xref: /openbmc/linux/drivers/net/ethernet/sfc/ptp.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2011-2013 Solarflare Communications Inc.
5  */
6 
7 /* Theory of operation:
8  *
9  * PTP support is assisted by firmware running on the MC, which provides
10  * the hardware timestamping capabilities.  Both transmitted and received
11  * PTP event packets are queued onto internal queues for subsequent processing;
12  * this is because the MC operations are relatively long and would block
13  * block NAPI/interrupt operation.
14  *
15  * Receive event processing:
16  *	The event contains the packet's UUID and sequence number, together
17  *	with the hardware timestamp.  The PTP receive packet queue is searched
18  *	for this UUID/sequence number and, if found, put on a pending queue.
19  *	Packets not matching are delivered without timestamps (MCDI events will
20  *	always arrive after the actual packet).
21  *	It is important for the operation of the PTP protocol that the ordering
22  *	of packets between the event and general port is maintained.
23  *
24  * Work queue processing:
25  *	If work waiting, synchronise host/hardware time
26  *
27  *	Transmit: send packet through MC, which returns the transmission time
28  *	that is converted to an appropriate timestamp.
29  *
30  *	Receive: the packet's reception time is converted to an appropriate
31  *	timestamp.
32  */
33 #include <linux/ip.h>
34 #include <linux/udp.h>
35 #include <linux/time.h>
36 #include <linux/ktime.h>
37 #include <linux/module.h>
38 #include <linux/net_tstamp.h>
39 #include <linux/pps_kernel.h>
40 #include <linux/ptp_clock_kernel.h>
41 #include "net_driver.h"
42 #include "efx.h"
43 #include "mcdi.h"
44 #include "mcdi_pcol.h"
45 #include "io.h"
46 #include "farch_regs.h"
47 #include "nic.h"
48 
49 /* Maximum number of events expected to make up a PTP event */
50 #define	MAX_EVENT_FRAGS			3
51 
52 /* Maximum delay, ms, to begin synchronisation */
53 #define	MAX_SYNCHRONISE_WAIT_MS		2
54 
55 /* How long, at most, to spend synchronising */
56 #define	SYNCHRONISE_PERIOD_NS		250000
57 
58 /* How often to update the shared memory time */
59 #define	SYNCHRONISATION_GRANULARITY_NS	200
60 
61 /* Minimum permitted length of a (corrected) synchronisation time */
62 #define	DEFAULT_MIN_SYNCHRONISATION_NS	120
63 
64 /* Maximum permitted length of a (corrected) synchronisation time */
65 #define	MAX_SYNCHRONISATION_NS		1000
66 
67 /* How many (MC) receive events that can be queued */
68 #define	MAX_RECEIVE_EVENTS		8
69 
70 /* Length of (modified) moving average. */
71 #define	AVERAGE_LENGTH			16
72 
73 /* How long an unmatched event or packet can be held */
74 #define PKT_EVENT_LIFETIME_MS		10
75 
76 /* Offsets into PTP packet for identification.  These offsets are from the
77  * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
78  * PTP V2 permit the use of IPV4 options.
79  */
80 #define PTP_DPORT_OFFSET	22
81 
82 #define PTP_V1_VERSION_LENGTH	2
83 #define PTP_V1_VERSION_OFFSET	28
84 
85 #define PTP_V1_UUID_LENGTH	6
86 #define PTP_V1_UUID_OFFSET	50
87 
88 #define PTP_V1_SEQUENCE_LENGTH	2
89 #define PTP_V1_SEQUENCE_OFFSET	58
90 
91 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
92  * includes IP header.
93  */
94 #define	PTP_V1_MIN_LENGTH	64
95 
96 #define PTP_V2_VERSION_LENGTH	1
97 #define PTP_V2_VERSION_OFFSET	29
98 
99 #define PTP_V2_UUID_LENGTH	8
100 #define PTP_V2_UUID_OFFSET	48
101 
102 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
103  * the MC only captures the last six bytes of the clock identity. These values
104  * reflect those, not the ones used in the standard.  The standard permits
105  * mapping of V1 UUIDs to V2 UUIDs with these same values.
106  */
107 #define PTP_V2_MC_UUID_LENGTH	6
108 #define PTP_V2_MC_UUID_OFFSET	50
109 
110 #define PTP_V2_SEQUENCE_LENGTH	2
111 #define PTP_V2_SEQUENCE_OFFSET	58
112 
113 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
114  * includes IP header.
115  */
116 #define	PTP_V2_MIN_LENGTH	63
117 
118 #define	PTP_MIN_LENGTH		63
119 
120 #define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */
121 #define PTP_EVENT_PORT		319
122 #define PTP_GENERAL_PORT	320
123 
124 /* Annoyingly the format of the version numbers are different between
125  * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
126  */
127 #define	PTP_VERSION_V1		1
128 
129 #define	PTP_VERSION_V2		2
130 #define	PTP_VERSION_V2_MASK	0x0f
131 
132 enum ptp_packet_state {
133 	PTP_PACKET_STATE_UNMATCHED = 0,
134 	PTP_PACKET_STATE_MATCHED,
135 	PTP_PACKET_STATE_TIMED_OUT,
136 	PTP_PACKET_STATE_MATCH_UNWANTED
137 };
138 
139 /* NIC synchronised with single word of time only comprising
140  * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
141  */
142 #define	MC_NANOSECOND_BITS	30
143 #define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
144 #define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
145 
146 /* Maximum parts-per-billion adjustment that is acceptable */
147 #define MAX_PPB			1000000
148 
149 /* Precalculate scale word to avoid long long division at runtime */
150 /* This is equivalent to 2^66 / 10^9. */
151 #define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
152 
153 /* How much to shift down after scaling to convert to FP40 */
154 #define PPB_SHIFT_FP40		26
155 /* ... and FP44. */
156 #define PPB_SHIFT_FP44		22
157 
158 #define PTP_SYNC_ATTEMPTS	4
159 
160 /**
161  * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
162  * @words: UUID and (partial) sequence number
163  * @expiry: Time after which the packet should be delivered irrespective of
164  *            event arrival.
