270 { 1271 struct efx_ptp_data *ptp = efx->ptp_data; 1272 struct efx_filter_spec rxfilter; 1273 int rc; 1274 1275 if (!ptp->channel || ptp->rxfilter_installed) 1276 return 0; 1277 1278 /* Must filter on both event and general ports to ensure 1279 * that there is no packet re-ordering. 1280 */ 1281 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1282 efx_rx_queue_index( 1283 efx_channel_get_rx_queue(ptp->channel))); 1284 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, 1285 htonl(PTP_ADDRESS), 1286 htons(PTP_EVENT_PORT)); 1287 if (rc != 0) 1288 return rc; 1289 1290 rc = efx_filter_insert_filter(efx, &rxfilter, true); 1291 if (rc < 0) 1292 return rc; 1293 ptp->rxfilter_event = rc; 1294 1295 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1296 efx_rx_queue_index( 1297 efx_channel_get_rx_queue(ptp->channel))); 1298 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, 1299 htonl(PTP_ADDRESS), 1300 htons(PTP_GENERAL_PORT)); 1301 if (rc != 0) 1302 goto fail; 1303 1304 rc = efx_filter_insert_filter(efx, &rxfilter, true); 1305 if (rc < 0) 1306 goto fail; 1307 ptp->rxfilter_general = rc; 1308 1309 ptp->rxfilter_installed = true; 1310 return 0; 1311 1312 fail: 1313 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1314 ptp->rxfilter_event); 1315 return rc; 1316 } 1317 1318 static int efx_ptp_start(struct efx_nic *efx) 1319 { 1320 struct efx_ptp_data *ptp = efx->ptp_data; 1321 int rc; 1322 1323 ptp->reset_required = false; 1324 1325 rc = efx_ptp_insert_multicast_filters(efx); 1326 if (rc) 1327 return rc; 1328 1329 rc = efx_ptp_enable(efx); 1330 if (rc != 0) 1331 goto fail; 1332 1333 ptp->evt_frag_idx = 0; 1334 ptp->current_adjfreq = 0; 1335 1336 return 0; 1337 1338 fail: 1339 efx_ptp_remove_multicast_filters(efx); 1340 return rc; 1341 } 1342 1343 static int efx_ptp_stop(struct efx_nic *efx) 1344 { 1345 struct efx_ptp_data *ptp = efx->ptp_data; 1346 struct list_head *cursor; 1347 struct list_head *next; 1348 int rc; 1349 1350 if (ptp == NULL) 1351 return 0; 1352 1353 rc = efx_ptp_disable(efx); 1354 1355 efx_ptp_remove_multicast_filters(efx); 1356 1357 /* Make sure RX packets are really delivered */ 1358 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); 1359 skb_queue_purge(&efx->ptp_data->txq); 1360 1361 /* Drop any pending receive events */ 1362 spin_lock_bh(&efx->ptp_data->evt_lock); 1363 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) { 1364 list_move(cursor, &efx->ptp_data->evt_free_list); 1365 } 1366 spin_unlock_bh(&efx->ptp_data->evt_lock); 1367 1368 return rc; 1369 } 1370 1371 static int efx_ptp_restart(struct efx_nic *efx) 1372 { 1373 if (efx->ptp_data && efx->ptp_data->enabled) 1374 return efx_ptp_start(efx); 1375 return 0; 1376 } 1377 1378 static void efx_ptp_pps_worker(struct work_struct *work) 1379 { 1380 struct efx_ptp_data *ptp = 1381 container_of(work, struct efx_ptp_data, pps_work); 1382 struct efx_nic *efx = ptp->efx; 1383 struct ptp_clock_event ptp_evt; 1384 1385 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) 1386 return; 1387 1388 ptp_evt.type = PTP_CLOCK_PPSUSR; 1389 ptp_evt.pps_times = ptp->host_time_pps; 1390 ptp_clock_event(ptp->phc_clock, &ptp_evt); 1391 } 1392 1393 static void efx_ptp_worker(struct work_struct *work) 1394 { 1395 struct efx_ptp_data *ptp_data = 1396 container_of(work, struct efx_ptp_data, work); 1397 struct efx_nic *efx = ptp_data->efx; 1398 struct sk_buff *skb; 1399 struct sk_buff_head tempq; 1400 1401 if (ptp_data->reset_required) { 1402 efx_ptp_stop(efx); 1403 efx_ptp_start(efx); 1404 return; 1405 } 1406 1407 