1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2011-2013 Solarflare Communications Inc. 5 */ 6 7 /* Theory of operation: 8 * 9 * PTP support is assisted by firmware running on the MC, which provides 10 * the hardware timestamping capabilities. Both transmitted and received 11 * PTP event packets are queued onto internal queues for subsequent processing; 12 * this is because the MC operations are relatively long and would block 13 * block NAPI/interrupt operation. 14 * 15 * Receive event processing: 16 * The event contains the packet's UUID and sequence number, together 17 * with the hardware timestamp. The PTP receive packet queue is searched 18 * for this UUID/sequence number and, if found, put on a pending queue. 19 * Packets not matching are delivered without timestamps (MCDI events will 20 * always arrive after the actual packet). 21 * It is important for the operation of the PTP protocol that the ordering 22 * of packets between the event and general port is maintained. 23 * 24 * Work queue processing: 25 * If work waiting, synchronise host/hardware time 26 * 27 * Transmit: send packet through MC, which returns the transmission time 28 * that is converted to an appropriate timestamp. 29 * 30 * Receive: the packet's reception time is converted to an appropriate 31 * timestamp. 32 */ 33 #include <linux/ip.h> 34 #include <linux/udp.h> 35 #include <linux/time.h> 36 #include <linux/ktime.h> 37 #include <linux/module.h> 38 #include <linux/pps_kernel.h> 39 #include <linux/ptp_clock_kernel.h> 40 #include "net_driver.h" 41 #include "efx.h" 42 #include "mcdi.h" 43 #include "mcdi_pcol.h" 44 #include "io.h" 45 #include "farch_regs.h" 46 #include "tx.h" 47 #include "nic.h" /* indirectly includes ptp.h */ 48 #include "efx_channels.h" 49 50 /* Maximum number of events expected to make up a PTP event */ 51 #define MAX_EVENT_FRAGS 3 52 53 /* Maximum delay, ms, to begin synchronisation */ 54 #define MAX_SYNCHRONISE_WAIT_MS 2 55 56 /* How long, at most, to spend synchronising */ 57 #define SYNCHRONISE_PERIOD_NS 250000 58 59 /* How often to update the shared memory time */ 60 #define SYNCHRONISATION_GRANULARITY_NS 200 61 62 /* Minimum permitted length of a (corrected) synchronisation time */ 63 #define DEFAULT_MIN_SYNCHRONISATION_NS 120 64 65 /* Maximum permitted length of a (corrected) synchronisation time */ 66 #define MAX_SYNCHRONISATION_NS 1000 67 68 /* How many (MC) receive events that can be queued */ 69 #define MAX_RECEIVE_EVENTS 8 70 71 /* Length of (modified) moving average. */ 72 #define AVERAGE_LENGTH 16 73 74 /* How long an unmatched event or packet can be held */ 75 #define PKT_EVENT_LIFETIME_MS 10 76 77 /* Offsets into PTP packet for identification. These offsets are from the 78 * start of the IP header, not the MAC header. Note that neither PTP V1 nor 79 * PTP V2 permit the use of IPV4 options. 80 */ 81 #define PTP_DPORT_OFFSET 22 82 83 #define PTP_V1_VERSION_LENGTH 2 84 #define PTP_V1_VERSION_OFFSET 28 85 86 #define PTP_V1_UUID_LENGTH 6 87 #define PTP_V1_UUID_OFFSET 50 88 89 #define PTP_V1_SEQUENCE_LENGTH 2 90 #define PTP_V1_SEQUENCE_OFFSET 58 91 92 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: 93 * includes IP header. 94 */ 95 #define PTP_V1_MIN_LENGTH 64 96 97 #define PTP_V2_VERSION_LENGTH 1 98 #define PTP_V2_VERSION_OFFSET 29 99 100 #define PTP_V2_UUID_LENGTH 8 101 #define PTP_V2_UUID_OFFSET 48 102 103 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2), 104 * the MC only captures the last six bytes of the clock identity. These values 105 * reflect those, not the ones used in the standard. The standard permits 106 * mapping of V1 UUIDs to V2 UUIDs with these same values. 107 */ 108 #define PTP_V2_MC_UUID_LENGTH 6 109 #define PTP_V2_MC_UUID_OFFSET 50 110 111 #define PTP_V2_SEQUENCE_LENGTH 2 112 #define PTP_V2_SEQUENCE_OFFSET 58 113 114 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: 115 * includes IP header. 116 */ 117 #define PTP_V2_MIN_LENGTH 63 118 119 #define PTP_MIN_LENGTH 63 120 121 #define PTP_RXFILTERS_LEN 5 122 123 #define PTP_ADDR_IPV4 0xe0000181 /* 224.0.1.129 */ 124 #define PTP_ADDR_IPV6 {0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 125 0, 0x01, 0x81} /* ff0e::181 */ 126 #define PTP_EVENT_PORT 319 127 #define PTP_GENERAL_PORT 320 128 #define PTP_ADDR_ETHER {0x01, 0x1b, 0x19, 0, 0, 0} /* 01-1B-19-00-00-00 */ 129 130 /* Annoyingly the format of the version numbers are different between 131 * versions 1 and 2 so it isn't possible to simply look for 1 or 2. 132 */ 133 #define PTP_VERSION_V1 1 134 135 #define PTP_VERSION_V2 2 136 #define PTP_VERSION_V2_MASK 0x0f 137 138 enum ptp_packet_state { 139 PTP_PACKET_STATE_UNMATCHED = 0, 140 PTP_PACKET_STATE_MATCHED, 141 PTP_PACKET_STATE_TIMED_OUT, 142 PTP_PACKET_STATE_MATCH_UNWANTED 143 }; 144 145 /* NIC synchronised with single word of time only comprising 146 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. 147 */ 148 #define MC_NANOSECOND_BITS 30 149 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) 150 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) 151 152 /* Maximum parts-per-billion adjustment that is acceptable */ 153 #define MAX_PPB 1000000 154 155 /* Precalculate scale word to avoid long long division at runtime */ 156 /* This is equivalent to 2^66 / 10^9. */ 157 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL) 158 159 /* How much to shift down after scaling to convert to FP40 */ 160 #define PPB_SHIFT_FP40 26 161 /* ... and FP44. */ 162 #define PPB_SHIFT_FP44 22 163 164 #define PTP_SYNC_ATTEMPTS 4 165 166 /** 167 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. 168 * @words: UUID and (partial) sequence number 169 * @expiry: Time after which the packet should be delivered irrespective of 170 * event arrival. 171 * @state: The state of the packet - whether it is ready for processing or 172 * whether that is of no interest. 173 */ 174 struct efx_ptp_match { 175 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)]; 176 unsigned long expiry; 177 enum ptp_packet_state state; 178 }; 179 180 /** 181 * struct efx_ptp_event_rx - A PTP receive event (from MC) 182 * @link: list of events 183 * @seq0: First part of (PTP) UUID 184 * @seq1: Second part of (PTP) UUID and sequence number 185 * @hwtimestamp: Event timestamp 186 * @expiry: Time which the packet arrived 187 */ 188 struct efx_ptp_event_rx { 189 struct list_head link; 190 u32 seq0; 191 u32 seq1; 192 ktime_t hwtimestamp; 193 unsigned long expiry; 194 }; 195 196 /** 197 * struct efx_ptp_timeset - Synchronisation between host and MC 198 * @host_start: Host time immediately before hardware timestamp taken 199 * @major: Hardware timestamp, major 200 * @minor: Hardware timestamp, minor 201 * @host_end: Host time immediately after hardware timestamp taken 202 * @wait: Number of NIC clock ticks between hardware timestamp being read and 203 * host end time being seen 204 * @window: Difference of host_end and host_start 205 * @valid: Whether this timeset is valid 206 */ 207 struct efx_ptp_timeset { 208 u32 host_start; 209 u32 major; 210 u32 minor; 211 u32 host_end; 212 u32 wait; 213 u32 window; /* Derived: end - start, allowing for wrap */ 214 }; 215 216 /** 217 * struct efx_ptp_data - Precision Time Protocol (PTP) state 218 * @efx: The NIC context 219 * @channel: The PTP channel (Siena only) 220 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are 221 * separate events) 222 * @rxq: Receive SKB queue (awaiting timestamps) 223 * @txq: Transmit SKB queue 224 * @evt_list: List of MC receive events awaiting packets 225 * @evt_free_list: List of free events 226 * @evt_lock: Lock for manipulating evt_list and evt_free_list 227 * @rx_evts: Instantiated events (on evt_list and evt_free_list) 228 * @workwq: Work queue for processing pending PTP operations 229 * @work: Work task 230 * @reset_required: A serious error has occurred and the PTP task needs to be 231 * reset (disable, enable). 232 * @rxfilters: Receive filters when operating 233 * @rxfilters_count: Num of installed rxfilters, should be == PTP_RXFILTERS_LEN 234 * @config: Current timestamp configuration 235 * @enabled: PTP operation enabled 236 * @mode: Mode in which PTP operating (PTP version) 237 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time 238 * @nic_to_kernel_time: Function to convert from NIC to kernel time 239 * @nic_time: contains time details 240 * @nic_time.minor_max: Wrap point for NIC minor times 241 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time 242 * in packet prefix and last MCDI time sync event i.e. how much earlier than 243 * the last sync event time a packet timestamp can be. 244 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time 245 * in packet prefix and last MCDI time sync event i.e. how much later than 246 * the last sync event time a packet timestamp can be. 247 * @nic_time.sync_event_minor_shift: Shift required to make minor time from 248 * field in MCDI time sync event. 