165  * @state: The state of the packet - whether it is ready for processing or
166  *         whether that is of no interest.
167  */
168 struct efx_ptp_match {
169 	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
170 	unsigned long expiry;
171 	enum ptp_packet_state state;
172 };
173 
174 /**
175  * struct efx_ptp_event_rx - A PTP receive event (from MC)
176  * @seq0: First part of (PTP) UUID
177  * @seq1: Second part of (PTP) UUID and sequence number
178  * @hwtimestamp: Event timestamp
179  */
180 struct efx_ptp_event_rx {
181 	struct list_head link;
182 	u32 seq0;
183 	u32 seq1;
184 	ktime_t hwtimestamp;
185 	unsigned long expiry;
186 };
187 
188 /**
189  * struct efx_ptp_timeset - Synchronisation between host and MC
190  * @host_start: Host time immediately before hardware timestamp taken
191  * @major: Hardware timestamp, major
192  * @minor: Hardware timestamp, minor
193  * @host_end: Host time immediately after hardware timestamp taken
194  * @wait: Number of NIC clock ticks between hardware timestamp being read and
195  *          host end time being seen
196  * @window: Difference of host_end and host_start
197  * @valid: Whether this timeset is valid
198  */
199 struct efx_ptp_timeset {
200 	u32 host_start;
201 	u32 major;
202 	u32 minor;
203 	u32 host_end;
204 	u32 wait;
205 	u32 window;	/* Derived: end - start, allowing for wrap */
206 };
207 
208 /**
209  * struct efx_ptp_data - Precision Time Protocol (PTP) state
210  * @efx: The NIC context
211  * @channel: The PTP channel (Siena only)
212  * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
213  *	separate events)
214  * @rxq: Receive SKB queue (awaiting timestamps)
215  * @txq: Transmit SKB queue
216  * @evt_list: List of MC receive events awaiting packets
217  * @evt_free_list: List of free events
218  * @evt_lock: Lock for manipulating evt_list and evt_free_list
219  * @rx_evts: Instantiated events (on evt_list and evt_free_list)
220  * @workwq: Work queue for processing pending PTP operations
221  * @work: Work task
222  * @reset_required: A serious error has occurred and the PTP task needs to be
223  *                  reset (disable, enable).
224  * @rxfilter_event: Receive filter when operating
225  * @rxfilter_general: Receive filter when operating
226  * @config: Current timestamp configuration
227  * @enabled: PTP operation enabled
228  * @mode: Mode in which PTP operating (PTP version)
229  * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
230  * @nic_to_kernel_time: Function to convert from NIC to kernel time
231  * @nic_time.minor_max: Wrap point for NIC minor times
232  * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
233  * in packet prefix and last MCDI time sync event i.e. how much earlier than
234  * the last sync event time a packet timestamp can be.
235  * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
236  * in packet prefix and last MCDI time sync event i.e. how much later than
237  * the last sync event time a packet timestamp can be.
238  * @nic_time.sync_event_minor_shift: Shift required to make minor time from
239  * field in MCDI time sync event.
240  * @min_synchronisation_ns: Minimum acceptable corrected sync window
241  * @capabilities: Capabilities flags from the NIC
242  * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
243  *                         timestamps
244  * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
245  *                         timestamps
246  * @ts_corrections.pps_out: PPS output error (information only)
247  * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
248  * @ts_corrections.general_tx: Required driver correction of general packet
249  *                             transmit timestamps
250  * @ts_corrections.general_rx: Required driver correction of general packet
251  *                             receive timestamps
252  * @evt_frags: Partly assembled PTP events
253  * @evt_frag_idx: Current fragment number
254  * @evt_code: Last event code
255  * @start: Address at which MC indicates ready for synchronisation
256  * @host_time_pps: Host time at last PPS
257  * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
258  * frequency adjustment into a fixed point fractional nanosecond format.
259  * @current_adjfreq: Current ppb adjustment.
260  * @phc_clock: Pointer to registered phc device (if primary function)
261  * @phc_clock_info: Registration structure for phc device
262  * @pps_work: pps work task for handling pps events
263  * @pps_workwq: pps work queue
264  * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
265  * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
266  *         allocations in main data path).
267  * @good_syncs: Number of successful synchronisations.
268  * @fast_syncs: Number of synchronisations requiring short delay
269  * @bad_syncs: Number of failed synchronisations.
270  * @sync_timeouts: Number of synchronisation timeouts
271  * @no_time_syncs: Number of synchronisations with no good times.
272  * @invalid_sync_windows: Number of sync windows with bad durations.
273  * @undersize_sync_windows: Number of corrected sync windows that are too small
274  * @oversize_sync_windows: Number of corrected sync windows that are too large
275  * @rx_no_timestamp: Number of packets received without a timestamp.
276  * @timeset: Last set of synchronisation statistics.
277  * @xmit_skb: Transmit SKB function.