efx_ptp_drop_time_expired_events(efx); 1408 1409 __skb_queue_head_init(&tempq); 1410 efx_ptp_process_events(efx, &tempq); 1411 1412 while ((skb = skb_dequeue(&ptp_data->txq))) 1413 ptp_data->xmit_skb(efx, skb); 1414 1415 while ((skb = __skb_dequeue(&tempq))) 1416 efx_ptp_process_rx(efx, skb); 1417 } 1418 1419 static const struct ptp_clock_info efx_phc_clock_info = { 1420 .owner = THIS_MODULE, 1421 .name = "sfc", 1422 .max_adj = MAX_PPB, 1423 .n_alarm = 0, 1424 .n_ext_ts = 0, 1425 .n_per_out = 0, 1426 .n_pins = 0, 1427 .pps = 1, 1428 .adjfreq = efx_phc_adjfreq, 1429 .adjtime = efx_phc_adjtime, 1430 .gettime64 = efx_phc_gettime, 1431 .settime64 = efx_phc_settime, 1432 .enable = efx_phc_enable, 1433 }; 1434 1435 /* Initialise PTP state. */ 1436 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) 1437 { 1438 struct efx_ptp_data *ptp; 1439 int rc = 0; 1440 unsigned int pos; 1441 1442 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); 1443 efx->ptp_data = ptp; 1444 if (!efx->ptp_data) 1445 return -ENOMEM; 1446 1447 ptp->efx = efx; 1448 ptp->channel = channel; 1449 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0; 1450 1451 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); 1452 if (rc != 0) 1453 goto fail1; 1454 1455 skb_queue_head_init(&ptp->rxq); 1456 skb_queue_head_init(&ptp->txq); 1457 ptp->workwq = create_singlethread_workqueue("sfc_ptp"); 1458 if (!ptp->workwq) { 1459 rc = -ENOMEM; 1460 goto fail2; 1461 } 1462 1463 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1464 ptp->xmit_skb = efx_ptp_xmit_skb_queue; 1465 /* Request sync events on this channel. */ 1466 channel->sync_events_state = SYNC_EVENTS_QUIESCENT; 1467 } else { 1468 ptp->xmit_skb = efx_ptp_xmit_skb_mc; 1469 } 1470 1471 INIT_WORK(&ptp->work, efx_ptp_worker); 1472 ptp->config.flags = 0; 1473 ptp->config.tx_type = HWTSTAMP_TX_OFF; 1474 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; 1475 INIT_LIST_HEAD(&ptp->evt_list); 1476 INIT_LIST_HEAD(&ptp->evt_free_list); 1477 spin_lock_init(&ptp->evt_lock); 1478 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++) 1479 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list); 1480 1481 /* Get the NIC PTP attributes and set up time conversions */ 1482 rc = efx_ptp_get_attributes(efx); 1483 if (rc < 0) 1484 goto fail3; 1485 1486 /* Get the timestamp corrections */ 1487 rc = efx_ptp_get_timestamp_corrections(efx); 1488 if (rc < 0) 1489 goto fail3; 1490 1491 if (efx->mcdi->fn_flags & 1492 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { 1493 ptp->phc_clock_info = efx_phc_clock_info; 1494 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, 1495 &efx->pci_dev->dev); 1496 if (IS_ERR(ptp->phc_clock)) { 1497 rc = PTR_ERR(ptp->phc_clock); 1498 goto fail3; 1499 } else if (ptp->phc_clock) { 1500 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); 1501 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); 1502 if (!ptp->pps_workwq) { 1503 rc = -ENOMEM; 1504 goto fail4; 1505 } 1506 } 1507 } 1508 ptp->nic_ts_enabled = false; 1509 1510 return 0; 1511 fail4: 1512 ptp_clock_unregister(efx->ptp_data->phc_clock); 1513 1514 fail3: 1515 destroy_workqueue(efx->ptp_data->workwq); 1516 1517 fail2: 1518 efx_nic_free_buffer(efx, &ptp->start); 1519 1520 fail1: 1521 kfree(efx->ptp_data); 1522 efx->ptp_data = NULL; 1523 1524 return rc; 1525 } 1526 1527 /* Initialise PTP channel. 1528 * 1529 * Setting core_index to zero causes the queue to be initialised and doesn't 1530 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. 