249 * @min_synchronisation_ns: Minimum acceptable corrected sync window 250 * @capabilities: Capabilities flags from the NIC 251 * @ts_corrections: contains corrections details 252 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit 253 * timestamps 254 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive 255 * timestamps 256 * @ts_corrections.pps_out: PPS output error (information only) 257 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps 258 * @ts_corrections.general_tx: Required driver correction of general packet 259 * transmit timestamps 260 * @ts_corrections.general_rx: Required driver correction of general packet 261 * receive timestamps 262 * @evt_frags: Partly assembled PTP events 263 * @evt_frag_idx: Current fragment number 264 * @evt_code: Last event code 265 * @start: Address at which MC indicates ready for synchronisation 266 * @host_time_pps: Host time at last PPS 267 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion 268 * frequency adjustment into a fixed point fractional nanosecond format. 269 * @current_adjfreq: Current ppb adjustment. 270 * @phc_clock: Pointer to registered phc device (if primary function) 271 * @phc_clock_info: Registration structure for phc device 272 * @pps_work: pps work task for handling pps events 273 * @pps_workwq: pps work queue 274 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled 275 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids 276 * allocations in main data path). 277 * @good_syncs: Number of successful synchronisations. 278 * @fast_syncs: Number of synchronisations requiring short delay 279 * @bad_syncs: Number of failed synchronisations. 280 * @sync_timeouts: Number of synchronisation timeouts 281 * @no_time_syncs: Number of synchronisations with no good times. 282 * @invalid_sync_windows: Number of sync windows with bad durations. 283 * @undersize_sync_windows: Number of corrected sync windows that are too small 284 * @oversize_sync_windows: Number of corrected sync windows that are too large 285 * @rx_no_timestamp: Number of packets received without a timestamp. 286 * @timeset: Last set of synchronisation statistics. 287 * @xmit_skb: Transmit SKB function. 288 */ 289 struct efx_ptp_data { 290 struct efx_nic *efx; 291 struct efx_channel *channel; 292 bool rx_ts_inline; 293 struct sk_buff_head rxq; 294 struct sk_buff_head txq; 295 struct list_head evt_list; 296 struct list_head evt_free_list; 297 spinlock_t evt_lock; 298 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS]; 299 struct workqueue_struct *workwq; 300 struct work_struct work; 301 bool reset_required; 302 u32 rxfilters[PTP_RXFILTERS_LEN]; 303 size_t rxfilters_count; 304 struct hwtstamp_config config; 305 bool enabled; 306 unsigned int mode; 307 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); 308 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, 309 s32 correction); 310 struct { 311 u32 minor_max; 312 u32 sync_event_diff_min; 313 u32 sync_event_diff_max; 314 unsigned int sync_event_minor_shift; 315 } nic_time; 316 unsigned int min_synchronisation_ns; 317 unsigned int capabilities; 318 struct { 319 s32 ptp_tx; 320 s32 ptp_rx; 321 s32 pps_out; 322 s32 pps_in; 323 s32 general_tx; 324 s32 general_rx; 325 } ts_corrections; 326 efx_qword_t evt_frags[MAX_EVENT_FRAGS]; 327 int evt_frag_idx; 328 int evt_code; 329 struct efx_buffer start; 330 struct pps_event_time host_time_pps; 331 unsigned int adjfreq_ppb_shift; 332 s64 current_adjfreq; 333 struct ptp_clock *phc_clock; 334 struct ptp_clock_info phc_clock_info; 335 struct work_struct pps_work; 336 struct workqueue_struct *pps_workwq; 337 bool nic_ts_enabled; 338 efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)]; 339 340 unsigned int good_syncs; 341 unsigned int fast_syncs; 342 unsigned int bad_syncs; 343 unsigned int sync_timeouts; 344 unsigned int no_time_syncs; 345 unsigned int invalid_sync_windows; 346 unsigned int undersize_sync_windows; 347 unsigned int oversize_sync_windows; 348 unsigned int rx_no_timestamp; 349 struct efx_ptp_timeset 350 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; 351 void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb); 352 }; 353 354 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta); 355 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); 356 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts); 357 static int efx_phc_settime(struct ptp_clock_info *ptp, 358 const struct timespec64 *e_ts); 359 static int efx_phc_enable(struct ptp_clock_info *ptp, 360 struct ptp_clock_request *request, int on); 361 362 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx) 363 { 364 return efx_has_cap(efx, TX_MAC_TIMESTAMPING); 365 } 366 367 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues 368 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit. 369 */ 370 static bool efx_ptp_want_txqs(struct efx_channel *channel) 371 { 372 return efx_ptp_use_mac_tx_timestamps(channel->efx); 373 } 374 375 #define PTP_SW_STAT(ext_name, field_name) \ 376 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } 377 #define PTP_MC_STAT(ext_name, mcdi_name) \ 378 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } 379 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { 380 PTP_SW_STAT(ptp_good_syncs, good_syncs), 381 PTP_SW_STAT(ptp_fast_syncs, fast_syncs), 382 PTP_SW_STAT(ptp_bad_syncs, bad_syncs), 383 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), 384 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), 385 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), 386 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), 387 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), 388 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), 389 PTP_MC_STAT(ptp_tx_timestamp_packets, TX), 390 PTP_MC_STAT(ptp_rx_timestamp_packets, RX), 391 PTP_MC_STAT(ptp_timestamp_packets, TS), 392 PTP_MC_STAT(ptp_filter_matches, FM), 393 PTP_MC_STAT(ptp_non_filter_matches, NFM), 394 }; 395 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) 396 static const unsigned long efx_ptp_stat_mask[] = { 397 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, 398 }; 399 400 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings) 401 { 402 if (!efx->ptp_data) 403 return 0; 404 405 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 406 efx_ptp_stat_mask, strings); 407 } 408 409 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats) 410 { 411 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); 412 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); 413 size_t i; 414 int rc; 415 416 if (!efx->ptp_data) 417 return 0; 418 419 /* Copy software statistics */ 420 for (i = 0; i < PTP_STAT_COUNT; i++) { 421 if (efx_ptp_stat_desc[i].dma_width) 422 continue; 423 stats[i] = *(unsigned int *)((char *)efx->ptp_data + 424 efx_ptp_stat_desc[i].offset); 425 } 426 427 /* Fetch MC statistics. We *must* fill in all statistics or 428 * risk leaking kernel memory to userland, so if the MCDI 429 * request fails we pretend we got zeroes. 430 */ 431 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); 432 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 433 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 434 outbuf, sizeof(outbuf), NULL); 435 if (rc) 436 memset(outbuf, 0, sizeof(outbuf)); 437 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 438 efx_ptp_stat_mask, 439 stats, _MCDI_PTR(outbuf, 0), false); 440 441 return PTP_STAT_COUNT; 442 } 443 444 /* For Siena platforms NIC time is s and ns */ 445 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor) 446 { 447 struct timespec64 ts = ns_to_timespec64(ns); 448 *nic_major = (u32)ts.tv_sec; 449 *nic_minor = ts.tv_nsec; 450 } 451 452 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor, 453 s32 correction) 454 { 455 ktime_t kt = ktime_set(nic_major, nic_minor); 456 if (correction >= 0) 457 kt = ktime_add_ns(kt, (u64)correction); 458 else 459 kt = ktime_sub_ns(kt, (u64)-correction); 460 return kt; 461 } 462 463 /* To convert from s27 format to ns we multiply then divide by a power of 2. 464 * For the conversion from ns to s27, the operation is also converted to a 465 * multiply and shift. 466 */ 467 #define S27_TO_NS_SHIFT (27) 468 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) 469 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT) 470 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT) 471 472 /* For Huntington platforms NIC time is in seconds and fractions of a second 473 * where the minor register only uses 27 bits in units of 2^-27s. 474 */ 475 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) 476 { 477 struct timespec64 ts = ns_to_timespec64(ns); 478 u32 maj = (u32)ts.tv_sec; 479 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + 480 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); 481 482 /* The conversion can result in the minor value exceeding the maximum. 483 * In this case, round up to the next second. 