1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2011-2013 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 /* Theory of operation: 11 * 12 * PTP support is assisted by firmware running on the MC, which provides 13 * the hardware timestamping capabilities. Both transmitted and received 14 * PTP event packets are queued onto internal queues for subsequent processing; 15 * this is because the MC operations are relatively long and would block 16 * block NAPI/interrupt operation. 17 * 18 * Receive event processing: 19 * The event contains the packet's UUID and sequence number, together 20 * with the hardware timestamp. The PTP receive packet queue is searched 21 * for this UUID/sequence number and, if found, put on a pending queue. 22 * Packets not matching are delivered without timestamps (MCDI events will 23 * always arrive after the actual packet). 24 * It is important for the operation of the PTP protocol that the ordering 25 * of packets between the event and general port is maintained. 26 * 27 * Work queue processing: 28 * If work waiting, synchronise host/hardware time 29 * 30 * Transmit: send packet through MC, which returns the transmission time 31 * that is converted to an appropriate timestamp. 32 * 33 * Receive: the packet's reception time is converted to an appropriate 34 * timestamp. 35 */ 36 #include <linux/ip.h> 37 #include <linux/udp.h> 38 #include <linux/time.h> 39 #include <linux/ktime.h> 40 #include <linux/module.h> 41 #include <linux/net_tstamp.h> 42 #include <linux/pps_kernel.h> 43 #include <linux/ptp_clock_kernel.h> 44 #include "net_driver.h" 45 #include "efx.h" 46 #include "mcdi.h" 47 #include "mcdi_pcol.h" 48 #include "io.h" 49 #include "farch_regs.h" 50 #include "nic.h" 51 52 /* Maximum number of events expected to make up a PTP event */ 53 #define MAX_EVENT_FRAGS 3 54 55 /* Maximum delay, ms, to begin synchronisation */ 56 #define MAX_SYNCHRONISE_WAIT_MS 2 57 58 /* How long, at most, to spend synchronising */ 59 #define SYNCHRONISE_PERIOD_NS 250000 60 61 /* How often to update the shared memory time */ 62 #define SYNCHRONISATION_GRANULARITY_NS 200 63 64 /* Minimum permitted length of a (corrected) synchronisation time */ 65 #define DEFAULT_MIN_SYNCHRONISATION_NS 120 66 67 /* Maximum permitted length of a (corrected) synchronisation time */ 68 #define MAX_SYNCHRONISATION_NS 1000 69 70 /* How many (MC) receive events that can be queued */ 71 #define MAX_RECEIVE_EVENTS 8 72 73 /* Length of (modified) moving average. */ 74 #define AVERAGE_LENGTH 16 75 76 /* How long an unmatched event or packet can be held */ 77 #define PKT_EVENT_LIFETIME_MS 10 78 79 /* Offsets into PTP packet for identification. These offsets are from the 80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor 81 * PTP V2 permit the use of IPV4 options. 82 */ 83 #define PTP_DPORT_OFFSET 22 84 85 #define PTP_V1_VERSION_LENGTH 2 86 #define PTP_V1_VERSION_OFFSET 28 87 88 #define PTP_V1_UUID_LENGTH 6 89 #define PTP_V1_UUID_OFFSET 50 90 91 #define PTP_V1_SEQUENCE_LENGTH 2 92 #define PTP_V1_SEQUENCE_OFFSET 58 93 94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: 95 * includes IP header. 96 */ 97 #define PTP_V1_MIN_LENGTH 64 98 99 #define PTP_V2_VERSION_LENGTH 1 100 #define PTP_V2_VERSION_OFFSET 29 101 102 #define PTP_V2_UUID_LENGTH 8 103 #define PTP_V2_UUID_OFFSET 48 104 105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2), 106 * the MC only captures the last six bytes of the clock identity. These values 107 * reflect those, not the ones used in the standard. The standard permits 108 * mapping of V1 UUIDs to V2 UUIDs with these same values. 109 */ 110 #define PTP_V2_MC_UUID_LENGTH 6 111 #define PTP_V2_MC_UUID_OFFSET 50 112 113 #define PTP_V2_SEQUENCE_LENGTH 2 114 #define PTP_V2_SEQUENCE_OFFSET 58 115 116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: 117 * includes IP header. 118 */ 119 #define PTP_V2_MIN_LENGTH 63 120 121 #define PTP_MIN_LENGTH 63 122 123 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */ 124 #define PTP_EVENT_PORT 319 125 #define PTP_GENERAL_PORT 320 126 127 /* Annoyingly the format of the version numbers are different between 128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2. 129 */ 130 #define PTP_VERSION_V1 1 131 132 #define PTP_VERSION_V2 2 133 #define PTP_VERSION_V2_MASK 0x0f 134 135 enum ptp_packet_state { 136 PTP_PACKET_STATE_UNMATCHED = 0, 137 PTP_PACKET_STATE_MATCHED, 138 PTP_PACKET_STATE_TIMED_OUT, 139 PTP_PACKET_STATE_MATCH_UNWANTED 140 }; 141 142 /* NIC synchronised with single word of time only comprising 143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. 144 */ 145 #define MC_NANOSECOND_BITS 30 146 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) 147 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) 148 149 /* Maximum parts-per-billion adjustment that is acceptable */ 150 #define MAX_PPB 1000000 151 152 /* Number of bits required to hold the above */ 153 #define MAX_PPB_BITS 20 154 155 /* Number of extra bits allowed when calculating fractional ns. 156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should 157 * be less than 63. 158 */ 159 #define PPB_EXTRA_BITS 2 160 161 /* Precalculate scale word to avoid long long division at runtime */ 162 #define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\ 163 MAX_PPB_BITS)) / 1000000000LL) 164 165 #define PTP_SYNC_ATTEMPTS 4 166 167 /** 168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. 169 * @words: UUID and (partial) sequence number 170 * @expiry: Time after which the packet should be delivered irrespective of 171 * event arrival. 172 * @state: The state of the packet - whether it is ready for processing or 173 * whether that is of no interest. 174 */ 175 struct efx_ptp_match { 176 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)]; 177 unsigned long expiry; 178 enum ptp_packet_state state; 179 }; 180 181 /** 182 * struct efx_ptp_event_rx - A PTP receive event (from MC) 183 * @seq0: First part of (PTP) UUID 184 * @seq1: Second part of (PTP) UUID and sequence number 185 * @hwtimestamp: Event timestamp 186 */ 187 struct efx_ptp_event_rx { 188 struct list_head link; 189 u32 seq0; 190 u32 seq1; 191 ktime_t hwtimestamp; 192 unsigned long expiry; 193 }; 194 195 /** 196 * struct efx_ptp_timeset - Synchronisation between host and MC 197 * @host_start: Host time immediately before hardware timestamp taken 198 * @major: Hardware timestamp, major 199 * @minor: Hardware timestamp, minor 200 * @host_end: Host time immediately after hardware timestamp taken 201 * @wait: Number of NIC clock ticks between hardware timestamp being read and 202 * host end time being seen 203 * @window: Difference of host_end and host_start 204 * @valid: Whether this timeset is valid 205 */ 206 struct efx_ptp_timeset { 207 u32 host_start; 208 u32 major; 209 u32 minor; 210 u32 host_end; 211 u32 wait; 212 u32 window; /* Derived: end - start, allowing for wrap */ 213 }; 214 215 /** 216 * struct efx_ptp_data - Precision Time Protocol (PTP) state 217 * @efx: The NIC context 218 * @channel: The PTP channel (Siena only) 219 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are 220 * separate events) 221 * @rxq: Receive queue (awaiting timestamps) 222 * @txq: Transmit queue 223 * @evt_list: List of MC receive events awaiting packets 224 * @evt_free_list: List of free events 225 * @evt_lock: Lock for manipulating evt_list and evt_free_list 226 * @rx_evts: Instantiated events (on evt_list and evt_free_list) 227 * @workwq: Work queue for processing pending PTP operations 228 * @work: Work task 229 * @reset_required: A serious error has occurred and the PTP task needs to be 230 * reset (disable, enable). 