1531 */ 1532 static int efx_ptp_probe_channel(struct efx_channel *channel) 1533 { 1534 struct efx_nic *efx = channel->efx; 1535 int rc; 1536 1537 channel->irq_moderation_us = 0; 1538 channel->rx_queue.core_index = 0; 1539 1540 rc = efx_ptp_probe(efx, channel); 1541 /* Failure to probe PTP is not fatal; this channel will just not be 1542 * used for anything. 1543 * In the case of EPERM, efx_ptp_probe will print its own message (in 1544 * efx_ptp_get_attributes()), so we don't need to. 1545 */ 1546 if (rc && rc != -EPERM) 1547 netif_warn(efx, drv, efx->net_dev, 1548 "Failed to probe PTP, rc=%d\n", rc); 1549 return 0; 1550 } 1551 1552 void efx_ptp_remove(struct efx_nic *efx) 1553 { 1554 if (!efx->ptp_data) 1555 return; 1556 1557 (void)efx_ptp_disable(efx); 1558 1559 cancel_work_sync(&efx->ptp_data->work); 1560 if (efx->ptp_data->pps_workwq) 1561 cancel_work_sync(&efx->ptp_data->pps_work); 1562 1563 skb_queue_purge(&efx->ptp_data->rxq); 1564 skb_queue_purge(&efx->ptp_data->txq); 1565 1566 if (efx->ptp_data->phc_clock) { 1567 destroy_workqueue(efx->ptp_data->pps_workwq); 1568 ptp_clock_unregister(efx->ptp_data->phc_clock); 1569 } 1570 1571 destroy_workqueue(efx->ptp_data->workwq); 1572 1573 efx_nic_free_buffer(efx, &efx->ptp_data->start); 1574 kfree(efx->ptp_data); 1575 efx->ptp_data = NULL; 1576 } 1577 1578 static void efx_ptp_remove_channel(struct efx_channel *channel) 1579 { 1580 efx_ptp_remove(channel->efx); 1581 } 1582 1583 static void efx_ptp_get_channel_name(struct efx_channel *channel, 1584 char *buf, size_t len) 1585 { 1586 snprintf(buf, len, "%s-ptp", channel->efx->name); 1587 } 1588 1589 /* Determine whether this packet should be processed by the PTP module 1590 * or transmitted conventionally. 1591 */ 1592 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1593 { 1594 return efx->ptp_data && 1595 efx->ptp_data->enabled && 1596 skb->len >= PTP_MIN_LENGTH && 1597 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && 1598 likely(skb->protocol == htons(ETH_P_IP)) && 1599 skb_transport_header_was_set(skb) && 1600 skb_network_header_len(skb) >= sizeof(struct iphdr) && 1601 ip_hdr(skb)->protocol == IPPROTO_UDP && 1602 skb_headlen(skb) >= 1603 skb_transport_offset(skb) + sizeof(struct udphdr) && 1604 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); 1605 } 1606 1607 /* Receive a PTP packet. Packets are queued until the arrival of 1608 * the receive timestamp from the MC - this will probably occur after the 1609 * packet arrival because of the processing in the MC. 1610 */ 1611 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) 1612 { 1613 struct efx_nic *efx = channel->efx; 1614 struct efx_ptp_data *ptp = efx->ptp_data; 1615 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; 1616 u8 *match_data_012, *match_data_345; 1617 unsigned int version; 1618 u8 *data; 1619 1620 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1621 1622 /* Correct version? */ 1623 if (ptp->mode == MC_CMD_PTP_MODE_V1) { 1624 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { 1625 return false; 1626 } 1627 data = skb->data; 1628 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); 1629 if (version != PTP_VERSION_V1) { 1630 return false; 1631 } 1632 1633 /* PTP V1 uses all six bytes of the UUID to match the packet 1634 * to the timestamp 1635 */ 1636 match_data_012 = data + PTP_V1_UUID_OFFSET; 1637 match_data_345 = data + PTP_V1_UUID_OFFSET + 3; 1638 } else { 1639 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { 1640 return false; 1641 } 1642 data = skb->data; 1643 version = data[PTP_V2_VERSION_OFFSET]; 1644 