484 */ 485 if (min >= S27_MINOR_MAX) { 486 min -= S27_MINOR_MAX; 487 maj++; 488 } 489 490 *nic_major = maj; 491 *nic_minor = min; 492 } 493 494 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) 495 { 496 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + 497 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); 498 return ktime_set(nic_major, ns); 499 } 500 501 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, 502 s32 correction) 503 { 504 /* Apply the correction and deal with carry */ 505 nic_minor += correction; 506 if ((s32)nic_minor < 0) { 507 nic_minor += S27_MINOR_MAX; 508 nic_major--; 509 } else if (nic_minor >= S27_MINOR_MAX) { 510 nic_minor -= S27_MINOR_MAX; 511 nic_major++; 512 } 513 514 return efx_ptp_s27_to_ktime(nic_major, nic_minor); 515 } 516 517 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */ 518 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor) 519 { 520 struct timespec64 ts = ns_to_timespec64(ns); 521 522 *nic_major = (u32)ts.tv_sec; 523 *nic_minor = ts.tv_nsec * 4; 524 } 525 526 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor, 527 s32 correction) 528 { 529 ktime_t kt; 530 531 nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4); 532 correction = DIV_ROUND_CLOSEST(correction, 4); 533 534 kt = ktime_set(nic_major, nic_minor); 535 536 if (correction >= 0) 537 kt = ktime_add_ns(kt, (u64)correction); 538 else 539 kt = ktime_sub_ns(kt, (u64)-correction); 540 return kt; 541 } 542 543 struct efx_channel *efx_ptp_channel(struct efx_nic *efx) 544 { 545 return efx->ptp_data ? efx->ptp_data->channel : NULL; 546 } 547 548 void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel) 549 { 550 if (efx->ptp_data) 551 efx->ptp_data->channel = channel; 552 } 553 554 static u32 last_sync_timestamp_major(struct efx_nic *efx) 555 { 556 struct efx_channel *channel = efx_ptp_channel(efx); 557 u32 major = 0; 558 559 if (channel) 560 major = channel->sync_timestamp_major; 561 return major; 562 } 563 564 /* The 8000 series and later can provide the time from the MAC, which is only 565 * 48 bits long and provides meta-information in the top 2 bits. 566 */ 567 static ktime_t 568 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx, 569 struct efx_ptp_data *ptp, 570 u32 nic_major, u32 nic_minor, 571 s32 correction) 572 { 573 u32 sync_timestamp; 574 ktime_t kt = { 0 }; 575 s16 delta; 576 577 if (!(nic_major & 0x80000000)) { 578 WARN_ON_ONCE(nic_major >> 16); 579 580 /* Medford provides 48 bits of timestamp, so we must get the top 581 * 16 bits from the timesync event state. 582 * 583 * We only have the lower 16 bits of the time now, but we do 584 * have a full resolution timestamp at some point in past. As 585 * long as the difference between the (real) now and the sync 586 * is less than 2^15, then we can reconstruct the difference 587 * between those two numbers using only the lower 16 bits of 588 * each. 589 * 590 * Put another way 591 * 592 * a - b = ((a mod k) - b) mod k 593 * 594 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know 595 * (a mod k) and b, so can calculate the delta, a - b. 596 * 597 */ 598 sync_timestamp = last_sync_timestamp_major(efx); 599 600 /* Because delta is s16 this does an implicit mask down to 601 * 16 bits which is what we need, assuming 602 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that 603 * we can deal with the (unlikely) case of sync timestamps 604 * arriving from the future. 605 */ 606 delta = nic_major - sync_timestamp; 607 608 /* Recover the fully specified time now, by applying the offset 609 * to the (fully specified) sync time. 610 */ 611 nic_major = sync_timestamp + delta; 612 613 kt = ptp->nic_to_kernel_time(nic_major, nic_minor, 614 correction); 615 } 616 return kt; 617 } 618 619 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue) 620 { 621 struct efx_nic *efx = tx_queue->efx; 622 struct efx_ptp_data *ptp = efx->ptp_data; 623 ktime_t kt; 624 625 if (efx_ptp_use_mac_tx_timestamps(efx)) 626 kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp, 627 tx_queue->completed_timestamp_major, 628 tx_queue->completed_timestamp_minor, 629 ptp->ts_corrections.general_tx); 630 else 631 kt = ptp->nic_to_kernel_time( 632 tx_queue->completed_timestamp_major, 633 tx_queue->completed_timestamp_minor, 634 ptp->ts_corrections.general_tx); 635 return kt; 636 } 637 638 /* Get PTP attributes and set up time conversions */ 639 static int efx_ptp_get_attributes(struct efx_nic *efx) 640 { 641 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); 642 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); 643 struct efx_ptp_data *ptp = efx->ptp_data; 644 int rc; 645 u32 fmt; 646 size_t out_len; 647 648 /* Get the PTP attributes. If the NIC doesn't support the operation we 649 * use the default format for compatibility with older NICs i.e. 650 * seconds and nanoseconds. 651 */ 652 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); 653 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 654 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 655 outbuf, sizeof(outbuf), &out_len); 656 if (rc == 0) { 657 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); 658 } else if (rc == -EINVAL) { 659 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; 660 } else if (rc == -EPERM) { 661 pci_info(efx->pci_dev, "no PTP support\n"); 662 return rc; 663 } else { 664 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), 665 outbuf, sizeof(outbuf), rc); 666 return rc; 667 } 668 669 switch (fmt) { 670 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION: 671 ptp->ns_to_nic_time = efx_ptp_ns_to_s27; 672 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; 673 ptp->nic_time.minor_max = 1 << 27; 674 ptp->nic_time.sync_event_minor_shift = 19; 675 break; 676 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS: 677 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns; 678 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction; 679 ptp->nic_time.minor_max = 1000000000; 680 ptp->nic_time.sync_event_minor_shift = 22; 681 break; 682 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS: 683 ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns; 684 ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction; 685 ptp->nic_time.minor_max = 4000000000UL; 686 ptp->nic_time.sync_event_minor_shift = 24; 687 break; 688 default: 689 return -ERANGE; 690 } 691 692 /* Precalculate acceptable difference between the minor time in the 693 * packet prefix and the last MCDI time sync event. We expect the 694 * packet prefix timestamp to be after of sync event by up to one 695 * sync event interval (0.25s) but we allow it to exceed this by a 696 * fuzz factor of (0.1s) 697 */ 698 ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max 699 - (ptp->nic_time.minor_max / 10); 700 ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4) 701 + (ptp->nic_time.minor_max / 10); 702 703 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older 704 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return 705 * a value to use for the minimum acceptable corrected synchronization 706 * window and may return further capabilities. 707 * If we have the extra information store it. For older firmware that 708 * does not implement the extended command use the default value. 709 */ 710 if (rc == 0 && 711 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST) 712 ptp->min_synchronisation_ns = 713 MCDI_DWORD(outbuf, 714 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); 715 else 716 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; 717 718 if (rc == 0 && 719 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) 720 ptp->capabilities = MCDI_DWORD(outbuf, 721 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES); 722 else 723 ptp->capabilities = 0; 724 725 /* Set up the shift for conversion between frequency 726 * adjustments in parts-per-billion and the fixed-point 727 * fractional ns format that the adapter uses. 728 */ 729 if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN)) 730 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44; 731 else 732 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40; 733 734 return 0; 735 } 736 737 /* Get PTP timestamp corrections */ 738 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) 739 { 740 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); 741 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN); 742 int rc; 743 size_t out_len; 744 745 /* Get the timestamp corrections from the NIC. If this operation is 746 * not supported (older NICs) then no correction is required. 747 */ 748 MCDI_SET_DWORD(inbuf, PTP_IN_OP, 749 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); 750 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 751 752 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 753 outbuf, sizeof(outbuf), &out_len); 754 if (rc == 0) { 755 efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf, 756 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); 757 efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf, 758 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); 759 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, 760 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); 761 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, 762 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); 763 764 if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) { 765 efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD( 766 outbuf, 767 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX); 768 efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD( 769 outbuf, 770 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX); 771 } else { 772 efx->ptp_data->ts_corrections.general_tx = 773 efx->ptp_data->ts_corrections.ptp_tx; 774 efx->ptp_data->ts_corrections.general_rx = 775 efx->ptp_data->ts_corrections.ptp_rx; 776 } 777 } else if (rc == -EINVAL) { 778 efx->ptp_data->ts_corrections.ptp_tx = 0; 779 efx->ptp_data->ts_corrections.ptp_rx = 0; 780 efx->ptp_data->ts_corrections.pps_out = 0; 781 efx->ptp_data->ts_corrections.pps_in = 0; 782 efx->ptp_data->ts_corrections.general_tx = 0; 783 efx->ptp_data->ts_corrections.general_rx = 0; 784 } else { 785 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, 786 sizeof(outbuf), rc); 787 return rc; 788 } 789 790 return 0; 791 } 792 793 /* Enable MCDI PTP support. */ 794 static int efx_ptp_enable(struct efx_nic *efx) 795 { 796 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); 797 MCDI_DECLARE_BUF_ERR(outbuf); 798 int rc; 799 800 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); 801 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 802 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, 803 efx->ptp_data->channel ? 