278  */
279 struct efx_ptp_data {
280 	struct efx_nic *efx;
281 	struct efx_channel *channel;
282 	bool rx_ts_inline;
283 	struct sk_buff_head rxq;
284 	struct sk_buff_head txq;
285 	struct list_head evt_list;
286 	struct list_head evt_free_list;
287 	spinlock_t evt_lock;
288 	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
289 	struct workqueue_struct *workwq;
290 	struct work_struct work;
291 	bool reset_required;
292 	u32 rxfilter_event;
293 	u32 rxfilter_general;
294 	bool rxfilter_installed;
295 	struct hwtstamp_config config;
296 	bool enabled;
297 	unsigned int mode;
298 	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
299 	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
300 				      s32 correction);
301 	struct {
302 		u32 minor_max;
303 		u32 sync_event_diff_min;
304 		u32 sync_event_diff_max;
305 		unsigned int sync_event_minor_shift;
306 	} nic_time;
307 	unsigned int min_synchronisation_ns;
308 	unsigned int capabilities;
309 	struct {
310 		s32 ptp_tx;
311 		s32 ptp_rx;
312 		s32 pps_out;
313 		s32 pps_in;
314 		s32 general_tx;
315 		s32 general_rx;
316 	} ts_corrections;
317 	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
318 	int evt_frag_idx;
319 	int evt_code;
320 	struct efx_buffer start;
321 	struct pps_event_time host_time_pps;
322 	unsigned int adjfreq_ppb_shift;
323 	s64 current_adjfreq;
324 	struct ptp_clock *phc_clock;
325 	struct ptp_clock_info phc_clock_info;
326 	struct work_struct pps_work;
327 	struct workqueue_struct *pps_workwq;
328 	bool nic_ts_enabled;
329 	_MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
330 
331 	unsigned int good_syncs;
332 	unsigned int fast_syncs;
333 	unsigned int bad_syncs;
334 	unsigned int sync_timeouts;
335 	unsigned int no_time_syncs;
336 	unsigned int invalid_sync_windows;
337 	unsigned int undersize_sync_windows;
338 	unsigned int oversize_sync_windows;
339 	unsigned int rx_no_timestamp;
340 	struct efx_ptp_timeset
341 	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
342 	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
343 };
344 
345 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
346 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
347 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
348 static int efx_phc_settime(struct ptp_clock_info *ptp,
349 			   const struct timespec64 *e_ts);
350 static int efx_phc_enable(struct ptp_clock_info *ptp,
351 			  struct ptp_clock_request *request, int on);
352 
353 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
354 {
355 	return efx_has_cap(efx, TX_MAC_TIMESTAMPING, FLAGS2);
356 }
357 
358 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
359  * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
360  */
361 static bool efx_ptp_want_txqs(struct efx_channel *channel)
362 {
363 	return efx_ptp_use_mac_tx_timestamps(channel->efx);
364 }
365 
366 #define PTP_SW_STAT(ext_name, field_name)				\
367 	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
368 #define PTP_MC_STAT(ext_name, mcdi_name)				\
369 	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
370 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
371 	PTP_SW_STAT(ptp_good_syncs, good_syncs),
372 	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
373 	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
374 	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
375 	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
376 	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
377 	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
378 	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
379 	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
380 	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
381 	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
382 	PTP_MC_STAT(ptp_timestamp_packets, TS),
383 	PTP_MC_STAT(ptp_filter_matches, FM),
384 	PTP_MC_STAT(ptp_non_filter_matches, NFM),
385 };
386 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
387 static const unsigned long efx_ptp_stat_mask[] = {
388 	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
389 };
390 
391 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
392 {
393 	if (!efx->ptp_data)
394 		return 0;
395 
396 	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
397 				      efx_ptp_stat_mask, strings);
398 }
399 
400 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
401 {
402 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
403 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
404 	size_t i;
405 	int rc;
406 
407 	if (!efx->ptp_data)
408 		return 0;
409 
410 	/* Copy software statistics */
411 	for (i = 0; i < PTP_STAT_COUNT; i++) {
412 		if (efx_ptp_stat_desc[i].dma_width)
413 			continue;
414 		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
415 					     efx_ptp_stat_desc[i].offset);
416 	}
417 
418 	/* Fetch MC statistics.  We *must* fill in all statistics or
419 	 * risk leaking kernel memory to userland, so if the MCDI
420 	 * request fails we pretend we got zeroes.
421 	 */
422 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
423 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
424 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
425 			  outbuf, sizeof(outbuf), NULL);
426 	if (rc)
427 		memset(outbuf, 0, sizeof(outbuf));
428 	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
429 			     efx_ptp_stat_mask,
430 			     stats, _MCDI_PTR(outbuf, 0), false);
431 
432 	return PTP_STAT_COUNT;
433 }
434 
435 /* For Siena platforms NIC time is s and ns */
436 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
437 {
438 	struct timespec64 ts = ns_to_timespec64(ns);
439 	*nic_major = (u32)ts.tv_sec;
440 	*nic_minor = ts.tv_nsec;
441 }
442 
443 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
444 						s32 correction)
445 {
446 	ktime_t kt = ktime_set(nic_major, nic_minor);
447 	if (correction >= 0)
448 		kt = ktime_add_ns(kt, (u64)correction);
449 	else
450 		kt = ktime_sub_ns(kt, (u64)-correction);
451 	return kt;
452 }
453 
454 /* To convert from s27 format to ns we multiply then divide by a power of 2.
455  * For the conversion from ns to s27, the operation is also converted to a
456  * multiply and shift.
457  */
458 #define S27_TO_NS_SHIFT	(27)
459 #define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
460 #define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
461 #define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)
462 
463 /* For Huntington platforms NIC time is in seconds and fractions of a second
464  * where the minor register only uses 27 bits in units of 2^-27s.
465  */
466 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
467 {
468 	struct timespec64 ts = ns_to_timespec64(ns);
469 	u32 maj = (u32)ts.tv_sec;
470 	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
471 			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
472 
473 	/* The conversion can result in the minor value exceeding the maximum.
474 	 * In this case, round up to the next second.
475 	 */
476 	if (min >= S27_MINOR_MAX) {
477 		min -= S27_MINOR_MAX;
478 		maj++;
479 	}
480 
481 	*nic_major = maj;
482 	*nic_minor = min;
483 }
484 
485 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
486 {
487 	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
488 			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
489 	return ktime_set(nic_major, ns);
490 }
491 
492 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
493 					       s32 correction)
494 {
495 	/* Apply the correction and deal with carry */
496 	nic_minor += correction;
497 	if ((s32)nic_minor < 0) {
498 		nic_minor += S27_MINOR_MAX;
499 		nic_major--;
500 	} else if (nic_minor >= S27_MINOR_MAX) {
501 		nic_minor -= S27_MINOR_MAX;
502 		nic_major++;
503 	}
504 
505 	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
506 }
507 
508 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
509 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
510 {
511 	struct timespec64 ts = ns_to_timespec64(ns);
512 
513 	*nic_major = (u32)ts.tv_sec;
514 	*nic_minor = ts.tv_nsec * 4;
515 }
516 
517 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
518 						 s32 correction)
519 {
520 	ktime_t kt;
521 
522 	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
523 	correction = DIV_ROUND_CLOSEST(correction, 4);
524 
525 	kt = ktime_set(nic_major, nic_minor);
526 
527 	if (correction >= 0)
528 		kt = ktime_add_ns(kt, (u64)correction);
529 	else
530 		kt = ktime_sub_ns(kt, (u64)-correction);
531 	return kt;
532 }
533 
534 struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
535 {
536 	return efx->ptp_data ? efx->ptp_data->channel : NULL;
537 }
538 
539 static u32 last_sync_timestamp_major(struct efx_nic *efx)
540 {
541 	struct efx_channel *channel = efx_ptp_channel(efx);
542 	u32 major = 0;
543 
544 	if (channel)
545 		major = channel->sync_timestamp_major;
546 	return major;
547 }
548 
549 /* The 8000 series and later can provide the time from the MAC, which is only
550  * 48 bits long and provides meta-information in the top 2 bits.