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { 1645 return false; 1646 } 1647 1648 /* The original V2 implementation uses bytes 2-7 of 1649 * the UUID to match the packet to the timestamp. This 1650 * discards two of the bytes of the MAC address used 1651 * to create the UUID (SF bug 33070). The PTP V2 1652 * enhanced mode fixes this issue and uses bytes 0-2 1653 * and byte 5-7 of the UUID. 1654 */ 1655 match_data_345 = data + PTP_V2_UUID_OFFSET + 5; 1656 if (ptp->mode == MC_CMD_PTP_MODE_V2) { 1657 match_data_012 = data + PTP_V2_UUID_OFFSET + 2; 1658 } else { 1659 match_data_012 = data + PTP_V2_UUID_OFFSET + 0; 1660 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED); 1661 } 1662 } 1663 1664 /* Does this packet require timestamping? */ 1665 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { 1666 match->state = PTP_PACKET_STATE_UNMATCHED; 1667 1668 /* We expect the sequence number to be in the same position in 1669 * the packet for PTP V1 and V2 1670 */ 1671 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); 1672 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); 1673 1674 /* Extract UUID/Sequence information */ 1675 match->words[0] = (match_data_012[0] | 1676 (match_data_012[1] << 8) | 1677 (match_data_012[2] << 16) | 1678 (match_data_345[0] << 24)); 1679 match->words[1] = (match_data_345[1] | 1680 (match_data_345[2] << 8) | 1681 (data[PTP_V1_SEQUENCE_OFFSET + 1682 PTP_V1_SEQUENCE_LENGTH - 1] << 1683 16)); 1684 } else { 1685 match->state = PTP_PACKET_STATE_MATCH_UNWANTED; 1686 } 1687 1688 skb_queue_tail(&ptp->rxq, skb); 1689 queue_work(ptp->workwq, &ptp->work); 1690 1691 return true; 1692 } 1693 1694 /* Transmit a PTP packet. This has to be transmitted by the MC 1695 * itself, through an MCDI call. MCDI calls aren't permitted 1696 * in the transmit path so defer the actual transmission to a suitable worker. 1697 */ 1698 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1699 { 1700 struct efx_ptp_data *ptp = efx->ptp_data; 1701 1702 skb_queue_tail(&ptp->txq, skb); 1703 1704 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && 1705 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) 1706 efx_xmit_hwtstamp_pending(skb); 1707 queue_work(ptp->workwq, &ptp->work); 1708 1709 return NETDEV_TX_OK; 1710 } 1711 1712 int efx_ptp_get_mode(struct efx_nic *efx) 1713 { 1714 return efx->ptp_data->mode; 1715 } 1716 1717 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, 1718 unsigned int new_mode) 1719 { 1720 if ((enable_wanted != efx->ptp_data->enabled) || 1721 (enable_wanted && (efx->ptp_data->mode != new_mode))) { 1722 int rc = 0; 1723 1724 if (enable_wanted) { 1725 /* Change of mode requires disable */ 1726 if (efx->ptp_data->enabled && 1727 (efx->ptp_data->mode != new_mode)) { 1728 efx->ptp_data->enabled = false; 1729 rc = efx_ptp_stop(efx); 1730 if (rc != 0) 1731 return rc; 1732 } 1733 1734 /* Set new operating mode and establish 1735 * baseline synchronisation, which must 1736 * succeed. 1737 */ 1738 efx->ptp_data->mode = new_mode; 1739 if (netif_running(efx->net_dev)) 1740 rc = efx_ptp_start(efx); 1741 if (rc == 0) { 1742 rc = efx_ptp_synchronize(efx, 1743 PTP_SYNC_ATTEMPTS * 2); 1744 if (rc != 0) 1745 efx_ptp_stop(efx); 1746 } 1747 } else { 1748 rc = efx_ptp_stop(efx); 1749 } 1750 1751 if (rc != 0) 1752 return rc; 1753 1754 efx->ptp_data->enabled = enable_wanted; 1755 } 1756 1757 return 0; 1758 } 1759 1760 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init) 1761 { 1762 int rc; 1763 1764 if (init->flags) 1765 return -EINVAL; 1766 1767 if ((init->tx_type != HWTSTAMP_TX_OFF) && 1768 (init->tx_type != HWTSTAMP_TX_ON)) 1769 return -ERANGE; 1770 1771 rc = efx->type->ptp_set_ts_config(efx, init); 1772 if (rc) 1773 return rc; 1774 1775 efx->ptp_data->config = *init; 1776 return 0; 1777 } 1778 1779 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info) 1780 { 1781 struct efx_ptp_data *ptp = efx->ptp_data; 1782 struct efx_nic *primary = efx->primary; 1783 1784 ASSERT_RTNL(); 1785 1786 if (!ptp) 1787 return; 1788 1789 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 1790 SOF_TIMESTAMPING_RX_HARDWARE | 1791 SOF_TIMESTAMPING_RAW_HARDWARE); 1792 /* Check licensed features. If we don't have the license for TX 1793 * timestamps, the NIC will not support them. 1794 */ 1795 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1796 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1797 1798 if (!(nic_data->licensed_features & 1799 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) 1800 ts_info->so_timestamping &= 1801 ~SOF_TIMESTAMPING_TX_HARDWARE; 1802 } 1803 if (primary && primary->ptp_data && primary->ptp_data->phc_clock) 1804 ts_info->phc_index = 1805 ptp_clock_index(primary->ptp_data->phc_clock); 1806 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; 1807 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; 1808 } 1809 1810 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1811 { 1812 struct hwtstamp_config config; 1813 int rc; 1814 1815 /* Not a PTP enabled port */ 1816 if (!efx->ptp_data) 1817 return -EOPNOTSUPP; 1818 1819 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1820 return -EFAULT; 1821 1822 rc = efx_ptp_ts_init(efx, &config); 1823 if (rc != 0) 1824 return rc; 1825 1826 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) 1827 ? -EFAULT : 0; 1828 } 1829 1830 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1831 { 1832 if (!efx->ptp_data) 1833 return -EOPNOTSUPP; 1834 1835 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config, 1836 sizeof(efx->ptp_data->config)) ? -EFAULT : 0; 1837 } 1838 1839 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) 1840 { 1841 struct efx_ptp_data *ptp = efx->ptp_data; 1842 1843 netif_err(efx, hw, efx->net_dev, 1844 "PTP unexpected event length: got %d expected %d\n", 1845 ptp->evt_frag_idx, expected_frag_len); 1846 ptp->reset_required = true; 1847 queue_work(ptp->workwq, &ptp->work); 1848 } 1849 1850 /* Process a completed receive event. Put it on the event queue and 1851 * start worker thread. This is required because event and their 1852 * correspoding packets may come in either order. 1853 */ 1854 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp) 1855 { 1856 struct efx_ptp_event_rx *evt = NULL; 1857 1858 if (WARN_ON_ONCE(ptp->rx_ts_inline)) 1859 return; 1860 1861 if (ptp->evt_frag_idx != 3) { 1862 ptp_event_failure(efx, 3); 1863 return; 1864 } 1865 1866 spin_lock_bh(&ptp->evt_lock); 1867 if (!list_empty(&ptp->evt_free_list)) { 1868 evt = list_first_entry(&ptp->evt_free_list, 1869 struct efx_ptp_event_rx, link); 1870 list_del(&evt->link); 1871 1872 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA); 1873 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2], 1874 MCDI_EVENT_SRC) | 1875 (EFX_QWORD_FIELD(ptp->evt_frags[1], 1876 MCDI_EVENT_SRC) << 8) | 1877 (EFX_QWORD_FIELD(ptp->evt_frags[0], 1878 MCDI_EVENT_SRC) << 16)); 1879 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time( 1880 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA), 1881 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA), 1882 ptp->ts_corrections.ptp_rx); 1883 