804 efx->ptp_data->channel->channel : 0); 805 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); 806 807 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 808 outbuf, sizeof(outbuf), NULL); 809 rc = (rc == -EALREADY) ? 0 : rc; 810 if (rc) 811 efx_mcdi_display_error(efx, MC_CMD_PTP, 812 MC_CMD_PTP_IN_ENABLE_LEN, 813 outbuf, sizeof(outbuf), rc); 814 return rc; 815 } 816 817 /* Disable MCDI PTP support. 818 * 819 * Note that this function should never rely on the presence of ptp_data - 820 * may be called before that exists. 821 */ 822 static int efx_ptp_disable(struct efx_nic *efx) 823 { 824 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); 825 MCDI_DECLARE_BUF_ERR(outbuf); 826 int rc; 827 828 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); 829 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 830 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 831 outbuf, sizeof(outbuf), NULL); 832 rc = (rc == -EALREADY) ? 0 : rc; 833 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function 834 * should only have been called during probe. 835 */ 836 if (rc == -ENOSYS || rc == -EPERM) 837 pci_info(efx->pci_dev, "no PTP support\n"); 838 else if (rc) 839 efx_mcdi_display_error(efx, MC_CMD_PTP, 840 MC_CMD_PTP_IN_DISABLE_LEN, 841 outbuf, sizeof(outbuf), rc); 842 return rc; 843 } 844 845 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) 846 { 847 struct sk_buff *skb; 848 849 while ((skb = skb_dequeue(q))) { 850 local_bh_disable(); 851 netif_receive_skb(skb); 852 local_bh_enable(); 853 } 854 } 855 856 static void efx_ptp_handle_no_channel(struct efx_nic *efx) 857 { 858 netif_err(efx, drv, efx->net_dev, 859 "ERROR: PTP requires MSI-X and 1 additional interrupt" 860 "vector. PTP disabled\n"); 861 } 862 863 /* Repeatedly send the host time to the MC which will capture the hardware 864 * time. 865 */ 866 static void efx_ptp_send_times(struct efx_nic *efx, 867 struct pps_event_time *last_time) 868 { 869 struct pps_event_time now; 870 struct timespec64 limit; 871 struct efx_ptp_data *ptp = efx->ptp_data; 872 int *mc_running = ptp->start.addr; 873 874 pps_get_ts(&now); 875 limit = now.ts_real; 876 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS); 877 878 /* Write host time for specified period or until MC is done */ 879 while ((timespec64_compare(&now.ts_real, &limit) < 0) && 880 READ_ONCE(*mc_running)) { 881 struct timespec64 update_time; 882 unsigned int host_time; 883 884 /* Don't update continuously to avoid saturating the PCIe bus */ 885 update_time = now.ts_real; 886 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); 887 do { 888 pps_get_ts(&now); 889 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) && 890 READ_ONCE(*mc_running)); 891 892 /* Synchronise NIC with single word of time only */ 893 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | 894 now.ts_real.tv_nsec); 895 /* Update host time in NIC memory */ 896 efx->type->ptp_write_host_time(efx, host_time); 897 } 898 *last_time = now; 899 } 900 901 /* Read a timeset from the MC's results and partial process. */ 902 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), 903 struct efx_ptp_timeset *timeset) 904 { 905 unsigned start_ns, end_ns; 906 907 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); 908 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); 909 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); 910 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), 911 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); 912 913 /* Ignore seconds */ 914 start_ns = timeset->host_start & MC_NANOSECOND_MASK; 915 end_ns = timeset->host_end & MC_NANOSECOND_MASK; 916 /* Allow for rollover */ 917 if (end_ns < start_ns) 918 end_ns += NSEC_PER_SEC; 919 /* Determine duration of operation */ 920 timeset->window = end_ns - start_ns; 921 } 922 923 /* Process times received from MC. 924 * 925 * Extract times from returned results, and establish the minimum value 926 * seen. The minimum value represents the "best" possible time and events 927 * too much greater than this are rejected - the machine is, perhaps, too 928 * busy. A number of readings are taken so that, hopefully, at least one good 929 * synchronisation will be seen in the results. 930 */ 931 static int 932 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), 933 size_t response_length, 934 const struct pps_event_time *last_time) 935 { 936 unsigned number_readings = 937 MCDI_VAR_ARRAY_LEN(response_length, 938 PTP_OUT_SYNCHRONIZE_TIMESET); 939 unsigned i; 940 unsigned ngood = 0; 941 unsigned last_good = 0; 942 struct efx_ptp_data *ptp = efx->ptp_data; 943 u32 last_sec; 944 u32 start_sec; 945 struct timespec64 delta; 946 ktime_t mc_time; 947 948 if (number_readings == 0) 949 return -EAGAIN; 950 951 /* Read the set of results and find the last good host-MC 952 * synchronization result. The MC times when it finishes reading the 953 * host time so the corrected window time should be fairly constant 954 * for a given platform. Increment stats for any results that appear 955 * to be erroneous. 956 */ 957 for (i = 0; i < number_readings; i++) { 958 s32 window, corrected; 959 struct timespec64 wait; 960 961 efx_ptp_read_timeset( 962 MCDI_ARRAY_STRUCT_PTR(synch_buf, 963 PTP_OUT_SYNCHRONIZE_TIMESET, i), 964 &ptp->timeset[i]); 965 966 wait = ktime_to_timespec64( 967 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); 968 window = ptp->timeset[i].window; 969 corrected = window - wait.tv_nsec; 970 971 /* We expect the uncorrected synchronization window to be at 972 * least as large as the interval between host start and end 973 * times. If it is smaller than this then this is mostly likely 974 * to be a consequence of the host's time being adjusted. 975 * Check that the corrected sync window is in a reasonable 976 * range. If it is out of range it is likely to be because an 977 * interrupt or other delay occurred between reading the system 978 * time and writing it to MC memory. 979 */ 980 if (window < SYNCHRONISATION_GRANULARITY_NS) { 981 ++ptp->invalid_sync_windows; 982 } else if (corrected >= MAX_SYNCHRONISATION_NS) { 983 ++ptp->oversize_sync_windows; 984 } else if (corrected < ptp->min_synchronisation_ns) { 985 ++ptp->undersize_sync_windows; 986 } else { 987 ngood++; 988 last_good = i; 989 } 990 } 991 992 if (ngood == 0) { 993 netif_warn(efx, drv, efx->net_dev, 994 "PTP no suitable synchronisations\n"); 995 return -EAGAIN; 996 } 997 998 /* Calculate delay from last good sync (host time) to last_time. 999 * It is possible that the seconds rolled over between taking 1000 * the start reading and the last value written by the host. The 1001 * timescales are such that a gap of more than one second is never 1002 * expected. delta is *not* normalised. 1003 */ 1004 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; 1005 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; 1006 if (start_sec != last_sec && 1007 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { 1008 netif_warn(efx, hw, efx->net_dev, 1009 "PTP bad synchronisation seconds\n"); 1010 return -EAGAIN; 1011 } 1012 delta.tv_sec = (last_sec - start_sec) & 1; 1013 delta.tv_nsec = 1014 last_time->ts_real.tv_nsec - 1015 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); 1016 1017 /* Convert the NIC time at last good sync into kernel time. 1018 * No correction is required - this time is the output of a 1019 * firmware process. 1020 */ 1021 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, 1022 ptp->timeset[last_good].minor, 0); 1023 1024 /* Calculate delay from NIC top of second to last_time */ 1025 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec; 1026 1027 /* Set PPS timestamp to match NIC top of second */ 1028 ptp->host_time_pps = *last_time; 1029 pps_sub_ts(&ptp->host_time_pps, delta); 1030 1031 return 0; 1032 } 1033 1034 /* Synchronize times between the host and the MC */ 1035 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) 1036 { 1037 struct efx_ptp_data *ptp = efx->ptp_data; 1038 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); 1039 size_t response_length; 1040 int rc; 1041 unsigned long timeout; 1042 struct pps_event_time last_time = {}; 1043 unsigned int loops = 0; 1044 int *start = ptp->start.addr; 1045 1046 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); 1047 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); 1048 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, 1049 num_readings); 1050 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, 1051 ptp->start.dma_addr); 1052 1053 /* Clear flag that signals MC ready */ 1054 WRITE_ONCE(*start, 0); 1055 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, 1056 MC_CMD_PTP_IN_SYNCHRONIZE_LEN); 1057 EFX_WARN_ON_ONCE_PARANOID(rc); 1058 1059 /* Wait for start from MCDI (or timeout) */ 1060 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); 1061 while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) { 1062 udelay(20); /* Usually start MCDI execution quickly */ 1063 loops++; 1064 } 1065 1066 if (loops <= 1) 1067 ++ptp->fast_syncs; 1068 if (!time_before(jiffies, timeout)) 1069 ++ptp->sync_timeouts; 1070 1071 if (READ_ONCE(*start)) 1072 efx_ptp_send_times(efx, &last_time); 1073 1074 /* Collect results */ 1075 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, 1076 MC_CMD_PTP_IN_SYNCHRONIZE_LEN, 1077 synch_buf, sizeof(synch_buf), 1078 &response_length); 1079 if (rc == 0) { 1080 rc = efx_ptp_process_times(efx, synch_buf, response_length, 1081 &last_time); 1082 if (rc == 0) 1083 ++ptp->good_syncs; 1084 else 1085 ++ptp->no_time_syncs; 1086 } 1087 1088 /* Increment the bad syncs counter if the synchronize fails, whatever 1089 * the reason. 