231 * @rxfilter_event: Receive filter when operating 232 * @rxfilter_general: Receive filter when operating 233 * @config: Current timestamp configuration 234 * @enabled: PTP operation enabled 235 * @mode: Mode in which PTP operating (PTP version) 236 * @time_format: Time format supported by this NIC 237 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time 238 * @nic_to_kernel_time: Function to convert from NIC to kernel time 239 * @min_synchronisation_ns: Minimum acceptable corrected sync window 240 * @ts_corrections.tx: Required driver correction of transmit timestamps 241 * @ts_corrections.rx: Required driver correction of receive timestamps 242 * @ts_corrections.pps_out: PPS output error (information only) 243 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps 244 * @evt_frags: Partly assembled PTP events 245 * @evt_frag_idx: Current fragment number 246 * @evt_code: Last event code 247 * @start: Address at which MC indicates ready for synchronisation 248 * @host_time_pps: Host time at last PPS 249 * @current_adjfreq: Current ppb adjustment. 250 * @phc_clock: Pointer to registered phc device (if primary function) 251 * @phc_clock_info: Registration structure for phc device 252 * @pps_work: pps work task for handling pps events 253 * @pps_workwq: pps work queue 254 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled 255 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids 256 * allocations in main data path). 257 * @good_syncs: Number of successful synchronisations. 258 * @fast_syncs: Number of synchronisations requiring short delay 259 * @bad_syncs: Number of failed synchronisations. 260 * @sync_timeouts: Number of synchronisation timeouts 261 * @no_time_syncs: Number of synchronisations with no good times. 262 * @invalid_sync_windows: Number of sync windows with bad durations. 263 * @undersize_sync_windows: Number of corrected sync windows that are too small 264 * @oversize_sync_windows: Number of corrected sync windows that are too large 265 * @rx_no_timestamp: Number of packets received without a timestamp. 266 * @timeset: Last set of synchronisation statistics. 267 */ 268 struct efx_ptp_data { 269 struct efx_nic *efx; 270 struct efx_channel *channel; 271 bool rx_ts_inline; 272 struct sk_buff_head rxq; 273 struct sk_buff_head txq; 274 struct list_head evt_list; 275 struct list_head evt_free_list; 276 spinlock_t evt_lock; 277 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS]; 278 struct workqueue_struct *workwq; 279 struct work_struct work; 280 bool reset_required; 281 u32 rxfilter_event; 282 u32 rxfilter_general; 283 bool rxfilter_installed; 284 struct hwtstamp_config config; 285 bool enabled; 286 unsigned int mode; 287 unsigned int time_format; 288 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); 289 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, 290 s32 correction); 291 unsigned int min_synchronisation_ns; 292 struct { 293 s32 tx; 294 s32 rx; 295 s32 pps_out; 296 s32 pps_in; 297 } ts_corrections; 298 efx_qword_t evt_frags[MAX_EVENT_FRAGS]; 299 int evt_frag_idx; 300 int evt_code; 301 struct efx_buffer start; 302 struct pps_event_time host_time_pps; 303 s64 current_adjfreq; 304 struct ptp_clock *phc_clock; 305 struct ptp_clock_info phc_clock_info; 306 struct work_struct pps_work; 307 struct workqueue_struct *pps_workwq; 308 bool nic_ts_enabled; 309 _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX); 310 311 unsigned int good_syncs; 312 unsigned int fast_syncs; 313 unsigned int bad_syncs; 314 unsigned int sync_timeouts; 315 unsigned int no_time_syncs; 316 unsigned int invalid_sync_windows; 317 unsigned int undersize_sync_windows; 318 unsigned int oversize_sync_windows; 319 unsigned int rx_no_timestamp; 320 struct efx_ptp_timeset 321 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; 322 }; 323 324 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta); 325 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); 326 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts); 327 static int efx_phc_settime(struct ptp_clock_info *ptp, 328 const struct timespec64 *e_ts); 329 static int efx_phc_enable(struct ptp_clock_info *ptp, 330 struct ptp_clock_request *request, int on); 331 332 #define PTP_SW_STAT(ext_name, field_name) \ 333 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } 334 #define PTP_MC_STAT(ext_name, mcdi_name) \ 335 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } 336 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { 337 PTP_SW_STAT(ptp_good_syncs, good_syncs), 338 PTP_SW_STAT(ptp_fast_syncs, fast_syncs), 339 PTP_SW_STAT(ptp_bad_syncs, bad_syncs), 340 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), 341 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), 342 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), 343 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), 344 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), 345 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), 346 PTP_MC_STAT(ptp_tx_timestamp_packets, TX), 347 PTP_MC_STAT(ptp_rx_timestamp_packets, RX), 348 PTP_MC_STAT(ptp_timestamp_packets, TS), 349 PTP_MC_STAT(ptp_filter_matches, FM), 350 PTP_MC_STAT(ptp_non_filter_matches, NFM), 351 }; 352 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) 353 static const unsigned long efx_ptp_stat_mask[] = { 354 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, 355 }; 356 357 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings) 358 { 359 if (!efx->ptp_data) 360 return 0; 361 362 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 363 efx_ptp_stat_mask, strings); 364 } 365 366 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats) 367 { 368 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); 369 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); 370 size_t i; 371 int rc; 372 373 if (!efx->ptp_data) 374 return 0; 375 376 /* Copy software statistics */ 377 for (i = 0; i < PTP_STAT_COUNT; i++) { 378 if (efx_ptp_stat_desc[i].dma_width) 379 continue; 380 stats[i] = *(unsigned int *)((char *)efx->ptp_data + 381 efx_ptp_stat_desc[i].offset); 382 } 383 384 /* Fetch MC statistics. We *must* fill in all statistics or 385 * risk leaking kernel memory to userland, so if the MCDI 386 * request fails we pretend we got zeroes. 387 */ 388 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); 389 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 390 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 391 outbuf, sizeof(outbuf), NULL); 392 if (rc) 393 memset(outbuf, 0, sizeof(outbuf)); 394 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 395 efx_ptp_stat_mask, 396 stats, _MCDI_PTR(outbuf, 0), false); 397 398 return PTP_STAT_COUNT; 399 } 400 401 /* For Siena platforms NIC time is s and ns */ 402 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor) 403 { 404 struct timespec64 ts = ns_to_timespec64(ns); 405 *nic_major = (u32)ts.tv_sec; 406 *nic_minor = ts.tv_nsec; 407 } 408 409 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor, 410 s32 correction) 411 { 412 ktime_t kt = ktime_set(nic_major, nic_minor); 413 if (correction >= 0) 414 kt = ktime_add_ns(kt, (u64)correction); 415 else 416 kt = ktime_sub_ns(kt, (u64)-correction); 417 return kt; 418 } 419 420 /* To convert from s27 format to ns we multiply then divide by a power of 2. 421 * For the conversion from ns to s27, the operation is also converted to a 422 * multiply and shift. 423 */ 424 #define S27_TO_NS_SHIFT (27) 425 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) 426 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT) 427 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT) 428 429 /* For Huntington platforms NIC time is in seconds and fractions of a second 430 * where the minor register only uses 27 bits in units of 2^-27s. 431 */ 432 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) 433 { 434 struct timespec64 ts = ns_to_timespec64(ns); 435 u32 maj = (u32)ts.tv_sec; 436 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + 437 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); 438 439 /* The conversion can result in the minor value exceeding the maximum. 