551  */
552 static ktime_t
553 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
554 				    struct efx_ptp_data *ptp,
555 				    u32 nic_major, u32 nic_minor,
556 				    s32 correction)
557 {
558 	u32 sync_timestamp;
559 	ktime_t kt = { 0 };
560 	s16 delta;
561 
562 	if (!(nic_major & 0x80000000)) {
563 		WARN_ON_ONCE(nic_major >> 16);
564 
565 		/* Medford provides 48 bits of timestamp, so we must get the top
566 		 * 16 bits from the timesync event state.
567 		 *
568 		 * We only have the lower 16 bits of the time now, but we do
569 		 * have a full resolution timestamp at some point in past. As
570 		 * long as the difference between the (real) now and the sync
571 		 * is less than 2^15, then we can reconstruct the difference
572 		 * between those two numbers using only the lower 16 bits of
573 		 * each.
574 		 *
575 		 * Put another way
576 		 *
577 		 * a - b = ((a mod k) - b) mod k
578 		 *
579 		 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
580 		 * (a mod k) and b, so can calculate the delta, a - b.
581 		 *
582 		 */
583 		sync_timestamp = last_sync_timestamp_major(efx);
584 
585 		/* Because delta is s16 this does an implicit mask down to
586 		 * 16 bits which is what we need, assuming
587 		 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
588 		 * we can deal with the (unlikely) case of sync timestamps
589 		 * arriving from the future.
590 		 */
591 		delta = nic_major - sync_timestamp;
592 
593 		/* Recover the fully specified time now, by applying the offset
594 		 * to the (fully specified) sync time.
595 		 */
596 		nic_major = sync_timestamp + delta;
597 
598 		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
599 					     correction);
600 	}
601 	return kt;
602 }
603 
604 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
605 {
606 	struct efx_nic *efx = tx_queue->efx;
607 	struct efx_ptp_data *ptp = efx->ptp_data;
608 	ktime_t kt;
609 
610 	if (efx_ptp_use_mac_tx_timestamps(efx))
611 		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
612 				tx_queue->completed_timestamp_major,
613 				tx_queue->completed_timestamp_minor,
614 				ptp->ts_corrections.general_tx);
615 	else
616 		kt = ptp->nic_to_kernel_time(
617 				tx_queue->completed_timestamp_major,
618 				tx_queue->completed_timestamp_minor,
619 				ptp->ts_corrections.general_tx);
620 	return kt;
621 }
622 
623 /* Get PTP attributes and set up time conversions */
624 static int efx_ptp_get_attributes(struct efx_nic *efx)
625 {
626 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
627 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
628 	struct efx_ptp_data *ptp = efx->ptp_data;
629 	int rc;
630 	u32 fmt;
631 	size_t out_len;
632 
633 	/* Get the PTP attributes. If the NIC doesn't support the operation we
634 	 * use the default format for compatibility with older NICs i.e.
635 	 * seconds and nanoseconds.
636 	 */
637 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
638 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
639 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
640 				outbuf, sizeof(outbuf), &out_len);
641 	if (rc == 0) {
642 		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
643 	} else if (rc == -EINVAL) {
644 		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
645 	} else if (rc == -EPERM) {
646 		netif_info(efx, probe, efx->net_dev, "no PTP support\n");
647 		return rc;
648 	} else {
649 		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
650 				       outbuf, sizeof(outbuf), rc);
651 		return rc;
652 	}
653 
654 	switch (fmt) {
655 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
656 		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
657 		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
658 		ptp->nic_time.minor_max = 1 << 27;
659 		ptp->nic_time.sync_event_minor_shift = 19;
660 		break;
661 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
662 		ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
663 		ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
664 		ptp->nic_time.minor_max = 1000000000;
665 		ptp->nic_time.sync_event_minor_shift = 22;
666 		break;
667 	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
668 		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
669 		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
670 		ptp->nic_time.minor_max = 4000000000UL;
671 		ptp->nic_time.sync_event_minor_shift = 24;
672 		break;
673 	default:
674 		return -ERANGE;
675 	}
676 
677 	/* Precalculate acceptable difference between the minor time in the
678 	 * packet prefix and the last MCDI time sync event. We expect the
679 	 * packet prefix timestamp to be after of sync event by up to one
680 	 * sync event interval (0.25s) but we allow it to exceed this by a
681 	 * fuzz factor of (0.1s)
682 	 */
683 	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
684 		- (ptp->nic_time.minor_max / 10);
685 	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
686 		+ (ptp->nic_time.minor_max / 10);
687 
688 	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
689 	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
690 	 * a value to use for the minimum acceptable corrected synchronization
691 	 * window and may return further capabilities.
692 	 * If we have the extra information store it. For older firmware that
693 	 * does not implement the extended command use the default value.
694 	 */
695 	if (rc == 0 &&
696 	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
697 		ptp->min_synchronisation_ns =
698 			MCDI_DWORD(outbuf,
699 				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
700 	else
701 		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
702 
703 	if (rc == 0 &&
704 	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
705 		ptp->capabilities = MCDI_DWORD(outbuf,
706 					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
707 	else
708 		ptp->capabilities = 0;
709 
710 	/* Set up the shift for conversion between frequency
711 	 * adjustments in parts-per-billion and the fixed-point
712 	 * fractional ns format that the adapter uses.