1090 */ 1091 if (rc != 0) 1092 ++ptp->bad_syncs; 1093 1094 return rc; 1095 } 1096 1097 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */ 1098 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb) 1099 { 1100 struct efx_ptp_data *ptp_data = efx->ptp_data; 1101 u8 type = efx_tx_csum_type_skb(skb); 1102 struct efx_tx_queue *tx_queue; 1103 1104 tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type); 1105 if (tx_queue && tx_queue->timestamping) { 1106 /* This code invokes normal driver TX code which is always 1107 * protected from softirqs when called from generic TX code, 1108 * which in turn disables preemption. Look at __dev_queue_xmit 1109 * which uses rcu_read_lock_bh disabling preemption for RCU 1110 * plus disabling softirqs. We do not need RCU reader 1111 * protection here. 1112 * 1113 * Although it is theoretically safe for current PTP TX/RX code 1114 * running without disabling softirqs, there are three good 1115 * reasond for doing so: 1116 * 1117 * 1) The code invoked is mainly implemented for non-PTP 1118 * packets and it is always executed with softirqs 1119 * disabled. 1120 * 2) This being a single PTP packet, better to not 1121 * interrupt its processing by softirqs which can lead 1122 * to high latencies. 1123 * 3) netdev_xmit_more checks preemption is disabled and 1124 * triggers a BUG_ON if not. 1125 */ 1126 local_bh_disable(); 1127 efx_enqueue_skb(tx_queue, skb); 1128 local_bh_enable(); 1129 } else { 1130 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n"); 1131 dev_kfree_skb_any(skb); 1132 } 1133 } 1134 1135 /* Transmit a PTP packet, via the MCDI interface, to the wire. */ 1136 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb) 1137 { 1138 struct efx_ptp_data *ptp_data = efx->ptp_data; 1139 struct skb_shared_hwtstamps timestamps; 1140 int rc = -EIO; 1141 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); 1142 size_t len; 1143 1144 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); 1145 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); 1146 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); 1147 if (skb_shinfo(skb)->nr_frags != 0) { 1148 rc = skb_linearize(skb); 1149 if (rc != 0) 1150 goto fail; 1151 } 1152 1153 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1154 rc = skb_checksum_help(skb); 1155 if (rc != 0) 1156 goto fail; 1157 } 1158 skb_copy_from_linear_data(skb, 1159 MCDI_PTR(ptp_data->txbuf, 1160 PTP_IN_TRANSMIT_PACKET), 1161 skb->len); 1162 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, 1163 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 1164 txtime, sizeof(txtime), &len); 1165 if (rc != 0) 1166 goto fail; 1167 1168 memset(×tamps, 0, sizeof(timestamps)); 1169 timestamps.hwtstamp = ptp_data->nic_to_kernel_time( 1170 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), 1171 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), 1172 ptp_data->ts_corrections.ptp_tx); 1173 1174 skb_tstamp_tx(skb, ×tamps); 1175 1176 rc = 0; 1177 1178 fail: 1179 dev_kfree_skb_any(skb); 1180 1181 return; 1182 } 1183 1184 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx) 1185 { 1186 struct efx_ptp_data *ptp = efx->ptp_data; 1187 struct list_head *cursor; 1188 struct list_head *next; 1189 1190 if (ptp->rx_ts_inline) 1191 return; 1192 1193 /* Drop time-expired events */ 1194 spin_lock_bh(&ptp->evt_lock); 1195 list_for_each_safe(cursor, next, &ptp->evt_list) { 1196 struct efx_ptp_event_rx *evt; 1197 1198 evt = list_entry(cursor, struct efx_ptp_event_rx, 1199 link); 1200 if (time_after(jiffies, evt->expiry)) { 1201 list_move(&evt->link, &ptp->evt_free_list); 1202 netif_warn(efx, hw, efx->net_dev, 1203 "PTP rx event dropped\n"); 1204 } 1205 } 1206 spin_unlock_bh(&ptp->evt_lock); 1207 } 1208 1209 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx, 1210 struct sk_buff *skb) 1211 { 1212 struct efx_ptp_data *ptp = efx->ptp_data; 1213 bool evts_waiting; 1214 struct list_head *cursor; 1215 struct list_head *next; 1216 struct efx_ptp_match *match; 1217 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED; 1218 1219 WARN_ON_ONCE(ptp->rx_ts_inline); 1220 1221 spin_lock_bh(&ptp->evt_lock); 1222 evts_waiting = !list_empty(&ptp->evt_list); 1223 spin_unlock_bh(&ptp->evt_lock); 1224 1225 if (!evts_waiting) 1226 return PTP_PACKET_STATE_UNMATCHED; 1227 1228 match = (struct efx_ptp_match *)skb->cb; 1229 /* Look for a matching timestamp in the event queue */ 1230 spin_lock_bh(&ptp->evt_lock); 1231 list_for_each_safe(cursor, next, &ptp->evt_list) { 1232 struct efx_ptp_event_rx *evt; 1233 1234 evt = list_entry(cursor, struct efx_ptp_event_rx, link); 1235 if ((evt->seq0 == match->words[0]) && 1236 (evt->seq1 == match->words[1])) { 1237 struct skb_shared_hwtstamps *timestamps; 1238 1239 /* Match - add in hardware timestamp */ 1240 timestamps = skb_hwtstamps(skb); 1241 timestamps->hwtstamp = evt->hwtimestamp; 1242 1243 match->state = PTP_PACKET_STATE_MATCHED; 1244 rc = PTP_PACKET_STATE_MATCHED; 1245 list_move(&evt->link, &ptp->evt_free_list); 1246 break; 1247 } 1248 } 1249 spin_unlock_bh(&ptp->evt_lock); 1250 1251 return rc; 1252 } 1253 1254 /* Process any queued receive events and corresponding packets 1255 * 1256 * q is returned with all the packets that are ready for delivery. 1257 */ 1258 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) 1259 { 1260 struct efx_ptp_data *ptp = efx->ptp_data; 1261 struct sk_buff *skb; 1262 1263 while ((skb = skb_dequeue(&ptp->rxq))) { 1264 struct efx_ptp_match *match; 1265 1266 match = (struct efx_ptp_match *)skb->cb; 1267 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { 1268 __skb_queue_tail(q, skb); 1269 } else if (efx_ptp_match_rx(efx, skb) == 1270 PTP_PACKET_STATE_MATCHED) { 1271 __skb_queue_tail(q, skb); 1272 } else if (time_after(jiffies, match->expiry)) { 1273 match->state = PTP_PACKET_STATE_TIMED_OUT; 1274 ++ptp->rx_no_timestamp; 1275 __skb_queue_tail(q, skb); 1276 } else { 1277 /* Replace unprocessed entry and stop */ 1278 skb_queue_head(&ptp->rxq, skb); 1279 break; 1280 } 1281 } 1282 } 1283 1284 /* Complete processing of a received packet */ 1285 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) 1286 { 1287 local_bh_disable(); 1288 netif_receive_skb(skb); 1289 local_bh_enable(); 1290 } 1291 1292 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx) 1293 { 1294 struct efx_ptp_data *ptp = efx->ptp_data; 1295 1296 while (ptp->rxfilters_count) { 1297 ptp->rxfilters_count--; 1298 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1299 ptp->rxfilters[ptp->rxfilters_count]); 1300 } 1301 } 1302 1303 static void efx_ptp_init_filter(struct efx_nic *efx, 1304 struct efx_filter_spec *rxfilter) 1305 { 1306 struct efx_channel *channel = efx->ptp_data->channel; 1307 struct efx_rx_queue *queue = efx_channel_get_rx_queue(channel); 1308 1309 efx_filter_init_rx(rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1310 efx_rx_queue_index(queue)); 1311 } 1312 1313 static int efx_ptp_insert_filter(struct efx_nic *efx, 1314 struct efx_filter_spec *rxfilter) 1315 { 1316 struct efx_ptp_data *ptp = efx->ptp_data; 1317 1318 int rc = efx_filter_insert_filter(efx, rxfilter, true); 1319 if (rc < 0) 1320 return rc; 1321 ptp->rxfilters[ptp->rxfilters_count] = rc; 1322 ptp->rxfilters_count++; 1323 return 0; 1324 } 1325 1326 static int efx_ptp_insert_ipv4_filter(struct efx_nic *efx, u16 port) 1327 { 1328 struct efx_filter_spec rxfilter; 1329 1330 efx_ptp_init_filter(efx, &rxfilter); 1331 efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, htonl(PTP_ADDR_IPV4), 1332 htons(port)); 1333 return efx_ptp_insert_filter(efx, &rxfilter); 1334 } 1335 1336 static int efx_ptp_insert_ipv6_filter(struct efx_nic *efx, u16 port) 1337 { 1338 const struct in6_addr addr = {{PTP_ADDR_IPV6}}; 1339 struct efx_filter_spec rxfilter; 1340 1341 efx_ptp_init_filter(efx, &rxfilter); 1342 efx_filter_set_ipv6_local(&rxfilter, IPPROTO_UDP, &addr, htons(port)); 1343 return efx_ptp_insert_filter(efx, &rxfilter); 1344 } 1345 1346 static int efx_ptp_insert_eth_filter(struct efx_nic *efx) 1347 { 1348 const u8 addr[ETH_ALEN] = PTP_ADDR_ETHER; 1349 struct efx_filter_spec rxfilter; 1350 1351 efx_ptp_init_filter(efx, &rxfilter); 1352 efx_filter_set_eth_local(&rxfilter, EFX_FILTER_VID_UNSPEC, addr); 1353 rxfilter.match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 1354 rxfilter.ether_type = htons(ETH_P_1588); 1355 return efx_ptp_insert_filter(efx, &rxfilter); 1356 } 1357 1358 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) 1359 { 1360 struct efx_ptp_data *ptp = efx->ptp_data; 1361 int rc; 1362 1363 if (!ptp->channel || ptp->rxfilters_count) 1364 return 0; 1365 1366 /* Must filter on both event and general ports to ensure 1367 * that there is no packet re-ordering. 