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1884 list_add_tail(&evt->link, &ptp->evt_list); 1885 1886 queue_work(ptp->workwq, &ptp->work); 1887 } else if (net_ratelimit()) { 1888 /* Log a rate-limited warning message. */ 1889 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n"); 1890 } 1891 spin_unlock_bh(&ptp->evt_lock); 1892 } 1893 1894 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) 1895 { 1896 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); 1897 if (ptp->evt_frag_idx != 1) { 1898 ptp_event_failure(efx, 1); 1899 return; 1900 } 1901 1902 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); 1903 } 1904 1905 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) 1906 { 1907 if (ptp->nic_ts_enabled) 1908 queue_work(ptp->pps_workwq, &ptp->pps_work); 1909 } 1910 1911 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) 1912 { 1913 struct efx_ptp_data *ptp = efx->ptp_data; 1914 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); 1915 1916 if (!ptp) { 1917 if (!efx->ptp_warned) { 1918 netif_warn(efx, drv, efx->net_dev, 1919 "Received PTP event but PTP not set up\n"); 1920 efx->ptp_warned = true; 1921 } 1922 return; 1923 } 1924 1925 if (!ptp->enabled) 1926 return; 1927 1928 if (ptp->evt_frag_idx == 0) { 1929 ptp->evt_code = code; 1930 } else if (ptp->evt_code != code) { 1931 netif_err(efx, hw, efx->net_dev, 1932 "PTP out of sequence event %d\n", code); 1933 ptp->evt_frag_idx = 0; 1934 } 1935 1936 ptp->evt_frags[ptp->evt_frag_idx++] = *ev; 1937 if (!MCDI_EVENT_FIELD(*ev, CONT)) { 1938 /* Process resulting event */ 1939 switch (code) { 1940 case MCDI_EVENT_CODE_PTP_RX: 1941 ptp_event_rx(efx, ptp); 1942 break; 1943 case MCDI_EVENT_CODE_PTP_FAULT: 1944 ptp_event_fault(efx, ptp); 1945 break; 1946 case MCDI_EVENT_CODE_PTP_PPS: 1947 ptp_event_pps(efx, ptp); 1948 break; 1949 default: 1950 netif_err(efx, hw, efx->net_dev, 1951 "PTP unknown event %d\n", code); 1952 break; 1953 } 1954 ptp->evt_frag_idx = 0; 1955 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { 1956 netif_err(efx, hw, efx->net_dev, 1957 "PTP too many event fragments\n"); 1958 ptp->evt_frag_idx = 0; 1959 } 1960 } 1961 1962 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) 1963 { 1964 struct efx_nic *efx = channel->efx; 1965 struct efx_ptp_data *ptp = efx->ptp_data; 1966 1967 /* When extracting the sync timestamp minor value, we should discard 1968 * the least significant two bits. These are not required in order 1969 * to reconstruct full-range timestamps and they are optionally used 1970 * to report status depending on the options supplied when subscribing 1971 * for sync events. 1972 */ 1973 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); 1974 channel->sync_timestamp_minor = 1975 (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC) 1976 << ptp->nic_time.sync_event_minor_shift; 1977 1978 /* if sync events have been disabled then we want to silently ignore 1979 * this event, so throw away result. 1980 */ 1981 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, 1982 SYNC_EVENTS_VALID); 1983 } 1984 1985 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) 1986 { 1987 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 1988 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); 1989 #else 1990 const u8 *data = eh + efx->rx_packet_ts_offset; 1991 return (u32)data[0] | 1992 (u32)data[1] << 8 | 1993 (u32)data[2] << 16 | 1994 (u32)data[3] << 24; 1995 #endif 1996 } 1997 1998 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, 1999 struct sk_buff *skb) 2000 { 2001 struct