713 	 */
714 	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
715 		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
716 	else
717 		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
718 
719 	return 0;
720 }
721 
722 /* Get PTP timestamp corrections */
723 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
724 {
725 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
726 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
727 	int rc;
728 	size_t out_len;
729 
730 	/* Get the timestamp corrections from the NIC. If this operation is
731 	 * not supported (older NICs) then no correction is required.
732 	 */
733 	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
734 		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
735 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
736 
737 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
738 				outbuf, sizeof(outbuf), &out_len);
739 	if (rc == 0) {
740 		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
741 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
742 		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
743 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
744 		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
745 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
746 		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
747 			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
748 
749 		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
750 			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
751 				outbuf,
752 				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
753 			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
754 				outbuf,
755 				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
756 		} else {
757 			efx->ptp_data->ts_corrections.general_tx =
758 				efx->ptp_data->ts_corrections.ptp_tx;
759 			efx->ptp_data->ts_corrections.general_rx =
760 				efx->ptp_data->ts_corrections.ptp_rx;
761 		}
762 	} else if (rc == -EINVAL) {
763 		efx->ptp_data->ts_corrections.ptp_tx = 0;
764 		efx->ptp_data->ts_corrections.ptp_rx = 0;
765 		efx->ptp_data->ts_corrections.pps_out = 0;
766 		efx->ptp_data->ts_corrections.pps_in = 0;
767 		efx->ptp_data->ts_corrections.general_tx = 0;
768 		efx->ptp_data->ts_corrections.general_rx = 0;
769 	} else {
770 		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
771 				       sizeof(outbuf), rc);
772 		return rc;
773 	}
774 
775 	return 0;
776 }
777 
778 /* Enable MCDI PTP support. */
779 static int efx_ptp_enable(struct efx_nic *efx)
780 {
781 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
782 	MCDI_DECLARE_BUF_ERR(outbuf);
783 	int rc;
784 
785 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
786 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
787 	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
788 		       efx->ptp_data->channel ?
789 		       efx->ptp_data->channel->channel : 0);
790 	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
791 
792 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
793 				outbuf, sizeof(outbuf), NULL);
794 	rc = (rc == -EALREADY) ? 0 : rc;
795 	if (rc)
796 		efx_mcdi_display_error(efx, MC_CMD_PTP,
797 				       MC_CMD_PTP_IN_ENABLE_LEN,
798 				       outbuf, sizeof(outbuf), rc);
799 	return rc;
800 }
801 
802 /* Disable MCDI PTP support.
803  *
804  * Note that this function should never rely on the presence of ptp_data -
805  * may be called before that exists.
806  */
807 static int efx_ptp_disable(struct efx_nic *efx)
808 {
809 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
810 	MCDI_DECLARE_BUF_ERR(outbuf);
811 	int rc;
812 
813 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
814 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
815 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
816 				outbuf, sizeof(outbuf), NULL);
817 	rc = (rc == -EALREADY) ? 0 : rc;
818 	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
819 	 * should only have been called during probe.
820 	 */
821 	if (rc == -ENOSYS || rc == -EPERM)
822 		netif_info(efx, probe, efx->net_dev, "no PTP support\n");
823 	else if (rc)
824 		efx_mcdi_display_error(efx, MC_CMD_PTP,
825 				       MC_CMD_PTP_IN_DISABLE_LEN,
826 				       outbuf, sizeof(outbuf), rc);
827 	return rc;
828 }
829 
830 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
831 {
832 	struct sk_buff *skb;
833 
834 	while ((skb = skb_dequeue(q))) {
835 		local_bh_disable();
836 		netif_receive_skb(skb);
837 		local_bh_enable();
838 	}
839 }
840 
841 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
842 {
843 	netif_err(efx, drv, efx->net_dev,
844 		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
845 		  "vector. PTP disabled\n");
846 }
847 
848 /* Repeatedly send the host time to the MC which will capture the hardware
849  * time.
850  */
851 static void efx_ptp_send_times(struct efx_nic *efx,
852 			       struct pps_event_time *last_time)
853 {
854 	struct pps_event_time now;
855 	struct timespec64 limit;
856 	struct efx_ptp_data *ptp = efx->ptp_data;
857 	int *mc_running = ptp->start.addr;
858 
859 	pps_get_ts(&now);
860 	limit = now.ts_real;
861 	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
862 
863 	/* Write host time for specified period or until MC is done */
864 	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
865 	       READ_ONCE(*mc_running)) {
866 		struct timespec64 update_time;
867 		unsigned int host_time;
868 
869 		/* Don't update continuously to avoid saturating the PCIe bus */
870 		update_time = now.ts_real;
871 		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
872 		do {
873 			pps_get_ts(&now);
874 		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
875 			 READ_ONCE(*mc_running));
876 
877 		/* Synchronise NIC with single word of time only */
878 		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
879 			     now.ts_real.tv_nsec);
880 		/* Update host time in NIC memory */
881 		efx->type->ptp_write_host_time(efx, host_time);
882 	}
883 	*last_time = now;
884 }
885 
886 /* Read a timeset from the MC's results and partial process. */
887 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
888 				 struct efx_ptp_timeset *timeset)
889 {
890 	unsigned start_ns, end_ns;
891 
892 	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
893 	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
894 	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
895 	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
896 	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
897 
898 	/* Ignore seconds */
899 	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
900 	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
901 	/* Allow for rollover */
902 	if (end_ns < start_ns)
903 		end_ns += NSEC_PER_SEC;
904 	/* Determine duration of operation */
905 	timeset->window = end_ns - start_ns;
906 }
907 
908 /* Process times received from MC.
909  *
910  * Extract times from returned results, and establish the minimum value
911  * seen.  The minimum value represents the "best" possible time and events
912  * too much greater than this are rejected - the machine is, perhaps, too
913  * busy. A number of readings are taken so that, hopefully, at least one good
914  * synchronisation will be seen in the results.