440 * In this case, round up to the next second. 441 */ 442 if (min >= S27_MINOR_MAX) { 443 min -= S27_MINOR_MAX; 444 maj++; 445 } 446 447 *nic_major = maj; 448 *nic_minor = min; 449 } 450 451 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) 452 { 453 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + 454 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); 455 return ktime_set(nic_major, ns); 456 } 457 458 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, 459 s32 correction) 460 { 461 /* Apply the correction and deal with carry */ 462 nic_minor += correction; 463 if ((s32)nic_minor < 0) { 464 nic_minor += S27_MINOR_MAX; 465 nic_major--; 466 } else if (nic_minor >= S27_MINOR_MAX) { 467 nic_minor -= S27_MINOR_MAX; 468 nic_major++; 469 } 470 471 return efx_ptp_s27_to_ktime(nic_major, nic_minor); 472 } 473 474 /* Get PTP attributes and set up time conversions */ 475 static int efx_ptp_get_attributes(struct efx_nic *efx) 476 { 477 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); 478 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); 479 struct efx_ptp_data *ptp = efx->ptp_data; 480 int rc; 481 u32 fmt; 482 size_t out_len; 483 484 /* Get the PTP attributes. If the NIC doesn't support the operation we 485 * use the default format for compatibility with older NICs i.e. 486 * seconds and nanoseconds. 487 */ 488 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); 489 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 490 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 491 outbuf, sizeof(outbuf), &out_len); 492 if (rc == 0) { 493 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); 494 } else if (rc == -EINVAL) { 495 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; 496 } else if (rc == -EPERM) { 497 netif_info(efx, probe, efx->net_dev, "no PTP support\n"); 498 return rc; 499 } else { 500 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), 501 outbuf, sizeof(outbuf), rc); 502 return rc; 503 } 504 505 if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION) { 506 ptp->ns_to_nic_time = efx_ptp_ns_to_s27; 507 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; 508 } else if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS) { 509 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns; 510 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction; 511 } else { 512 return -ERANGE; 513 } 514 515 ptp->time_format = fmt; 516 517 /* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older 518 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value 519 * to use for the minimum acceptable corrected synchronization window. 520 * If we have the extra information store it. For older firmware that 521 * does not implement the extended command use the default value. 522 */ 523 if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) 524 ptp->min_synchronisation_ns = 525 MCDI_DWORD(outbuf, 526 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); 527 else 528 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; 529 530 return 0; 531 } 532 533 /* Get PTP timestamp corrections */ 534 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) 535 { 536 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); 537 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN); 538 int rc; 539 540 /* Get the timestamp corrections from the NIC. If this operation is 541 * not supported (older NICs) then no correction is required. 542 */ 543 MCDI_SET_DWORD(inbuf, PTP_IN_OP, 544 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); 545 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 546 547 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 548 outbuf, sizeof(outbuf), NULL); 549 if (rc == 0) { 550 efx->ptp_data->ts_corrections.tx = MCDI_DWORD(outbuf, 551 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); 552 efx->ptp_data->ts_corrections.rx = MCDI_DWORD(outbuf, 553 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); 554 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, 555 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); 556 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, 557 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); 558 } else if (rc == -EINVAL) { 559 efx->ptp_data->ts_corrections.tx = 0; 560 efx->ptp_data->ts_corrections.rx = 0; 561 efx->ptp_data->ts_corrections.pps_out = 0; 562 efx->ptp_data->ts_corrections.pps_in = 0; 563 } else { 564 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, 565 sizeof(outbuf), rc); 566 return rc; 567 } 568 569 return 0; 570 } 571 572 /* Enable MCDI PTP support. */ 573 static int efx_ptp_enable(struct efx_nic *efx) 574 { 575 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); 576 MCDI_DECLARE_BUF_ERR(outbuf); 577 int rc; 578 579 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); 580 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 581 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, 582 efx->ptp_data->channel ? 583 efx->ptp_data->channel->channel : 0); 584 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); 585 586 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 587 outbuf, sizeof(outbuf), NULL); 588 rc = (rc == -EALREADY) ? 0 : rc; 589 if (rc) 590 efx_mcdi_display_error(efx, MC_CMD_PTP, 591 MC_CMD_PTP_IN_ENABLE_LEN, 592 outbuf, sizeof(outbuf), rc); 593 return rc; 594 } 595 596 /* Disable MCDI PTP support. 597 * 598 * Note that this function should never rely on the presence of ptp_data - 599 * may be called before that exists. 600 */ 601 static int efx_ptp_disable(struct efx_nic *efx) 602 { 603 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); 604 MCDI_DECLARE_BUF_ERR(outbuf); 605 int rc; 606 607 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); 608 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 609 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 610 outbuf, sizeof(outbuf), NULL); 611 rc = (rc == -EALREADY) ? 0 : rc; 612 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function 613 * should only have been called during probe. 614 */ 615 if (rc == -ENOSYS || rc == -EPERM) 616 netif_info(efx, probe, efx->net_dev, "no PTP support\n"); 617 else if (rc) 618 efx_mcdi_display_error(efx, MC_CMD_PTP, 619 MC_CMD_PTP_IN_DISABLE_LEN, 620 outbuf, sizeof(outbuf), rc); 621 return rc; 622 } 623 624 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) 625 { 626 struct sk_buff *skb; 627 628 while ((skb = skb_dequeue(q))) { 629 local_bh_disable(); 630 netif_receive_skb(skb); 631 local_bh_enable(); 632 } 633 } 634 635 static void efx_ptp_handle_no_channel(struct efx_nic *efx) 636 { 637 netif_err(efx, drv, efx->net_dev, 638 "ERROR: PTP requires MSI-X and 1 additional interrupt" 639 "vector. PTP disabled\n"); 640 } 641 642 /* Repeatedly send the host time to the MC which will capture the hardware 643 * time. 644 */ 645 static void efx_ptp_send_times(struct efx_nic *efx, 646 struct pps_event_time *last_time) 647 { 648 struct pps_event_time now; 649 struct timespec64 limit; 650 struct efx_ptp_data *ptp = efx->ptp_data; 651 struct timespec64 start; 652 int *mc_running = ptp->start.addr; 653 654 pps_get_ts(&now); 655 start = now.ts_real; 656 limit = now.ts_real; 657 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS); 658 659 /* Write host time for specified period or until MC is done */ 660 while ((timespec64_compare(&now.ts_real, &limit) < 0) && 661 ACCESS_ONCE(*mc_running)) { 662 struct timespec64 update_time; 663 unsigned int host_time; 664 665 /* Don't update continuously to avoid saturating the PCIe bus */ 666 update_time = now.ts_real; 667 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); 668 