1368 */ 1369 rc = efx_ptp_insert_ipv4_filter(efx, PTP_EVENT_PORT); 1370 if (rc < 0) 1371 goto fail; 1372 1373 rc = efx_ptp_insert_ipv4_filter(efx, PTP_GENERAL_PORT); 1374 if (rc < 0) 1375 goto fail; 1376 1377 /* if the NIC supports hw timestamps by the MAC, we can support 1378 * PTP over IPv6 and Ethernet 1379 */ 1380 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1381 rc = efx_ptp_insert_ipv6_filter(efx, PTP_EVENT_PORT); 1382 if (rc < 0) 1383 goto fail; 1384 1385 rc = efx_ptp_insert_ipv6_filter(efx, PTP_GENERAL_PORT); 1386 if (rc < 0) 1387 goto fail; 1388 1389 rc = efx_ptp_insert_eth_filter(efx); 1390 if (rc < 0) 1391 goto fail; 1392 } 1393 1394 return 0; 1395 1396 fail: 1397 efx_ptp_remove_multicast_filters(efx); 1398 return rc; 1399 } 1400 1401 static int efx_ptp_start(struct efx_nic *efx) 1402 { 1403 struct efx_ptp_data *ptp = efx->ptp_data; 1404 int rc; 1405 1406 ptp->reset_required = false; 1407 1408 rc = efx_ptp_insert_multicast_filters(efx); 1409 if (rc) 1410 return rc; 1411 1412 rc = efx_ptp_enable(efx); 1413 if (rc != 0) 1414 goto fail; 1415 1416 ptp->evt_frag_idx = 0; 1417 ptp->current_adjfreq = 0; 1418 1419 return 0; 1420 1421 fail: 1422 efx_ptp_remove_multicast_filters(efx); 1423 return rc; 1424 } 1425 1426 static int efx_ptp_stop(struct efx_nic *efx) 1427 { 1428 struct efx_ptp_data *ptp = efx->ptp_data; 1429 struct list_head *cursor; 1430 struct list_head *next; 1431 int rc; 1432 1433 if (ptp == NULL) 1434 return 0; 1435 1436 rc = efx_ptp_disable(efx); 1437 1438 efx_ptp_remove_multicast_filters(efx); 1439 1440 /* Make sure RX packets are really delivered */ 1441 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); 1442 skb_queue_purge(&efx->ptp_data->txq); 1443 1444 /* Drop any pending receive events */ 1445 spin_lock_bh(&efx->ptp_data->evt_lock); 1446 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) { 1447 list_move(cursor, &efx->ptp_data->evt_free_list); 1448 } 1449 spin_unlock_bh(&efx->ptp_data->evt_lock); 1450 1451 return rc; 1452 } 1453 1454 static int efx_ptp_restart(struct efx_nic *efx) 1455 { 1456 if (efx->ptp_data && efx->ptp_data->enabled) 1457 return efx_ptp_start(efx); 1458 return 0; 1459 } 1460 1461 static void efx_ptp_pps_worker(struct work_struct *work) 1462 { 1463 struct efx_ptp_data *ptp = 1464 container_of(work, struct efx_ptp_data, pps_work); 1465 struct efx_nic *efx = ptp->efx; 1466 struct ptp_clock_event ptp_evt; 1467 1468 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) 1469 return; 1470 1471 ptp_evt.type = PTP_CLOCK_PPSUSR; 1472 ptp_evt.pps_times = ptp->host_time_pps; 1473 ptp_clock_event(ptp->phc_clock, &ptp_evt); 1474 } 1475 1476 static void efx_ptp_worker(struct work_struct *work) 1477 { 1478 struct efx_ptp_data *ptp_data = 1479 container_of(work, struct efx_ptp_data, work); 1480 struct efx_nic *efx = ptp_data->efx; 1481 struct sk_buff *skb; 1482 struct sk_buff_head tempq; 1483 1484 if (ptp_data->reset_required) { 1485 efx_ptp_stop(efx); 1486 efx_ptp_start(efx); 1487 return; 1488 } 1489 1490 efx_ptp_drop_time_expired_events(efx); 1491 1492 __skb_queue_head_init(&tempq); 1493 efx_ptp_process_events(efx, &tempq); 1494 1495 while ((skb = skb_dequeue(&ptp_data->txq))) 1496 ptp_data->xmit_skb(efx, skb); 1497 1498 while ((skb = __skb_dequeue(&tempq))) 1499 efx_ptp_process_rx(efx, skb); 1500 } 1501 1502 static const struct ptp_clock_info efx_phc_clock_info = { 1503 .owner = THIS_MODULE, 1504 .name = "sfc", 1505 .max_adj = MAX_PPB, 1506 .n_alarm = 0, 1507 .n_ext_ts = 0, 1508 .n_per_out = 0, 1509 .n_pins = 0, 1510 .pps = 1, 1511 .adjfreq = efx_phc_adjfreq, 1512 .adjtime = efx_phc_adjtime, 1513 .gettime64 = efx_phc_gettime, 1514 .settime64 = efx_phc_settime, 1515 .enable = efx_phc_enable, 1516 }; 1517 1518 /* Initialise PTP state. */ 1519 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) 1520 { 1521 struct efx_ptp_data *ptp; 1522 int rc = 0; 1523 unsigned int pos; 1524 1525 if (efx->ptp_data) { 1526 efx->ptp_data->channel = channel; 1527 return 0; 1528 } 1529 1530 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); 1531 efx->ptp_data = ptp; 1532 if (!efx->ptp_data) 1533 return -ENOMEM; 1534 1535 ptp->efx = efx; 1536 ptp->channel = channel; 1537 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0; 1538 1539 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); 1540 if (rc != 0) 1541 goto fail1; 1542 1543 skb_queue_head_init(&ptp->rxq); 1544 skb_queue_head_init(&ptp->txq); 1545 ptp->workwq = create_singlethread_workqueue("sfc_ptp"); 1546 if (!ptp->workwq) { 1547 rc = -ENOMEM; 1548 goto fail2; 1549 } 1550 1551 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1552 ptp->xmit_skb = efx_ptp_xmit_skb_queue; 1553 /* Request sync events on this channel. */ 1554 channel->sync_events_state = SYNC_EVENTS_QUIESCENT; 1555 } else { 1556 ptp->xmit_skb = efx_ptp_xmit_skb_mc; 1557 } 1558 1559 INIT_WORK(&ptp->work, efx_ptp_worker); 1560 ptp->config.flags = 0; 1561 ptp->config.tx_type = HWTSTAMP_TX_OFF; 1562 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; 1563 INIT_LIST_HEAD(&ptp->evt_list); 1564 INIT_LIST_HEAD(&ptp->evt_free_list); 1565 spin_lock_init(&ptp->evt_lock); 1566 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++) 1567 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list); 1568 1569 /* Get the NIC PTP attributes and set up time conversions */ 1570 rc = efx_ptp_get_attributes(efx); 1571 if (rc < 0) 1572 goto fail3; 1573 1574 /* Get the timestamp corrections */ 1575 rc = efx_ptp_get_timestamp_corrections(efx); 1576 if (rc < 0) 1577 goto fail3; 1578 1579 if (efx->mcdi->fn_flags & 1580 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { 1581 ptp->phc_clock_info = efx_phc_clock_info; 1582 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, 1583 &efx->pci_dev->dev); 1584 if (IS_ERR(ptp->phc_clock)) { 1585 rc = PTR_ERR(ptp->phc_clock); 1586 goto fail3; 1587 } else if (ptp->phc_clock) { 1588 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); 1589 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); 1590 if (!ptp->pps_workwq) { 1591 rc = -ENOMEM; 1592 goto fail4; 1593 } 1594 } 1595 } 1596 ptp->nic_ts_enabled = false; 1597 1598 return 0; 1599 fail4: 1600 ptp_clock_unregister(efx->ptp_data->phc_clock); 1601 1602 fail3: 1603 destroy_workqueue(efx->ptp_data->workwq); 1604 1605 fail2: 1606 efx_nic_free_buffer(efx, &ptp->start); 1607 1608 fail1: 1609 kfree(efx->ptp_data); 1610 efx->ptp_data = NULL; 1611 1612 return rc; 1613 } 1614 1615 /* Initialise PTP channel. 1616 * 1617 * Setting core_index to zero causes the queue to be initialised and doesn't 1618 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. 1619 */ 1620 static int efx_ptp_probe_channel(struct efx_channel *channel) 1621 { 1622 struct efx_nic *efx = channel->efx; 1623 int rc; 1624 1625 channel->irq_moderation_us = 0; 1626 channel->rx_queue.core_index = 0; 1627 1628 rc = efx_ptp_probe(efx, channel); 1629 /* Failure to probe PTP is not fatal; this channel will just not be 1630 * used for anything. 1631 * In the case of EPERM, efx_ptp_probe will print its own message (in 1632 * efx_ptp_get_attributes()), so we don't need to. 1633 */ 1634 if (rc && rc != -EPERM) 1635 netif_warn(efx, drv, efx->net_dev, 1636 "Failed to probe PTP, rc=%d\n", rc); 1637 return 0; 1638 } 1639 1640 void efx_ptp_remove(struct efx_nic *efx) 1641 { 1642 if (!efx->ptp_data) 1643 return; 1644 1645 (void)efx_ptp_disable(efx); 1646 1647 cancel_work_sync(&efx->ptp_data->work); 1648 if (efx->ptp_data->pps_workwq) 1649 cancel_work_sync(&efx->ptp_data->pps_work); 1650 1651 skb_queue_purge(&efx->ptp_data->rxq); 1652 skb_queue_purge(&efx->ptp_data->txq); 1653 1654 if (efx->ptp_data->phc_clock) { 1655 destroy_workqueue(efx->ptp_data->pps_workwq); 1656 ptp_clock_unregister(efx->ptp_data->phc_clock); 1657 } 1658 1659 destroy_workqueue(efx->ptp_data->workwq); 1660 1661 efx_nic_free_buffer(efx, &efx->ptp_data->start); 1662 kfree(efx->ptp_data); 1663 efx->ptp_data = NULL; 1664 } 1665 1666 static void efx_ptp_remove_channel(struct efx_channel *channel) 1667 { 1668 efx_ptp_remove(channel->efx); 1669 } 1670 1671 static void efx_ptp_get_channel_name(struct efx_channel *channel, 1672 char *buf, size_t len) 1673 { 1674 snprintf(buf, len, "%s-ptp", channel->efx->name); 1675 } 1676 1677 /* Determine whether this packet should be processed by the PTP module 1678 * or transmitted conventionally. 