915  */
916 static int
917 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
918 		      size_t response_length,
919 		      const struct pps_event_time *last_time)
920 {
921 	unsigned number_readings =
922 		MCDI_VAR_ARRAY_LEN(response_length,
923 				   PTP_OUT_SYNCHRONIZE_TIMESET);
924 	unsigned i;
925 	unsigned ngood = 0;
926 	unsigned last_good = 0;
927 	struct efx_ptp_data *ptp = efx->ptp_data;
928 	u32 last_sec;
929 	u32 start_sec;
930 	struct timespec64 delta;
931 	ktime_t mc_time;
932 
933 	if (number_readings == 0)
934 		return -EAGAIN;
935 
936 	/* Read the set of results and find the last good host-MC
937 	 * synchronization result. The MC times when it finishes reading the
938 	 * host time so the corrected window time should be fairly constant
939 	 * for a given platform. Increment stats for any results that appear
940 	 * to be erroneous.
941 	 */
942 	for (i = 0; i < number_readings; i++) {
943 		s32 window, corrected;
944 		struct timespec64 wait;
945 
946 		efx_ptp_read_timeset(
947 			MCDI_ARRAY_STRUCT_PTR(synch_buf,
948 					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
949 			&ptp->timeset[i]);
950 
951 		wait = ktime_to_timespec64(
952 			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
953 		window = ptp->timeset[i].window;
954 		corrected = window - wait.tv_nsec;
955 
956 		/* We expect the uncorrected synchronization window to be at
957 		 * least as large as the interval between host start and end
958 		 * times. If it is smaller than this then this is mostly likely
959 		 * to be a consequence of the host's time being adjusted.
960 		 * Check that the corrected sync window is in a reasonable
961 		 * range. If it is out of range it is likely to be because an
962 		 * interrupt or other delay occurred between reading the system
963 		 * time and writing it to MC memory.
964 		 */
965 		if (window < SYNCHRONISATION_GRANULARITY_NS) {
966 			++ptp->invalid_sync_windows;
967 		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
968 			++ptp->oversize_sync_windows;
969 		} else if (corrected < ptp->min_synchronisation_ns) {
970 			++ptp->undersize_sync_windows;
971 		} else {
972 			ngood++;
973 			last_good = i;
974 		}
975 	}
976 
977 	if (ngood == 0) {
978 		netif_warn(efx, drv, efx->net_dev,
979 			   "PTP no suitable synchronisations\n");
980 		return -EAGAIN;
981 	}
982 
983 	/* Calculate delay from last good sync (host time) to last_time.
984 	 * It is possible that the seconds rolled over between taking
985 	 * the start reading and the last value written by the host.  The
986 	 * timescales are such that a gap of more than one second is never
987 	 * expected.  delta is *not* normalised.
988 	 */
989 	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
990 	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
991 	if (start_sec != last_sec &&
992 	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
993 		netif_warn(efx, hw, efx->net_dev,
994 			   "PTP bad synchronisation seconds\n");
995 		return -EAGAIN;
996 	}
997 	delta.tv_sec = (last_sec - start_sec) & 1;
998 	delta.tv_nsec =
999 		last_time->ts_real.tv_nsec -
1000 		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1001 
1002 	/* Convert the NIC time at last good sync into kernel time.
1003 	 * No correction is required - this time is the output of a
1004 	 * firmware process.
1005 	 */
1006 	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1007 					  ptp->timeset[last_good].minor, 0);
1008 
1009 	/* Calculate delay from NIC top of second to last_time */
1010 	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1011 
1012 	/* Set PPS timestamp to match NIC top of second */
1013 	ptp->host_time_pps = *last_time;
1014 	pps_sub_ts(&ptp->host_time_pps, delta);
1015 
1016 	return 0;
1017 }
1018 
1019 /* Synchronize times between the host and the MC */
1020 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1021 {
1022 	struct efx_ptp_data *ptp = efx->ptp_data;
1023 	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1024 	size_t response_length;
1025 	int rc;
1026 	unsigned long timeout;
1027 	struct pps_event_time last_time = {};
1028 	unsigned int loops = 0;
1029 	int *start = ptp->start.addr;
1030 
1031 	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1032 	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1033 	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1034 		       num_readings);
1035 	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1036 		       ptp->start.dma_addr);
1037 
1038 	/* Clear flag that signals MC ready */
1039 	WRITE_ONCE(*start, 0);
1040 	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1041 				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1042 	EFX_WARN_ON_ONCE_PARANOID(rc);
1043 
1044 	/* Wait for start from MCDI (or timeout) */
1045 	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1046 	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1047 		udelay(20);	/* Usually start MCDI execution quickly */
1048 		loops++;
1049 	}
1050 
1051 	if (loops <= 1)
1052 		++ptp->fast_syncs;
1053 	if (!time_before(jiffies, timeout))
1054 		++ptp->sync_timeouts;
1055 
1056 	if (READ_ONCE(*start))
1057 		efx_ptp_send_times(efx, &last_time);
1058 
1059 	/* Collect results */
1060 	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1061 				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1062 				 synch_buf, sizeof(synch_buf),
1063 				 &response_length);
1064 	if (rc == 0) {
1065 		rc = efx_ptp_process_times(efx, synch_buf, response_length,
1066 					   &last_time);
1067 		if (rc == 0)
1068 			++ptp->good_syncs;
1069 		else
1070 			++ptp->no_time_syncs;
1071 	}
1072 
1073 	/* Increment the bad syncs counter if the synchronize fails, whatever
1074 	 * the reason.