do { 669 pps_get_ts(&now); 670 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) && 671 ACCESS_ONCE(*mc_running)); 672 673 /* Synchronise NIC with single word of time only */ 674 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | 675 now.ts_real.tv_nsec); 676 /* Update host time in NIC memory */ 677 efx->type->ptp_write_host_time(efx, host_time); 678 } 679 *last_time = now; 680 } 681 682 /* Read a timeset from the MC's results and partial process. */ 683 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), 684 struct efx_ptp_timeset *timeset) 685 { 686 unsigned start_ns, end_ns; 687 688 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); 689 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); 690 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); 691 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), 692 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); 693 694 /* Ignore seconds */ 695 start_ns = timeset->host_start & MC_NANOSECOND_MASK; 696 end_ns = timeset->host_end & MC_NANOSECOND_MASK; 697 /* Allow for rollover */ 698 if (end_ns < start_ns) 699 end_ns += NSEC_PER_SEC; 700 /* Determine duration of operation */ 701 timeset->window = end_ns - start_ns; 702 } 703 704 /* Process times received from MC. 705 * 706 * Extract times from returned results, and establish the minimum value 707 * seen. The minimum value represents the "best" possible time and events 708 * too much greater than this are rejected - the machine is, perhaps, too 709 * busy. A number of readings are taken so that, hopefully, at least one good 710 * synchronisation will be seen in the results. 711 */ 712 static int 713 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), 714 size_t response_length, 715 const struct pps_event_time *last_time) 716 { 717 unsigned number_readings = 718 MCDI_VAR_ARRAY_LEN(response_length, 719 PTP_OUT_SYNCHRONIZE_TIMESET); 720 unsigned i; 721 unsigned ngood = 0; 722 unsigned last_good = 0; 723 struct efx_ptp_data *ptp = efx->ptp_data; 724 u32 last_sec; 725 u32 start_sec; 726 struct timespec64 delta; 727 ktime_t mc_time; 728 729 if (number_readings == 0) 730 return -EAGAIN; 731 732 /* Read the set of results and find the last good host-MC 733 * synchronization result. The MC times when it finishes reading the 734 * host time so the corrected window time should be fairly constant 735 * for a given platform. Increment stats for any results that appear 736 * to be erroneous. 737 */ 738 for (i = 0; i < number_readings; i++) { 739 s32 window, corrected; 740 struct timespec64 wait; 741 742 efx_ptp_read_timeset( 743 MCDI_ARRAY_STRUCT_PTR(synch_buf, 744 PTP_OUT_SYNCHRONIZE_TIMESET, i), 745 &ptp->timeset[i]); 746 747 wait = ktime_to_timespec64( 748 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); 749 window = ptp->timeset[i].window; 750 corrected = window - wait.tv_nsec; 751 752 /* We expect the uncorrected synchronization window to be at 753 * least as large as the interval between host start and end 754 * times. If it is smaller than this then this is mostly likely 755 * to be a consequence of the host's time being adjusted. 756 * Check that the corrected sync window is in a reasonable 757 * range. If it is out of range it is likely to be because an 758 * interrupt or other delay occurred between reading the system 759 * time and writing it to MC memory. 760 */ 761 if (window < SYNCHRONISATION_GRANULARITY_NS) { 762 ++ptp->invalid_sync_windows; 763 } else if (corrected >= MAX_SYNCHRONISATION_NS) { 764 ++ptp->oversize_sync_windows; 765 } else if (corrected < ptp->min_synchronisation_ns) { 766 ++ptp->undersize_sync_windows; 767 } else { 768 ngood++; 769 last_good = i; 770 } 771 } 772 773 if (ngood == 0) { 774 netif_warn(efx, drv, efx->net_dev, 775 "PTP no suitable synchronisations\n"); 776 return -EAGAIN; 777 } 778 779 /* Calculate delay from last good sync (host time) to last_time. 780 * It is possible that the seconds rolled over between taking 781 * the start reading and the last value written by the host. The 782 * timescales are such that a gap of more than one second is never 783 * expected. delta is *not* normalised. 784 */ 785 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; 786 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; 787 if (start_sec != last_sec && 788 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { 789 netif_warn(efx, hw, efx->net_dev, 790 "PTP bad synchronisation seconds\n"); 791 return -EAGAIN; 792 } 793 delta.tv_sec = (last_sec - start_sec) & 1; 794 delta.tv_nsec = 795 last_time->ts_real.tv_nsec - 796 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); 797 798 /* Convert the NIC time at last good sync into kernel time. 799 * No correction is required - this time is the output of a 800 * firmware process. 801 */ 802 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, 803 ptp->timeset[last_good].minor, 0); 804 805 /* Calculate delay from NIC top of second to last_time */ 806 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec; 807 808 /* Set PPS timestamp to match NIC top of second */ 809 ptp->host_time_pps = *last_time; 810 pps_sub_ts(&ptp->host_time_pps, delta); 811 812 return 0; 813 } 814 815 /* Synchronize times between the host and the MC */ 816 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) 817 { 818 struct efx_ptp_data *ptp = efx->ptp_data; 819 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); 820 size_t response_length; 821 int rc; 822 unsigned long timeout; 823 struct pps_event_time last_time = {}; 824 unsigned int loops = 0; 825 int *start = ptp->start.addr; 826 827 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); 828 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); 829 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, 830 num_readings); 831 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, 832 ptp->start.dma_addr); 833 834 /* Clear flag that signals MC ready */ 835 ACCESS_ONCE(*start) = 0; 836 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, 837 MC_CMD_PTP_IN_SYNCHRONIZE_LEN); 838 EFX_BUG_ON_PARANOID(rc); 839 840 /* Wait for start from MCDI (or timeout) */ 841 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); 842 while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) { 843 udelay(20); /* Usually start MCDI execution quickly */ 844 loops++; 845 } 846 847 if (loops <= 1) 848 ++ptp->fast_syncs; 849 if (!time_before(jiffies, timeout)) 850 ++ptp->sync_timeouts; 851 852 if (ACCESS_ONCE(*start)) 853 efx_ptp_send_times(efx, &last_time); 854 855 /* Collect results */ 856 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, 857 MC_CMD_PTP_IN_SYNCHRONIZE_LEN, 858 synch_buf, sizeof(synch_buf), 859 &response_length); 860 if (rc == 0) { 861 rc = efx_ptp_process_times(efx, synch_buf, response_length, 862 &last_time); 863 if (rc == 0) 864 ++ptp->good_syncs; 865 else 866 ++ptp->no_time_syncs; 867 } 868 869 /* Increment the bad syncs counter if the synchronize fails, whatever 870 * the reason. 