efx_nic *efx = channel->efx; 2002 struct efx_ptp_data *ptp = efx->ptp_data; 2003 u32 pkt_timestamp_major, pkt_timestamp_minor; 2004 u32 diff, carry; 2005 struct skb_shared_hwtstamps *timestamps; 2006 2007 if (channel->sync_events_state != SYNC_EVENTS_VALID) 2008 return; 2009 2010 pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb)); 2011 2012 /* get the difference between the packet and sync timestamps, 2013 * modulo one second 2014 */ 2015 diff = pkt_timestamp_minor - channel->sync_timestamp_minor; 2016 if (pkt_timestamp_minor < channel->sync_timestamp_minor) 2017 diff += ptp->nic_time.minor_max; 2018 2019 /* do we roll over a second boundary and need to carry the one? */ 2020 carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ? 2021 1 : 0; 2022 2023 if (diff <= ptp->nic_time.sync_event_diff_max) { 2024 /* packet is ahead of the sync event by a quarter of a second or 2025 * less (allowing for fuzz) 2026 */ 2027 pkt_timestamp_major = channel->sync_timestamp_major + carry; 2028 } else if (diff >= ptp->nic_time.sync_event_diff_min) { 2029 /* packet is behind the sync event but within the fuzz factor. 2030 * This means the RX packet and sync event crossed as they were 2031 * placed on the event queue, which can sometimes happen. 2032 */ 2033 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; 2034 } else { 2035 /* it's outside tolerance in both directions. this might be 2036 * indicative of us missing sync events for some reason, so 2037 * we'll call it an error rather than risk giving a bogus 2038 * timestamp. 2039 */ 2040 netif_vdbg(efx, drv, efx->net_dev, 2041 "packet timestamp %x too far from sync event %x:%x\n", 2042 pkt_timestamp_minor, channel->sync_timestamp_major, 2043 channel->sync_timestamp_minor); 2044 return; 2045 } 2046 2047 /* attach the timestamps to the skb */ 2048 timestamps = skb_hwtstamps(skb); 2049 timestamps->hwtstamp = 2050 ptp->nic_to_kernel_time(pkt_timestamp_major, 2051 pkt_timestamp_minor, 2052 ptp->ts_corrections.general_rx); 2053 } 2054 2055 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta) 2056 { 2057 struct efx_ptp_data *ptp_data = container_of(ptp, 2058 struct efx_ptp_data, 2059 phc_clock_info); 2060 struct efx_nic *efx = ptp_data->efx; 2061 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); 2062 s64 adjustment_ns; 2063 int rc; 2064 2065 if (delta > MAX_PPB) 2066 delta = MAX_PPB; 2067 else if (delta < -MAX_PPB) 2068 delta = -MAX_PPB; 2069 2070 /* Convert ppb to fixed point ns taking care to round correctly. */ 2071 adjustment_ns = ((s64)delta * PPB_SCALE_WORD + 2072 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >> 2073 ptp_data->adjfreq_ppb_shift; 2074 2075 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2076 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); 2077 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); 2078 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); 2079 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); 2080 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), 2081 NULL, 0, NULL); 2082 if (rc != 0) 2083 return rc; 2084 2085 ptp_data->current_adjfreq = adjustment_ns; 2086 return 0; 2087 } 2088 2089 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) 2090 { 2091 u32 nic_major, nic_minor; 2092 struct efx_ptp_data *ptp_data = container_of(ptp, 2093 struct efx_ptp_data, 2094 phc_clock_info); 2095 struct efx_nic *efx = ptp_data->efx; 2096 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); 2097 2098 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); 2099 2100 