1075 	 */
1076 	if (rc != 0)
1077 		++ptp->bad_syncs;
1078 
1079 	return rc;
1080 }
1081 
1082 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1083 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1084 {
1085 	struct efx_ptp_data *ptp_data = efx->ptp_data;
1086 	struct efx_tx_queue *tx_queue;
1087 	u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
1088 
1089 	tx_queue = &ptp_data->channel->tx_queue[type];
1090 	if (tx_queue && tx_queue->timestamping) {
1091 		efx_enqueue_skb(tx_queue, skb);
1092 	} else {
1093 		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1094 		dev_kfree_skb_any(skb);
1095 	}
1096 }
1097 
1098 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
1099 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1100 {
1101 	struct efx_ptp_data *ptp_data = efx->ptp_data;
1102 	struct skb_shared_hwtstamps timestamps;
1103 	int rc = -EIO;
1104 	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1105 	size_t len;
1106 
1107 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1108 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1109 	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1110 	if (skb_shinfo(skb)->nr_frags != 0) {
1111 		rc = skb_linearize(skb);
1112 		if (rc != 0)
1113 			goto fail;
1114 	}
1115 
1116 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1117 		rc = skb_checksum_help(skb);
1118 		if (rc != 0)
1119 			goto fail;
1120 	}
1121 	skb_copy_from_linear_data(skb,
1122 				  MCDI_PTR(ptp_data->txbuf,
1123 					   PTP_IN_TRANSMIT_PACKET),
1124 				  skb->len);
1125 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1126 			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1127 			  txtime, sizeof(txtime), &len);
1128 	if (rc != 0)
1129 		goto fail;
1130 
1131 	memset(&timestamps, 0, sizeof(timestamps));
1132 	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1133 		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1134 		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1135 		ptp_data->ts_corrections.ptp_tx);
1136 
1137 	skb_tstamp_tx(skb, &timestamps);
1138 
1139 	rc = 0;
1140 
1141 fail:
1142 	dev_kfree_skb_any(skb);
1143 
1144 	return;
1145 }
1146 
1147 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1148 {
1149 	struct efx_ptp_data *ptp = efx->ptp_data;
1150 	struct list_head *cursor;
1151 	struct list_head *next;
1152 
1153 	if (ptp->rx_ts_inline)
1154 		return;
1155 
1156 	/* Drop time-expired events */
1157 	spin_lock_bh(&ptp->evt_lock);
1158 	if (!list_empty(&ptp->evt_list)) {
1159 		list_for_each_safe(cursor, next, &ptp->evt_list) {
1160 			struct efx_ptp_event_rx *evt;
1161 
1162 			evt = list_entry(cursor, struct efx_ptp_event_rx,
1163 					 link);
1164 			if (time_after(jiffies, evt->expiry)) {
1165 				list_move(&evt->link, &ptp->evt_free_list);
1166 				netif_warn(efx, hw, efx->net_dev,
1167 					   "PTP rx event dropped\n");
1168 			}
1169 		}
1170 	}
1171 	spin_unlock_bh(&ptp->evt_lock);
1172 }
1173 
1174 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1175 					      struct sk_buff *skb)
1176 {
1177 	struct efx_ptp_data *ptp = efx->ptp_data;
1178 	bool evts_waiting;
1179 	struct list_head *cursor;
1180 	struct list_head *next;
1181 	struct efx_ptp_match *match;
1182 	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1183 
1184 	WARN_ON_ONCE(ptp->rx_ts_inline);
1185 
1186 	spin_lock_bh(&ptp->evt_lock);
1187 	evts_waiting = !list_empty(&ptp->evt_list);
1188 	spin_unlock_bh(&ptp->evt_lock);
1189 
1190 	if (!evts_waiting)
1191 		return PTP_PACKET_STATE_UNMATCHED;
1192 
1193 	match = (struct efx_ptp_match *)skb->cb;
1194 	/* Look for a matching timestamp in the event queue */
1195 	spin_lock_bh(&ptp->evt_lock);
1196 	list_for_each_safe(cursor, next, &ptp->evt_list) {
1197 		struct efx_ptp_event_rx *evt;
1198 
1199 		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1200 		if ((evt->seq0 == match->words[0]) &&
1201 		    (evt->seq1 == match->words[1])) {
1202 			struct skb_shared_hwtstamps *timestamps;
1203 
1204 			/* Match - add in hardware timestamp */
1205 			timestamps = skb_hwtstamps(skb);
1206 			timestamps->hwtstamp = evt->hwtimestamp;
1207 
1208 			match->state = PTP_PACKET_STATE_MATCHED;
1209 			rc = PTP_PACKET_STATE_MATCHED;
1210 			list_move(&evt->link, &ptp->evt_free_list);
1211 			break;
1212 		}
1213 	}
1214 	spin_unlock_bh(&ptp->evt_lock);
1215 
1216 	return rc;
1217 }
1218 
1219 /* Process any queued receive events and corresponding packets
1220  *
1221  * q is returned with all the packets that are ready for delivery.
1222  */
1223 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1224 {
1225 	struct efx_ptp_data *ptp = efx->ptp_data;
1226 	struct sk_buff *skb;
1227 
1228 	while ((skb = skb_dequeue(&ptp->rxq))) {
1229 		struct efx_ptp_match *match;
1230 
1231 		match = (struct efx_ptp_match *)skb->cb;
1232 		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1233 			__skb_queue_tail(q, skb);
1234 		} else if (efx_ptp_match_rx(efx, skb) ==
1235 			   PTP_PACKET_STATE_MATCHED) {
1236 			__skb_queue_tail(q, skb);
1237 		} else if (time_after(jiffies, match->expiry)) {
1238 			match->state = PTP_PACKET_STATE_TIMED_OUT;
1239 			++ptp->rx_no_timestamp;
1240 			__skb_queue_tail(q, skb);
1241 		} else {
1242 			/* Replace unprocessed entry and stop */
1243 			skb_queue_head(&ptp->rxq, skb);
1244 			break;
1245 		}
1246 	}
1247 }
1248 
1249 /* Complete processing of a received packet */
1250 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1251 {
1252 	local_bh_disable();
1253 	netif_receive_skb(skb);
1254 	local_bh_enable();
1255 }
1256 
1257 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1258 {
1259 	struct efx_ptp_data *ptp = efx->ptp_data;
1260 
1261 	if (ptp->rxfilter_installed) {
1262 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1263 					  ptp->rxfilter_general);
1264 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1265 					  ptp->rxfilter_event);
1266 		ptp->rxfilter_installed = false;
1267 	}
1268 }
1269 
1270 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1271 {
1272 	struct efx_ptp_data *ptp = efx->ptp_data;
1273 	struct efx_filter_spec rxfilter;
1274 	int rc;
1275 
1276 	if (!ptp->channel || ptp->rxfilter_installed)
1277 		return 0;
1278 
1279 	/* Must filter on both event and general ports to ensure
1280 	 * that there is no packet re-ordering.