871 */ 872 if (rc != 0) 873 ++ptp->bad_syncs; 874 875 return rc; 876 } 877 878 /* Transmit a PTP packet, via the MCDI interface, to the wire. */ 879 static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb) 880 { 881 struct efx_ptp_data *ptp_data = efx->ptp_data; 882 struct skb_shared_hwtstamps timestamps; 883 int rc = -EIO; 884 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); 885 size_t len; 886 887 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); 888 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); 889 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); 890 if (skb_shinfo(skb)->nr_frags != 0) { 891 rc = skb_linearize(skb); 892 if (rc != 0) 893 goto fail; 894 } 895 896 if (skb->ip_summed == CHECKSUM_PARTIAL) { 897 rc = skb_checksum_help(skb); 898 if (rc != 0) 899 goto fail; 900 } 901 skb_copy_from_linear_data(skb, 902 MCDI_PTR(ptp_data->txbuf, 903 PTP_IN_TRANSMIT_PACKET), 904 skb->len); 905 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, 906 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 907 txtime, sizeof(txtime), &len); 908 if (rc != 0) 909 goto fail; 910 911 memset(×tamps, 0, sizeof(timestamps)); 912 timestamps.hwtstamp = ptp_data->nic_to_kernel_time( 913 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), 914 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), 915 ptp_data->ts_corrections.tx); 916 917 skb_tstamp_tx(skb, ×tamps); 918 919 rc = 0; 920 921 fail: 922 dev_kfree_skb(skb); 923 924 return rc; 925 } 926 927 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx) 928 { 929 struct efx_ptp_data *ptp = efx->ptp_data; 930 struct list_head *cursor; 931 struct list_head *next; 932 933 if (ptp->rx_ts_inline) 934 return; 935 936 /* Drop time-expired events */ 937 spin_lock_bh(&ptp->evt_lock); 938 if (!list_empty(&ptp->evt_list)) { 939 list_for_each_safe(cursor, next, &ptp->evt_list) { 940 struct efx_ptp_event_rx *evt; 941 942 evt = list_entry(cursor, struct efx_ptp_event_rx, 943 link); 944 if (time_after(jiffies, evt->expiry)) { 945 list_move(&evt->link, &ptp->evt_free_list); 946 netif_warn(efx, hw, efx->net_dev, 947 "PTP rx event dropped\n"); 948 } 949 } 950 } 951 spin_unlock_bh(&ptp->evt_lock); 952 } 953 954 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx, 955 struct sk_buff *skb) 956 { 957 struct efx_ptp_data *ptp = efx->ptp_data; 958 bool evts_waiting; 959 struct list_head *cursor; 960 struct list_head *next; 961 struct efx_ptp_match *match; 962 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED; 963 964 WARN_ON_ONCE(ptp->rx_ts_inline); 965 966 spin_lock_bh(&ptp->evt_lock); 967 evts_waiting = !list_empty(&ptp->evt_list); 968 spin_unlock_bh(&ptp->evt_lock); 969 970 if (!evts_waiting) 971 return PTP_PACKET_STATE_UNMATCHED; 972 973 match = (struct efx_ptp_match *)skb->cb; 974 /* Look for a matching timestamp in the event queue */ 975 spin_lock_bh(&ptp->evt_lock); 976 list_for_each_safe(cursor, next, &ptp->evt_list) { 977 struct efx_ptp_event_rx *evt; 978 979 evt = list_entry(cursor, struct efx_ptp_event_rx, link); 980 if ((evt->seq0 == match->words[0]) && 981 (evt->seq1 == match->words[1])) { 982 struct skb_shared_hwtstamps *timestamps; 983 984 /* Match - add in hardware timestamp */ 985 timestamps = skb_hwtstamps(skb); 986 timestamps->hwtstamp = evt->hwtimestamp; 987 988 match->state = PTP_PACKET_STATE_MATCHED; 989 rc = PTP_PACKET_STATE_MATCHED; 990 list_move(&evt->link, &ptp->evt_free_list); 991 break; 992 } 993 } 994 spin_unlock_bh(&ptp->evt_lock); 995 996 return rc; 997 } 998 999 /* Process any queued receive events and corresponding packets 1000 * 1001 * q is returned with all the packets that are ready for delivery. 1002 */ 1003 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) 1004 { 1005 struct efx_ptp_data *ptp = efx->ptp_data; 1006 struct sk_buff *skb; 1007 1008 while ((skb = skb_dequeue(&ptp->rxq))) { 1009 struct efx_ptp_match *match; 1010 1011 match = (struct efx_ptp_match *)skb->cb; 1012 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { 1013 __skb_queue_tail(q, skb); 1014 } else if (efx_ptp_match_rx(efx, skb) == 1015 PTP_PACKET_STATE_MATCHED) { 1016 __skb_queue_tail(q, skb); 1017 } else if (time_after(jiffies, match->expiry)) { 1018 match->state = PTP_PACKET_STATE_TIMED_OUT; 1019 ++ptp->rx_no_timestamp; 1020 __skb_queue_tail(q, skb); 1021 } else { 1022 /* Replace unprocessed entry and stop */ 1023 skb_queue_head(&ptp->rxq, skb); 1024 break; 1025 } 1026 } 1027 } 1028 1029 /* Complete processing of a received packet */ 1030 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) 1031 { 1032 local_bh_disable(); 1033 netif_receive_skb(skb); 1034 local_bh_enable(); 1035 } 1036 1037 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx) 1038 { 1039 struct efx_ptp_data *ptp = efx->ptp_data; 1040 1041 if (ptp->rxfilter_installed) { 1042 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1043 ptp->rxfilter_general); 1044 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1045 ptp->rxfilter_event); 1046 ptp->rxfilter_installed = false; 1047 } 1048 } 1049 1050 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) 1051 { 1052 struct efx_ptp_data *ptp = efx->ptp_data; 1053 struct efx_filter_spec rxfilter; 1054 int rc; 1055 1056 if (!ptp->channel || ptp->rxfilter_installed) 1057 return 0; 1058 1059 /* Must filter on both event and general ports to ensure 1060 * that there is no packet re-ordering. 1061 */ 1062 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1063 efx_rx_queue_index( 1064 efx_channel_get_rx_queue(ptp->channel))); 1065 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, 1066 htonl(PTP_ADDRESS), 1067 htons(PTP_EVENT_PORT)); 1068 if (rc != 0) 1069 return rc; 1070 1071 rc = efx_filter_insert_filter(efx, &rxfilter, true); 1072 if (rc < 0) 1073 return rc; 1074 ptp->rxfilter_event = rc; 1075 1076 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1077 efx_rx_queue_index( 1078 efx_channel_get_rx_queue(ptp->channel))); 1079 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, 1080 htonl(PTP_ADDRESS), 1081 htons(PTP_GENERAL_PORT)); 1082 if (rc != 0) 1083 goto fail; 1084 1085 rc = efx_filter_insert_filter(efx, &rxfilter, true); 1086 if (rc < 0) 1087 goto fail; 1088 ptp->rxfilter_general = rc; 1089 1090 ptp->rxfilter_installed = true; 1091 return 0; 1092 1093 fail: 1094 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1095 ptp->rxfilter_event); 1096 return rc; 1097 } 1098 1099 static int efx_ptp_start(struct efx_nic *efx) 1100 { 1101 struct efx_ptp_data *ptp = efx->ptp_data; 1102 int rc; 1103 1104 ptp->reset_required = false; 1105 1106 rc = efx_ptp_insert_multicast_filters(efx); 1107 if (rc) 1108 return rc; 1109 1110 rc = efx_ptp_enable(efx); 1111 if (rc != 0) 1112 goto fail; 1113 1114 ptp->evt_frag_idx = 0; 1115 ptp->current_adjfreq = 0; 1116 1117 return 0; 1118 1119 fail: 1120 efx_ptp_remove_multicast_filters(efx); 1121 return rc; 1122 } 1123 1124 static int efx_ptp_stop(struct efx_nic *efx) 1125 { 1126 struct efx_ptp_data *ptp = efx->ptp_data; 1127 struct list_head *cursor; 1128 struct list_head *next; 1129 int rc; 1130 1131 if (ptp == NULL) 1132 return 0; 1133 1134 rc = efx_ptp_disable(efx); 1135 1136 efx_ptp_remove_multicast_filters(efx); 1137 1138 /* Make sure RX packets are really delivered */ 1139 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); 1140 skb_queue_purge(&efx->ptp_data->txq); 1141 1142 /* Drop any pending receive events */ 1143 spin_lock_bh(&efx->ptp_data->evt_lock); 1144 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) { 1145 list_move(cursor, &efx->ptp_data->evt_free_list); 1146 } 1147 spin_unlock_bh(&efx->ptp_data->evt_lock); 1148 1149 return rc; 1150 } 1151 1152 static int efx_ptp_restart(struct efx_nic *efx) 1153 { 1154 if (efx->ptp_data && efx->ptp_data->enabled) 1155 return efx_ptp_start(efx); 1156 return 0; 1157 } 1158 1159 static void efx_ptp_pps_worker(struct work_struct *work) 1160 { 1161 struct efx_ptp_data *ptp = 1162 container_of(work, struct efx_ptp_data, pps_work); 1163 struct efx_nic *efx = ptp->efx; 1164 struct ptp_clock_event ptp_evt; 1165 1166 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) 1167 return; 1168 1169 ptp_evt.type = PTP_CLOCK_PPSUSR; 1170 ptp_evt.pps_times = ptp->host_time_pps; 1171 ptp_clock_event(ptp->phc_clock, &ptp_evt); 1172 } 1173 1174 static void efx_ptp_worker(struct work_struct *work) 1175 { 1176 struct efx_ptp_data *ptp_data = 1177 container_of(work, struct efx_ptp_data, work); 1178 struct efx_nic *efx = ptp_data->efx; 1179 struct sk_buff *skb; 1180 struct sk_buff_head tempq; 1181 1182 if (ptp_data->reset_required) { 1183 efx_ptp_stop(efx); 1184 efx_ptp_start(efx); 1185 return; 1186 } 