1679 */ 1680 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1681 { 1682 return efx->ptp_data && 1683 efx->ptp_data->enabled && 1684 skb->len >= PTP_MIN_LENGTH && 1685 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && 1686 likely(skb->protocol == htons(ETH_P_IP)) && 1687 skb_transport_header_was_set(skb) && 1688 skb_network_header_len(skb) >= sizeof(struct iphdr) && 1689 ip_hdr(skb)->protocol == IPPROTO_UDP && 1690 skb_headlen(skb) >= 1691 skb_transport_offset(skb) + sizeof(struct udphdr) && 1692 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); 1693 } 1694 1695 /* Receive a PTP packet. Packets are queued until the arrival of 1696 * the receive timestamp from the MC - this will probably occur after the 1697 * packet arrival because of the processing in the MC. 1698 */ 1699 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) 1700 { 1701 struct efx_nic *efx = channel->efx; 1702 struct efx_ptp_data *ptp = efx->ptp_data; 1703 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; 1704 u8 *match_data_012, *match_data_345; 1705 unsigned int version; 1706 u8 *data; 1707 1708 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1709 1710 /* Correct version? */ 1711 if (ptp->mode == MC_CMD_PTP_MODE_V1) { 1712 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { 1713 return false; 1714 } 1715 data = skb->data; 1716 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); 1717 if (version != PTP_VERSION_V1) { 1718 return false; 1719 } 1720 1721 /* PTP V1 uses all six bytes of the UUID to match the packet 1722 * to the timestamp 1723 */ 1724 match_data_012 = data + PTP_V1_UUID_OFFSET; 1725 match_data_345 = data + PTP_V1_UUID_OFFSET + 3; 1726 } else { 1727 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { 1728 return false; 1729 } 1730 data = skb->data; 1731 version = data[PTP_V2_VERSION_OFFSET]; 1732 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { 1733 return false; 1734 } 1735 1736 /* The original V2 implementation uses bytes 2-7 of 1737 * the UUID to match the packet to the timestamp. This 1738 * discards two of the bytes of the MAC address used 1739 * to create the UUID (SF bug 33070). The PTP V2 1740 * enhanced mode fixes this issue and uses bytes 0-2 1741 * and byte 5-7 of the UUID. 1742 */ 1743 match_data_345 = data + PTP_V2_UUID_OFFSET + 5; 1744 if (ptp->mode == MC_CMD_PTP_MODE_V2) { 1745 match_data_012 = data + PTP_V2_UUID_OFFSET + 2; 1746 } else { 1747 match_data_012 = data + PTP_V2_UUID_OFFSET + 0; 1748 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED); 1749 } 1750 } 1751 1752 /* Does this packet require timestamping? */ 1753 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { 1754 match->state = PTP_PACKET_STATE_UNMATCHED; 1755 1756 /* We expect the sequence number to be in the same position in 1757 * the packet for PTP V1 and V2 1758 */ 1759 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); 1760 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); 1761 1762 /* Extract UUID/Sequence information */ 1763 match->words[0] = (match_data_012[0] | 1764 (match_data_012[1] << 8) | 1765 (match_data_012[2] << 16) | 1766 (match_data_345[0] << 24)); 1767 match->words[1] = (match_data_345[1] | 1768 (match_data_345[2] << 8) | 1769 (data[PTP_V1_SEQUENCE_OFFSET + 1770 PTP_V1_SEQUENCE_LENGTH - 1] << 1771 16)); 1772 } else { 1773 match->state = PTP_PACKET_STATE_MATCH_UNWANTED; 1774 } 1775 1776 skb_queue_tail(&ptp->rxq, skb); 1777 queue_work(ptp->workwq, &ptp->work); 1778 1779 return true; 1780 } 1781 1782 /* Transmit a PTP packet. This has to be transmitted by the MC 1783 * itself, through an MCDI call. MCDI calls aren't permitted 1784 * in the transmit path so defer the actual transmission to a suitable worker. 1785 */ 1786 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1787 { 1788 struct efx_ptp_data *ptp = efx->ptp_data; 1789 1790 skb_queue_tail(&ptp->txq, skb); 1791 1792 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && 1793 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) 1794 efx_xmit_hwtstamp_pending(skb); 1795 queue_work(ptp->workwq, &ptp->work); 1796 1797 return NETDEV_TX_OK; 1798 } 1799 1800 int efx_ptp_get_mode(struct efx_nic *efx) 1801 { 1802 return efx->ptp_data->mode; 1803 } 1804 1805 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, 1806 unsigned int new_mode) 1807 { 1808 if ((enable_wanted != efx->ptp_data->enabled) || 1809 (enable_wanted && (efx->ptp_data->mode != new_mode))) { 1810 int rc = 0; 1811 1812 if (enable_wanted) { 1813 /* Change of mode requires disable */ 1814 if (efx->ptp_data->enabled && 1815 (efx->ptp_data->mode != new_mode)) { 1816 efx->ptp_data->enabled = false; 1817 rc = efx_ptp_stop(efx); 1818 if (rc != 0) 1819 return rc; 1820 } 1821 1822 /* Set new operating mode and establish 1823 * baseline synchronisation, which must 1824 * succeed. 1825 */ 1826 efx->ptp_data->mode = new_mode; 1827 if (netif_running(efx->net_dev)) 1828 rc = efx_ptp_start(efx); 1829 if (rc == 0) { 1830 rc = efx_ptp_synchronize(efx, 1831 PTP_SYNC_ATTEMPTS * 2); 1832 if (rc != 0) 1833 efx_ptp_stop(efx); 1834 } 1835 } else { 1836 rc = efx_ptp_stop(efx); 1837 } 1838 1839 if (rc != 0) 1840 return rc; 1841 1842 efx->ptp_data->enabled = enable_wanted; 1843 } 1844 1845 return 0; 1846 } 1847 1848 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init) 1849 { 1850 int rc; 1851 1852 if ((init->tx_type != HWTSTAMP_TX_OFF) && 1853 (init->tx_type != HWTSTAMP_TX_ON)) 1854 return -ERANGE; 1855 1856 rc = efx->type->ptp_set_ts_config(efx, init); 1857 if (rc) 1858 return rc; 1859 1860 efx->ptp_data->config = *init; 1861 return 0; 1862 } 1863 1864 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info) 1865 { 1866 struct efx_ptp_data *ptp = efx->ptp_data; 1867 struct efx_nic *primary = efx->primary; 1868 1869 ASSERT_RTNL(); 1870 1871 if (!ptp) 1872 return; 1873 1874 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 1875 SOF_TIMESTAMPING_RX_HARDWARE | 1876 SOF_TIMESTAMPING_RAW_HARDWARE); 1877 /* Check licensed features. If we don't have the license for TX 1878 * timestamps, the NIC will not support them. 1879 */ 1880 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1881 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1882 1883 if (!(nic_data->licensed_features & 1884 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) 1885 ts_info->so_timestamping &= 1886 ~SOF_TIMESTAMPING_TX_HARDWARE; 1887 } 1888 if (primary && primary->ptp_data && primary->ptp_data->phc_clock) 1889 ts_info->phc_index = 1890 ptp_clock_index(primary->ptp_data->phc_clock); 1891 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; 1892 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; 1893 } 1894 1895 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1896 { 1897 struct hwtstamp_config config; 1898 int rc; 1899 1900 /* Not a PTP enabled port */ 1901 if (!efx->ptp_data) 1902 return -EOPNOTSUPP; 1903 1904 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1905 return -EFAULT; 1906 1907 rc = efx_ptp_ts_init(efx, &config); 1908 if (rc != 0) 1909 return rc; 1910 1911 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) 1912 ? -EFAULT : 0; 1913 } 1914 1915 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1916 { 1917 if (!efx->ptp_data) 1918 return -EOPNOTSUPP; 1919 1920 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config, 1921 sizeof(efx->ptp_data->config)) ? -EFAULT : 0; 1922 } 1923 1924 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) 1925 { 1926 struct efx_ptp_data *ptp = efx->ptp_data; 1927 1928 netif_err(efx, hw, efx->net_dev, 1929 "PTP unexpected event length: got %d expected %d\n", 1930 ptp->evt_frag_idx, expected_frag_len); 1931 ptp->reset_required = true; 1932 queue_work(ptp->workwq, &ptp->work); 1933 } 1934 1935 /* Process a completed receive event. Put it on the event queue and 1936 * start worker thread. This is required because event and their 1937 * correspoding packets may come in either order. 1938 */ 1939 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp) 1940 { 1941 struct efx_ptp_event_rx *evt = NULL; 1942 1943 if (WARN_ON_ONCE(ptp->rx_ts_inline)) 1944 return; 1945 1946 if (ptp->evt_frag_idx != 3) { 1947 ptp_event_failure(efx, 3); 1948 return; 1949 } 1950 1951 spin_lock_bh(&ptp->evt_lock); 1952 if (!list_empty(&ptp->evt_free_list)) { 1953 evt = list_first_entry(&ptp->evt_free_list, 1954 struct efx_ptp_event_rx, link); 1955 list_del(&evt->link); 1956 1957 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA); 1958 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2], 1959 MCDI_EVENT_SRC) | 1960 (EFX_QWORD_FIELD(ptp->evt_frags[1], 1961 MCDI_EVENT_SRC) << 8) | 1962 (EFX_QWORD_FIELD(ptp->evt_frags[0], 1963 MCDI_EVENT_SRC) << 16)); 1964 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time( 1965 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA), 1966 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA), 1967 ptp->ts_corrections.ptp_rx); 1968 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1969 list_add_tail(&evt->link, &ptp->evt_list); 1970 1971 queue_work(ptp->workwq, &ptp->work); 1972 } else if (net_ratelimit()) { 1973 /* Log a rate-limited warning message. */ 1974 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n"); 1975 } 1976 spin_unlock_bh(&ptp->evt_lock); 1977 } 1978 1979 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) 1980 { 1981 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); 1982 if (ptp->evt_frag_idx != 1) { 1983 ptp_event_failure(efx, 1); 1984 return; 1985 } 1986 1987 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); 1988 } 1989 1990 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) 1991 { 1992 if (ptp->nic_ts_enabled) 1993 queue_work(ptp->pps_workwq, &ptp->pps_work); 1994 } 1995 1996 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) 1997 { 1998 struct efx_ptp_data *ptp = efx->ptp_data; 1999 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); 2000 2001 if (!ptp) { 2002 if (!efx->ptp_warned) { 2003 netif_warn(efx, drv, efx->net_dev, 2004 "Received PTP event but PTP not set up\n"); 2005 efx->ptp_warned = true; 2006 } 2007 return; 2008 } 2009 2010 if (!ptp->enabled) 2011 return; 2012 2013 if (ptp->evt_frag_idx == 0) { 2014 ptp->evt_code = code; 2015 } else if (ptp->evt_code != code) { 2016 netif_err(efx, hw, efx->net_dev, 2017 "PTP out of sequence event %d\n", code); 2018 ptp->evt_frag_idx = 0; 2019 } 2020 2021 ptp->evt_frags[ptp->evt_frag_idx++] = *ev; 2022 if (!MCDI_EVENT_FIELD(*ev, CONT)) { 2023 /* Process resulting event */ 2024 switch (code) { 2025 case MCDI_EVENT_CODE_PTP_RX: 2026 ptp_event_rx(efx, ptp); 2027 break; 2028 case MCDI_EVENT_CODE_PTP_FAULT: 2029 ptp_event_fault(efx, ptp); 2030 break; 2031 case MCDI_EVENT_CODE_PTP_PPS: 2032 ptp_event_pps(efx, ptp); 2033 break; 2034 default: 2035 netif_err(efx, hw, efx->net_dev, 2036 "PTP unknown event %d\n", code); 2037 break; 2038 } 2039 ptp->evt_frag_idx = 0; 2040 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { 2041 netif_err(efx, hw, efx->net_dev, 2042 "PTP too many event fragments\n"); 2043 ptp->evt_frag_idx = 0; 2044 } 2045 } 2046 2047 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) 2048 { 2049 struct efx_nic *efx = channel->efx; 2050 struct efx_ptp_data *ptp = efx->ptp_data; 2051 2052 /* When extracting the sync timestamp minor value, we should discard 2053 * the least significant two bits. These are not required in order 2054 * to reconstruct full-range timestamps and they are optionally used 2055 * to report status depending on the options supplied when subscribing 2056 * for sync events. 