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2101 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2102 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); 2103 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); 2104 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); 2105 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2106 NULL, 0, NULL); 2107 } 2108 2109 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 2110 { 2111 struct efx_ptp_data *ptp_data = container_of(ptp, 2112 struct efx_ptp_data, 2113 phc_clock_info); 2114 struct efx_nic *efx = ptp_data->efx; 2115 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); 2116 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); 2117 int rc; 2118 ktime_t kt; 2119 2120 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); 2121 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2122 2123 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2124 outbuf, sizeof(outbuf), NULL); 2125 if (rc != 0) 2126 return rc; 2127 2128 kt = ptp_data->nic_to_kernel_time( 2129 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), 2130 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); 2131 *ts = ktime_to_timespec64(kt); 2132 return 0; 2133 } 2134 2135 static int efx_phc_settime(struct ptp_clock_info *ptp, 2136 const struct timespec64 *e_ts) 2137 { 2138 /* Get the current NIC time, efx_phc_gettime. 2139 * Subtract from the desired time to get the offset 2140 * call efx_phc_adjtime with the offset 2141 */ 2142 int rc; 2143 struct timespec64 time_now; 2144 struct timespec64 delta; 2145 2146 rc = efx_phc_gettime(ptp, &time_now); 2147 if (rc != 0) 2148 return rc; 2149 2150 delta = timespec64_sub(*e_ts, time_now); 2151 2152 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta)); 2153 if (rc != 0) 2154 return rc; 2155 2156 return 0; 2157 } 2158 2159 static int efx_phc_enable(struct ptp_clock_info *ptp, 2160 struct ptp_clock_request *request, 2161 int enable) 2162 { 2163 struct efx_ptp_data *ptp_data = container_of(ptp, 2164 struct efx_ptp_data, 2165 phc_clock_info); 2166 if (request->type != PTP_CLK_REQ_PPS) 2167 return -EOPNOTSUPP; 2168 2169 ptp_data->nic_ts_enabled = !!enable; 2170 return 0; 2171 } 2172 2173 static const struct efx_channel_type efx_ptp_channel_type = { 2174 .handle_no_channel = efx_ptp_handle_no_channel, 2175 .pre_probe = efx_ptp_probe_channel, 2176 .post_remove = efx_ptp_remove_channel, 2177 .get_name = efx_ptp_get_channel_name, 2178 /* no copy operation; there is no need to reallocate this channel */ 2179 .receive_skb = efx_ptp_rx, 2180 .want_txqs = efx_ptp_want_txqs, 2181 .keep_eventq = false, 2182 }; 2183 2184 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx) 2185 { 2186 /* Check whether PTP is implemented on this NIC. The DISABLE 2187 * operation will succeed if and only if it is implemented. 2188 */ 2189 if (efx_ptp_disable(efx) == 0) 2190 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = 2191 &efx_ptp_channel_type; 2192 } 2193 2194 void efx_ptp_start_datapath(struct efx_nic *efx) 2195 { 2196 if (efx_ptp_restart(efx)) 2197 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); 2198 /* re-enable timestamping if it was previously enabled */ 2199 if (efx->type->ptp_set_ts_sync_events) 2200 efx->type->ptp_set_ts_sync_events(efx, true, true); 2201 } 2202 2203 void efx_ptp_stop_datapath(struct efx_nic *efx) 2204 { 2205 /* temporarily disable timestamping */ 2206 if (efx->type->ptp_set_ts_sync_events) 2207 efx->type->ptp_set_ts_sync_events(efx, false, true); 2208 efx_ptp_stop(efx); 2209 } 2210