1187 1188 efx_ptp_drop_time_expired_events(efx); 1189 1190 __skb_queue_head_init(&tempq); 1191 efx_ptp_process_events(efx, &tempq); 1192 1193 while ((skb = skb_dequeue(&ptp_data->txq))) 1194 efx_ptp_xmit_skb(efx, skb); 1195 1196 while ((skb = __skb_dequeue(&tempq))) 1197 efx_ptp_process_rx(efx, skb); 1198 } 1199 1200 static const struct ptp_clock_info efx_phc_clock_info = { 1201 .owner = THIS_MODULE, 1202 .name = "sfc", 1203 .max_adj = MAX_PPB, 1204 .n_alarm = 0, 1205 .n_ext_ts = 0, 1206 .n_per_out = 0, 1207 .n_pins = 0, 1208 .pps = 1, 1209 .adjfreq = efx_phc_adjfreq, 1210 .adjtime = efx_phc_adjtime, 1211 .gettime64 = efx_phc_gettime, 1212 .settime64 = efx_phc_settime, 1213 .enable = efx_phc_enable, 1214 }; 1215 1216 /* Initialise PTP state. */ 1217 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) 1218 { 1219 struct efx_ptp_data *ptp; 1220 int rc = 0; 1221 unsigned int pos; 1222 1223 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); 1224 efx->ptp_data = ptp; 1225 if (!efx->ptp_data) 1226 return -ENOMEM; 1227 1228 ptp->efx = efx; 1229 ptp->channel = channel; 1230 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0; 1231 1232 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); 1233 if (rc != 0) 1234 goto fail1; 1235 1236 skb_queue_head_init(&ptp->rxq); 1237 skb_queue_head_init(&ptp->txq); 1238 ptp->workwq = create_singlethread_workqueue("sfc_ptp"); 1239 if (!ptp->workwq) { 1240 rc = -ENOMEM; 1241 goto fail2; 1242 } 1243 1244 INIT_WORK(&ptp->work, efx_ptp_worker); 1245 ptp->config.flags = 0; 1246 ptp->config.tx_type = HWTSTAMP_TX_OFF; 1247 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; 1248 INIT_LIST_HEAD(&ptp->evt_list); 1249 INIT_LIST_HEAD(&ptp->evt_free_list); 1250 spin_lock_init(&ptp->evt_lock); 1251 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++) 1252 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list); 1253 1254 /* Get the NIC PTP attributes and set up time conversions */ 1255 rc = efx_ptp_get_attributes(efx); 1256 if (rc < 0) 1257 goto fail3; 1258 1259 /* Get the timestamp corrections */ 1260 rc = efx_ptp_get_timestamp_corrections(efx); 1261 if (rc < 0) 1262 goto fail3; 1263 1264 if (efx->mcdi->fn_flags & 1265 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { 1266 ptp->phc_clock_info = efx_phc_clock_info; 1267 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, 1268 &efx->pci_dev->dev); 1269 if (IS_ERR(ptp->phc_clock)) { 1270 rc = PTR_ERR(ptp->phc_clock); 1271 goto fail3; 1272 } 1273 1274 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); 1275 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); 1276 if (!ptp->pps_workwq) { 1277 rc = -ENOMEM; 1278 goto fail4; 1279 } 1280 } 1281 ptp->nic_ts_enabled = false; 1282 1283 return 0; 1284 fail4: 1285 ptp_clock_unregister(efx->ptp_data->phc_clock); 1286 1287 fail3: 1288 destroy_workqueue(efx->ptp_data->workwq); 1289 1290 fail2: 1291 efx_nic_free_buffer(efx, &ptp->start); 1292 1293 fail1: 1294 kfree(efx->ptp_data); 1295 efx->ptp_data = NULL; 1296 1297 return rc; 1298 } 1299 1300 /* Initialise PTP channel. 1301 * 1302 * Setting core_index to zero causes the queue to be initialised and doesn't 1303 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. 1304 */ 1305 static int efx_ptp_probe_channel(struct efx_channel *channel) 1306 { 1307 struct efx_nic *efx = channel->efx; 1308 1309 channel->irq_moderation = 0; 1310 channel->rx_queue.core_index = 0; 1311 1312 return efx_ptp_probe(efx, channel); 1313 } 1314 1315 void efx_ptp_remove(struct efx_nic *efx) 1316 { 1317 if (!efx->ptp_data) 1318 return; 1319 1320 (void)efx_ptp_disable(efx); 1321 1322 cancel_work_sync(&efx->ptp_data->work); 1323 cancel_work_sync(&efx->ptp_data->pps_work); 1324 1325 skb_queue_purge(&efx->ptp_data->rxq); 1326 skb_queue_purge(&efx->ptp_data->txq); 1327 1328 if (efx->ptp_data->phc_clock) { 1329 destroy_workqueue(efx->ptp_data->pps_workwq); 1330 ptp_clock_unregister(efx->ptp_data->phc_clock); 1331 } 1332 1333 destroy_workqueue(efx->ptp_data->workwq); 1334 1335 efx_nic_free_buffer(efx, &efx->ptp_data->start); 1336 kfree(efx->ptp_data); 1337 } 1338 1339 static void efx_ptp_remove_channel(struct efx_channel *channel) 1340 { 1341 efx_ptp_remove(channel->efx); 1342 } 1343 1344 static void efx_ptp_get_channel_name(struct efx_channel *channel, 1345 char *buf, size_t len) 1346 { 1347 snprintf(buf, len, "%s-ptp", channel->efx->name); 1348 } 1349 1350 /* Determine whether this packet should be processed by the PTP module 1351 * or transmitted conventionally. 1352 */ 1353 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1354 { 1355 return efx->ptp_data && 1356 efx->ptp_data->enabled && 1357 skb->len >= PTP_MIN_LENGTH && 1358 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && 1359 likely(skb->protocol == htons(ETH_P_IP)) && 1360 skb_transport_header_was_set(skb) && 1361 skb_network_header_len(skb) >= sizeof(struct iphdr) && 1362 ip_hdr(skb)->protocol == IPPROTO_UDP && 1363 skb_headlen(skb) >= 1364 skb_transport_offset(skb) + sizeof(struct udphdr) && 1365 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); 1366 } 1367 1368 /* Receive a PTP packet. Packets are queued until the arrival of 1369 * the receive timestamp from the MC - this will probably occur after the 1370 * packet arrival because of the processing in the MC. 1371 */ 1372 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) 1373 { 1374 struct efx_nic *efx = channel->efx; 1375 struct efx_ptp_data *ptp = efx->ptp_data; 1376 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; 1377 u8 *match_data_012, *match_data_345; 1378 unsigned int version; 1379 u8 *data; 1380 1381 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1382 1383 /* Correct version? */ 1384 if (ptp->mode == MC_CMD_PTP_MODE_V1) { 1385 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { 1386 return false; 1387 } 1388 data = skb->data; 1389 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); 1390 if (version != PTP_VERSION_V1) { 1391 return false; 1392 } 1393 1394 /* PTP V1 uses all six bytes of the UUID to match the packet 1395 * to the timestamp 1396 */ 1397 match_data_012 = data + PTP_V1_UUID_OFFSET; 1398 match_data_345 = data + PTP_V1_UUID_OFFSET + 3; 1399 } else { 1400 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { 1401 return false; 1402 } 1403 data = skb->data; 1404 version = data[PTP_V2_VERSION_OFFSET]; 1405 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { 1406 return false; 1407 } 1408 1409 /* The original V2 implementation uses bytes 2-7 of 1410 * the UUID to match the packet to the timestamp. This 1411 * discards two of the bytes of the MAC address used 1412 * to create the UUID (SF bug 33070). The PTP V2 1413 * enhanced mode fixes this issue and uses bytes 0-2 1414 * and byte 5-7 of the UUID. 1415 */ 1416 match_data_345 = data + PTP_V2_UUID_OFFSET + 5; 1417 if (ptp->mode == MC_CMD_PTP_MODE_V2) { 1418 match_data_012 = data + PTP_V2_UUID_OFFSET + 2; 1419 } else { 1420 match_data_012 = data + PTP_V2_UUID_OFFSET + 0; 1421 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED); 1422 } 1423 } 1424 1425 /* Does this packet require timestamping? */ 1426 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { 1427 match->state = PTP_PACKET_STATE_UNMATCHED; 1428 1429 /* We expect the sequence number to be in the same position in 1430 * the packet for PTP V1 and V2 1431 */ 1432 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); 1433 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); 1434 1435 /* Extract UUID/Sequence information */ 1436 match->words[0] = (match_data_012[0] | 1437 (match_data_012[1] << 8) | 1438 (match_data_012[2] << 16) | 1439 (match_data_345[0] << 24)); 1440 match->words[1] = (match_data_345[1] | 1441 (match_data_345[2] << 8) | 1442 (data[PTP_V1_SEQUENCE_OFFSET + 1443 PTP_V1_SEQUENCE_LENGTH - 1] << 1444 16)); 1445 } else { 1446 match->state = PTP_PACKET_STATE_MATCH_UNWANTED; 1447 } 1448 1449 skb_queue_tail(&ptp->rxq, skb); 1450 queue_work(ptp->workwq, &ptp->work); 1451 1452 return true; 1453 } 1454 1455 /* Transmit a PTP packet. This has to be transmitted by the MC 1456 * itself, through an MCDI call. MCDI calls aren't permitted 1457 * in the transmit path so defer the actual transmission to a suitable worker. 