2057 */ 2058 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); 2059 channel->sync_timestamp_minor = 2060 (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC) 2061 << ptp->nic_time.sync_event_minor_shift; 2062 2063 /* if sync events have been disabled then we want to silently ignore 2064 * this event, so throw away result. 2065 */ 2066 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, 2067 SYNC_EVENTS_VALID); 2068 } 2069 2070 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) 2071 { 2072 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 2073 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); 2074 #else 2075 const u8 *data = eh + efx->rx_packet_ts_offset; 2076 return (u32)data[0] | 2077 (u32)data[1] << 8 | 2078 (u32)data[2] << 16 | 2079 (u32)data[3] << 24; 2080 #endif 2081 } 2082 2083 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, 2084 struct sk_buff *skb) 2085 { 2086 struct efx_nic *efx = channel->efx; 2087 struct efx_ptp_data *ptp = efx->ptp_data; 2088 u32 pkt_timestamp_major, pkt_timestamp_minor; 2089 u32 diff, carry; 2090 struct skb_shared_hwtstamps *timestamps; 2091 2092 if (channel->sync_events_state != SYNC_EVENTS_VALID) 2093 return; 2094 2095 pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb)); 2096 2097 /* get the difference between the packet and sync timestamps, 2098 * modulo one second 2099 */ 2100 diff = pkt_timestamp_minor - channel->sync_timestamp_minor; 2101 if (pkt_timestamp_minor < channel->sync_timestamp_minor) 2102 diff += ptp->nic_time.minor_max; 2103 2104 /* do we roll over a second boundary and need to carry the one? */ 2105 carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ? 2106 1 : 0; 2107 2108 if (diff <= ptp->nic_time.sync_event_diff_max) { 2109 /* packet is ahead of the sync event by a quarter of a second or 2110 * less (allowing for fuzz) 2111 */ 2112 pkt_timestamp_major = channel->sync_timestamp_major + carry; 2113 } else if (diff >= ptp->nic_time.sync_event_diff_min) { 2114 /* packet is behind the sync event but within the fuzz factor. 2115 * This means the RX packet and sync event crossed as they were 2116 * placed on the event queue, which can sometimes happen. 2117 */ 2118 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; 2119 } else { 2120 /* it's outside tolerance in both directions. this might be 2121 * indicative of us missing sync events for some reason, so 2122 * we'll call it an error rather than risk giving a bogus 2123 * timestamp. 2124 */ 2125 netif_vdbg(efx, drv, efx->net_dev, 2126 "packet timestamp %x too far from sync event %x:%x\n", 2127 pkt_timestamp_minor, channel->sync_timestamp_major, 2128 channel->sync_timestamp_minor); 2129 return; 2130 } 2131 2132 /* attach the timestamps to the skb */ 2133 timestamps = skb_hwtstamps(skb); 2134 timestamps->hwtstamp = 2135 ptp->nic_to_kernel_time(pkt_timestamp_major, 2136 pkt_timestamp_minor, 2137 ptp->ts_corrections.general_rx); 2138 } 2139 2140 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta) 2141 { 2142 struct efx_ptp_data *ptp_data = container_of(ptp, 2143 struct efx_ptp_data, 2144 phc_clock_info); 2145 struct efx_nic *efx = ptp_data->efx; 2146 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); 2147 s64 adjustment_ns; 2148 int rc; 2149 2150 if (delta > MAX_PPB) 2151 delta = MAX_PPB; 2152 else if (delta < -MAX_PPB) 2153 delta = -MAX_PPB; 2154 2155 /* Convert ppb to fixed point ns taking care to round correctly. */ 2156 adjustment_ns = ((s64)delta * PPB_SCALE_WORD + 2157 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >> 2158 ptp_data->adjfreq_ppb_shift; 2159 2160 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2161 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); 2162 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); 2163 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); 2164 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); 2165 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), 2166 NULL, 0, NULL); 2167 if (rc != 0) 2168 return rc; 2169 2170 ptp_data->current_adjfreq = adjustment_ns; 2171 return 0; 2172 } 2173 2174 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) 2175 { 2176 u32 nic_major, nic_minor; 2177 struct efx_ptp_data *ptp_data = container_of(ptp, 2178 struct efx_ptp_data, 2179 phc_clock_info); 2180 struct efx_nic *efx = ptp_data->efx; 2181 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); 2182 2183 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); 2184 2185 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2186 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2187 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); 2188 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); 2189 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); 2190 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2191 NULL, 0, NULL); 2192 } 2193 2194 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 2195 { 2196 struct efx_ptp_data *ptp_data = container_of(ptp, 2197 struct efx_ptp_data, 2198 phc_clock_info); 2199 struct efx_nic *efx = ptp_data->efx; 2200 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); 2201 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); 2202 int rc; 2203 ktime_t kt; 2204 2205 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); 2206 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2207 2208 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2209 outbuf, sizeof(outbuf), NULL); 2210 if (rc != 0) 2211 return rc; 2212 2213 kt = ptp_data->nic_to_kernel_time( 2214 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), 2215 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); 2216 *ts = ktime_to_timespec64(kt); 2217 return 0; 2218 } 2219 2220 static int efx_phc_settime(struct ptp_clock_info *ptp, 2221 const struct timespec64 *e_ts) 2222 { 2223 /* Get the current NIC time, efx_phc_gettime. 2224 * Subtract from the desired time to get the offset 2225 * call efx_phc_adjtime with the offset 2226 */ 2227 int rc; 2228 struct timespec64 time_now; 2229 struct timespec64 delta; 2230 2231 rc = efx_phc_gettime(ptp, &time_now); 2232 if (rc != 0) 2233 return rc; 2234 2235 delta = timespec64_sub(*e_ts, time_now); 2236 2237 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta)); 2238 if (rc != 0) 2239 return rc; 2240 2241 return 0; 2242 } 2243 2244 static int efx_phc_enable(struct ptp_clock_info *ptp, 2245 struct ptp_clock_request *request, 2246 int enable) 2247 { 2248 struct efx_ptp_data *ptp_data = container_of(ptp, 2249 struct efx_ptp_data, 2250 phc_clock_info); 2251 if (request->type != PTP_CLK_REQ_PPS) 2252 return -EOPNOTSUPP; 2253 2254 ptp_data->nic_ts_enabled = !!enable; 2255 return 0; 2256 } 2257 2258 static const struct efx_channel_type efx_ptp_channel_type = { 2259 .handle_no_channel = efx_ptp_handle_no_channel, 2260 .pre_probe = efx_ptp_probe_channel, 2261 .post_remove = efx_ptp_remove_channel, 2262 .get_name = efx_ptp_get_channel_name, 2263 .copy = efx_copy_channel, 2264 .receive_skb = efx_ptp_rx, 2265 .want_txqs = efx_ptp_want_txqs, 2266 .keep_eventq = false, 2267 }; 2268 2269 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx) 2270 { 2271 /* Check whether PTP is implemented on this NIC. The DISABLE 2272 * operation will succeed if and only if it is implemented. 2273 */ 2274 if (efx_ptp_disable(efx) == 0) 2275 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = 2276 &efx_ptp_channel_type; 2277 } 2278 2279 void efx_ptp_start_datapath(struct efx_nic *efx) 2280 { 2281 if (efx_ptp_restart(efx)) 2282 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); 2283 /* re-enable timestamping if it was previously enabled */ 2284 if (efx->type->ptp_set_ts_sync_events) 2285 efx->type->ptp_set_ts_sync_events(efx, true, true); 2286 } 2287 2288 void efx_ptp_stop_datapath(struct efx_nic *efx) 2289 { 2290 /* temporarily disable timestamping */ 2291 if (efx->type->ptp_set_ts_sync_events) 2292 efx->type->ptp_set_ts_sync_events(efx, false, true); 2293 efx_ptp_stop(efx); 2294 } 2295