1458 */ 1459 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1460 { 1461 struct efx_ptp_data *ptp = efx->ptp_data; 1462 1463 skb_queue_tail(&ptp->txq, skb); 1464 1465 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && 1466 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) 1467 efx_xmit_hwtstamp_pending(skb); 1468 queue_work(ptp->workwq, &ptp->work); 1469 1470 return NETDEV_TX_OK; 1471 } 1472 1473 int efx_ptp_get_mode(struct efx_nic *efx) 1474 { 1475 return efx->ptp_data->mode; 1476 } 1477 1478 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, 1479 unsigned int new_mode) 1480 { 1481 if ((enable_wanted != efx->ptp_data->enabled) || 1482 (enable_wanted && (efx->ptp_data->mode != new_mode))) { 1483 int rc = 0; 1484 1485 if (enable_wanted) { 1486 /* Change of mode requires disable */ 1487 if (efx->ptp_data->enabled && 1488 (efx->ptp_data->mode != new_mode)) { 1489 efx->ptp_data->enabled = false; 1490 rc = efx_ptp_stop(efx); 1491 if (rc != 0) 1492 return rc; 1493 } 1494 1495 /* Set new operating mode and establish 1496 * baseline synchronisation, which must 1497 * succeed. 1498 */ 1499 efx->ptp_data->mode = new_mode; 1500 if (netif_running(efx->net_dev)) 1501 rc = efx_ptp_start(efx); 1502 if (rc == 0) { 1503 rc = efx_ptp_synchronize(efx, 1504 PTP_SYNC_ATTEMPTS * 2); 1505 if (rc != 0) 1506 efx_ptp_stop(efx); 1507 } 1508 } else { 1509 rc = efx_ptp_stop(efx); 1510 } 1511 1512 if (rc != 0) 1513 return rc; 1514 1515 efx->ptp_data->enabled = enable_wanted; 1516 } 1517 1518 return 0; 1519 } 1520 1521 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init) 1522 { 1523 int rc; 1524 1525 if (init->flags) 1526 return -EINVAL; 1527 1528 if ((init->tx_type != HWTSTAMP_TX_OFF) && 1529 (init->tx_type != HWTSTAMP_TX_ON)) 1530 return -ERANGE; 1531 1532 rc = efx->type->ptp_set_ts_config(efx, init); 1533 if (rc) 1534 return rc; 1535 1536 efx->ptp_data->config = *init; 1537 return 0; 1538 } 1539 1540 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info) 1541 { 1542 struct efx_ptp_data *ptp = efx->ptp_data; 1543 struct efx_nic *primary = efx->primary; 1544 1545 ASSERT_RTNL(); 1546 1547 if (!ptp) 1548 return; 1549 1550 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 1551 SOF_TIMESTAMPING_RX_HARDWARE | 1552 SOF_TIMESTAMPING_RAW_HARDWARE); 1553 if (primary && primary->ptp_data && primary->ptp_data->phc_clock) 1554 ts_info->phc_index = 1555 ptp_clock_index(primary->ptp_data->phc_clock); 1556 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; 1557 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; 1558 } 1559 1560 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1561 { 1562 struct hwtstamp_config config; 1563 int rc; 1564 1565 /* Not a PTP enabled port */ 1566 if (!efx->ptp_data) 1567 return -EOPNOTSUPP; 1568 1569 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1570 return -EFAULT; 1571 1572 rc = efx_ptp_ts_init(efx, &config); 1573 if (rc != 0) 1574 return rc; 1575 1576 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) 1577 ? -EFAULT : 0; 1578 } 1579 1580 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1581 { 1582 if (!efx->ptp_data) 1583 return -EOPNOTSUPP; 1584 1585 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config, 1586 sizeof(efx->ptp_data->config)) ? -EFAULT : 0; 1587 } 1588 1589 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) 1590 { 1591 struct efx_ptp_data *ptp = efx->ptp_data; 1592 1593 netif_err(efx, hw, efx->net_dev, 1594 "PTP unexpected event length: got %d expected %d\n", 1595 ptp->evt_frag_idx, expected_frag_len); 1596 ptp->reset_required = true; 1597 queue_work(ptp->workwq, &ptp->work); 1598 } 1599 1600 /* Process a completed receive event. Put it on the event queue and 1601 * start worker thread. This is required because event and their 1602 * correspoding packets may come in either order. 1603 */ 1604 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp) 1605 { 1606 struct efx_ptp_event_rx *evt = NULL; 1607 1608 if (WARN_ON_ONCE(ptp->rx_ts_inline)) 1609 return; 1610 1611 if (ptp->evt_frag_idx != 3) { 1612 ptp_event_failure(efx, 3); 1613 return; 1614 } 1615 1616 spin_lock_bh(&ptp->evt_lock); 1617 if (!list_empty(&ptp->evt_free_list)) { 1618 evt = list_first_entry(&ptp->evt_free_list, 1619 struct efx_ptp_event_rx, link); 1620 list_del(&evt->link); 1621 1622 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA); 1623 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2], 1624 MCDI_EVENT_SRC) | 1625 (EFX_QWORD_FIELD(ptp->evt_frags[1], 1626 MCDI_EVENT_SRC) << 8) | 1627 (EFX_QWORD_FIELD(ptp->evt_frags[0], 1628 MCDI_EVENT_SRC) << 16)); 1629 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time( 1630 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA), 1631 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA), 1632 ptp->ts_corrections.rx); 1633 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1634 list_add_tail(&evt->link, &ptp->evt_list); 1635 1636 queue_work(ptp->workwq, &ptp->work); 1637 } else if (net_ratelimit()) { 1638 /* Log a rate-limited warning message. */ 1639 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n"); 1640 } 1641 spin_unlock_bh(&ptp->evt_lock); 1642 } 1643 1644 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) 1645 { 1646 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); 1647 if (ptp->evt_frag_idx != 1) { 1648 ptp_event_failure(efx, 1); 1649 return; 1650 } 1651 1652 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); 1653 } 1654 1655 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) 1656 { 1657 if (ptp->nic_ts_enabled) 1658 queue_work(ptp->pps_workwq, &ptp->pps_work); 1659 } 1660 1661 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) 1662 { 1663 struct efx_ptp_data *ptp = efx->ptp_data; 1664 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); 1665 1666 if (!ptp) { 1667 if (net_ratelimit()) 1668 netif_warn(efx, drv, efx->net_dev, 1669 "Received PTP event but PTP not set up\n"); 1670 return; 1671 } 1672 1673 if (!ptp->enabled) 1674 return; 1675 1676 if (ptp->evt_frag_idx == 0) { 1677 ptp->evt_code = code; 1678 } else if (ptp->evt_code != code) { 1679 netif_err(efx, hw, efx->net_dev, 1680 "PTP out of sequence event %d\n", code); 1681 ptp->evt_frag_idx = 0; 1682 } 1683 1684 ptp->evt_frags[ptp->evt_frag_idx++] = *ev; 1685 if (!MCDI_EVENT_FIELD(*ev, CONT)) { 1686 /* Process resulting event */ 1687 switch (code) { 1688 case MCDI_EVENT_CODE_PTP_RX: 1689 ptp_event_rx(efx, ptp); 1690 break; 1691 case MCDI_EVENT_CODE_PTP_FAULT: 1692 ptp_event_fault(efx, ptp); 1693 break; 1694 case MCDI_EVENT_CODE_PTP_PPS: 1695 ptp_event_pps(efx, ptp); 1696 break; 1697 default: 1698 netif_err(efx, hw, efx->net_dev, 1699 "PTP unknown event %d\n", code); 1700 break; 1701 } 1702 ptp->evt_frag_idx = 0; 1703 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { 1704 netif_err(efx, hw, efx->net_dev, 1705 "PTP too many event fragments\n"); 1706 ptp->evt_frag_idx = 0; 1707 } 1708 } 1709 1710 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) 1711 { 1712 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); 1713 channel->sync_timestamp_minor = 1714 MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_26_19) << 19; 1715 /* if sync events have been disabled then we want to silently ignore 1716 * this event, so throw away result. 1717 */ 1718 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, 1719 SYNC_EVENTS_VALID); 1720 } 1721 1722 /* make some assumptions about the time representation rather than abstract it, 1723 * since we currently only support one type of inline timestamping and only on 1724 * EF10. 1725 */ 1726 #define MINOR_TICKS_PER_SECOND 0x8000000 1727 /* Fuzz factor for sync events to be out of order with RX events */ 1728 #define FUZZ (MINOR_TICKS_PER_SECOND / 10) 1729 #define EXPECTED_SYNC_EVENTS_PER_SECOND 4 1730 1731 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) 1732 { 1733 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 1734 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); 1735 #else 1736 const u8 *data = eh + efx->rx_packet_ts_offset; 1737 return (u32)data[0] | 1738 (u32)data[1] << 8 | 1739 (u32)data[2] << 16 | 1740 (u32)data[3] << 24; 1741 #endif 1742 } 1743 1744 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, 1745 struct sk_buff *skb) 1746 { 1747 struct efx_nic *efx = channel->efx; 1748 u32 pkt_timestamp_major, pkt_timestamp_minor; 1749 u32 diff, carry; 1750 struct skb_shared_hwtstamps *timestamps; 1751 1752 pkt_timestamp_minor = (efx_rx_buf_timestamp_minor(efx, 1753 skb_mac_header(skb)) + 1754 (u32) efx->ptp_data->ts_corrections.rx) & 1755 (MINOR_TICKS_PER_SECOND - 1); 1756 1757 /* get the difference between the packet and sync timestamps, 1758 * modulo one second 1759 */ 1760 diff = (pkt_timestamp_minor - channel->sync_timestamp_minor) & 1761 (MINOR_TICKS_PER_SECOND - 1); 1762 /* do we roll over a second boundary and need to carry the one? */ 1763 carry = channel->sync_timestamp_minor + diff > MINOR_TICKS_PER_SECOND ? 1764 1 : 0; 1765 1766 if (diff <= MINOR_TICKS_PER_SECOND / EXPECTED_SYNC_EVENTS_PER_SECOND + 1767 FUZZ) { 1768 /* packet is ahead of the sync event by a quarter of a second or 1769 * less (allowing for fuzz) 1770 */ 1771 pkt_timestamp_major = channel->sync_timestamp_major + carry; 1772 } else if (diff >= MINOR_TICKS_PER_SECOND - FUZZ) { 1773 /* packet is behind the sync event but within the fuzz factor. 1774 * This means the RX packet and sync event crossed as they were 1775 * placed on the event queue, which can sometimes happen. 1776 */ 1777 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; 1778 } else { 1779 /* it's outside tolerance in both directions. this might be 1780 * indicative of us missing sync events for some reason, so 1781 * we'll call it an error rather than risk giving a bogus 1782 * timestamp. 1783 */ 1784 netif_vdbg(efx, drv, efx->net_dev, 1785 "packet timestamp %x too far from sync event %x:%x\n", 1786 pkt_timestamp_minor, channel->sync_timestamp_major, 1787 channel->sync_timestamp_minor); 1788 return; 1789 } 1790 1791 /* attach the timestamps to the skb */ 1792 timestamps = skb_hwtstamps(skb); 1793 timestamps->hwtstamp = 1794 efx_ptp_s27_to_ktime(pkt_timestamp_major, pkt_timestamp_minor); 1795 } 1796 1797 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta) 1798 { 1799 struct efx_ptp_data *ptp_data = container_of(ptp, 1800 struct efx_ptp_data, 1801 phc_clock_info); 1802 struct efx_nic *efx = ptp_data->efx; 1803 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); 1804 s64 adjustment_ns; 1805 int rc; 1806 1807 if (delta > MAX_PPB) 1808 delta = MAX_PPB; 1809 else if (delta < -MAX_PPB) 1810 delta = -MAX_PPB; 1811 1812 /* Convert ppb to fixed point ns. */ 1813 adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >> 1814 (PPB_EXTRA_BITS + MAX_PPB_BITS)); 1815 1816 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 1817 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); 1818 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); 1819 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); 1820 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); 1821 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), 1822 NULL, 0, NULL); 1823 if (rc != 0) 1824 return rc; 1825 1826 ptp_data->current_adjfreq = adjustment_ns; 1827 return 0; 1828 } 1829 1830 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) 1831 { 1832 u32 nic_major, nic_minor; 1833 struct efx_ptp_data *ptp_data = container_of(ptp, 1834 struct efx_ptp_data, 1835 phc_clock_info); 1836 struct efx_nic *efx = ptp_data->efx; 1837 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); 1838 1839 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); 1840 1841 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 1842 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 1843 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); 1844 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); 1845 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); 1846 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 1847 NULL, 0, NULL); 1848 } 1849 1850 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 1851 { 1852 struct efx_ptp_data *ptp_data = container_of(ptp, 1853 struct efx_ptp_data, 1854 phc_clock_info); 1855 struct efx_nic *efx = ptp_data->efx; 1856 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); 1857 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); 1858 int rc; 1859 ktime_t kt; 1860 1861 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); 1862 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 1863 1864 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 1865 outbuf, sizeof(outbuf), NULL); 1866 if (rc != 0) 1867 return rc; 1868 1869 kt = ptp_data->nic_to_kernel_time( 1870 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), 1871 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); 1872 *ts = ktime_to_timespec64(kt); 1873 return 0; 1874 } 1875 1876 static int efx_phc_settime(struct ptp_clock_info *ptp, 1877 const struct timespec64 *e_ts) 1878 { 1879 /* Get the current NIC time, efx_phc_gettime. 1880 * Subtract from the desired time to get the offset 1881 * call efx_phc_adjtime with the offset 1882 */ 1883 int rc; 1884 struct timespec64 time_now; 1885 struct timespec64 delta; 1886 1887 rc = efx_phc_gettime(ptp, &time_now); 1888 if (rc != 0) 1889 return rc; 1890 1891 delta = timespec64_sub(*e_ts, time_now); 1892 1893 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta)); 1894 if (rc != 0) 1895 return rc; 1896 1897 return 0; 1898 } 1899 1900 static int efx_phc_enable(struct ptp_clock_info *ptp, 1901 struct ptp_clock_request *request, 1902 int enable) 1903 { 1904 struct efx_ptp_data *ptp_data = container_of(ptp, 1905 struct efx_ptp_data, 1906 phc_clock_info); 1907 if (request->type != PTP_CLK_REQ_PPS) 1908 return -EOPNOTSUPP; 1909 1910 ptp_data->nic_ts_enabled = !!enable; 1911 return 0; 1912 } 1913 1914 static const struct efx_channel_type efx_ptp_channel_type = { 1915 .handle_no_channel = efx_ptp_handle_no_channel, 1916 .pre_probe = efx_ptp_probe_channel, 1917 .post_remove = efx_ptp_remove_channel, 1918 .get_name = efx_ptp_get_channel_name, 1919 /* no copy operation; there is no need to reallocate this channel */ 1920 .receive_skb = efx_ptp_rx, 1921 .keep_eventq = false, 1922 }; 1923 1924 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx) 1925 { 1926 /* Check whether PTP is implemented on this NIC. The DISABLE 1927 * operation will succeed if and only if it is implemented. 1928 */ 1929 if (efx_ptp_disable(efx) == 0) 1930 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = 1931 &efx_ptp_channel_type; 1932 } 1933 1934 void efx_ptp_start_datapath(struct efx_nic *efx) 1935 { 1936 if (efx_ptp_restart(efx)) 1937 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); 1938 /* re-enable timestamping if it was previously enabled */ 1939 if (efx->type->ptp_set_ts_sync_events) 1940 efx->type->ptp_set_ts_sync_events(efx, true, true); 1941 } 1942 1943 void efx_ptp_stop_datapath(struct efx_nic *efx) 1944 { 1945 /* temporarily disable timestamping */ 1946 if (efx->type->ptp_set_ts_sync_events) 1947 efx->type->ptp_set_ts_sync_events(efx, false, true); 1948 efx_ptp_stop(efx); 1949 } 1950