1281 	 */
1282 	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1283 			   efx_rx_queue_index(
1284 				   efx_channel_get_rx_queue(ptp->channel)));
1285 	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1286 				       htonl(PTP_ADDRESS),
1287 				       htons(PTP_EVENT_PORT));
1288 	if (rc != 0)
1289 		return rc;
1290 
1291 	rc = efx_filter_insert_filter(efx, &rxfilter, true);
1292 	if (rc < 0)
1293 		return rc;
1294 	ptp->rxfilter_event = rc;
1295 
1296 	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1297 			   efx_rx_queue_index(
1298 				   efx_channel_get_rx_queue(ptp->channel)));
1299 	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1300 				       htonl(PTP_ADDRESS),
1301 				       htons(PTP_GENERAL_PORT));
1302 	if (rc != 0)
1303 		goto fail;
1304 
1305 	rc = efx_filter_insert_filter(efx, &rxfilter, true);
1306 	if (rc < 0)
1307 		goto fail;
1308 	ptp->rxfilter_general = rc;
1309 
1310 	ptp->rxfilter_installed = true;
1311 	return 0;
1312 
1313 fail:
1314 	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1315 				  ptp->rxfilter_event);
1316 	return rc;
1317 }
1318 
1319 static int efx_ptp_start(struct efx_nic *efx)
1320 {
1321 	struct efx_ptp_data *ptp = efx->ptp_data;
1322 	int rc;
1323 
1324 	ptp->reset_required = false;
1325 
1326 	rc = efx_ptp_insert_multicast_filters(efx);
1327 	if (rc)
1328 		return rc;
1329 
1330 	rc = efx_ptp_enable(efx);
1331 	if (rc != 0)
1332 		goto fail;
1333 
1334 	ptp->evt_frag_idx = 0;
1335 	ptp->current_adjfreq = 0;
1336 
1337 	return 0;
1338 
1339 fail:
1340 	efx_ptp_remove_multicast_filters(efx);
1341 	return rc;
1342 }
1343 
1344 static int efx_ptp_stop(struct efx_nic *efx)
1345 {
1346 	struct efx_ptp_data *ptp = efx->ptp_data;
1347 	struct list_head *cursor;
1348 	struct list_head *next;
1349 	int rc;
1350 
1351 	if (ptp == NULL)
1352 		return 0;
1353 
1354 	rc = efx_ptp_disable(efx);
1355 
1356 	efx_ptp_remove_multicast_filters(efx);
1357 
1358 	/* Make sure RX packets are really delivered */
1359 	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1360 	skb_queue_purge(&efx->ptp_data->txq);
1361 
1362 	/* Drop any pending receive events */
1363 	spin_lock_bh(&efx->ptp_data->evt_lock);
1364 	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1365 		list_move(cursor, &efx->ptp_data->evt_free_list);
1366 	}
1367 	spin_unlock_bh(&efx->ptp_data->evt_lock);
1368 
1369 	return rc;
1370 }
1371 
1372 static int efx_ptp_restart(struct efx_nic *efx)
1373 {
1374 	if (efx->ptp_data && efx->ptp_data->enabled)
1375 		return efx_ptp_start(efx);
1376 	return 0;
1377 }
1378 
1379 static void efx_ptp_pps_worker(struct work_struct *work)
1380 {
1381 	struct efx_ptp_data *ptp =
1382 		container_of(work, struct efx_ptp_data, pps_work);
1383 	struct efx_nic *efx = ptp->efx;
1384 	struct ptp_clock_event ptp_evt;
1385 
1386 	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1387 		return;
1388 
1389 	ptp_evt.type = PTP_CLOCK_PPSUSR;
1390 	ptp_evt.pps_times = ptp->host_time_pps;
1391 	ptp_clock_event(ptp->phc_clock, &ptp_evt);
1392 }
1393 
1394 static void efx_ptp_worker(struct work_struct *work)
1395 {
1396 	struct efx_ptp_data *ptp_data =
1397 		container_of(work, struct efx_ptp_data, work);
1398 	struct efx_nic *efx = ptp_data->efx;
1399 	struct sk_buff *skb;
1400 	struct sk_buff_head tempq;
1401 
1402 	if (ptp_data->reset_required) {
1403 		efx_ptp_stop(efx);
1404 		efx_ptp_start(efx);
1405 		return;
1406 	}
1407 
1408 	efx_ptp_drop_time_expired_events(efx);
1409 
1410 	__skb_queue_head_init(&tempq);
1411 	efx_ptp_process_events(efx, &tempq);
1412 
1413 	while ((skb = skb_dequeue(&ptp_data->txq)))
1414 		ptp_data->xmit_skb(efx, skb);
1415 
1416 	while ((skb = __skb_dequeue(&tempq)))
1417 		efx_ptp_process_rx(efx, skb);
1418 }
1419 
1420 static const struct ptp_clock_info efx_phc_clock_info = {
1421 	.owner		= THIS_MODULE,
1422 	.name		= "sfc",
1423 	.max_adj	= MAX_PPB,
1424 	.n_alarm	= 0,
1425 	.n_ext_ts	= 0,
1426 	.n_per_out	= 0,
1427 	.n_pins		= 0,
1428 	.pps		= 1,
1429 	.adjfreq	= efx_phc_adjfreq,
1430 	.adjtime	= efx_phc_adjtime,
1431 	.gettime64	= efx_phc_gettime,
1432 	.settime64	= efx_phc_settime,
1433 	.enable		= efx_phc_enable,
1434 };
1435 
1436 /* Initialise PTP state. */
1437 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1438 {
1439 	struct efx_ptp_data *ptp;
1440 	int rc = 0;
1441 	unsigned int pos;
1442 
1443 	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1444 	efx->ptp_data = ptp;
1445 	if (!efx->ptp_data)
1446 		return -ENOMEM;
1447 
1448 	ptp->efx = efx;
1449 	ptp->channel = channel;
1450 	ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1451 
1452 	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1453 	if (rc != 0)
1454 		goto fail1;
1455 
1456 	skb_queue_head_init(&ptp->rxq);
1457 	skb_queue_head_init(&ptp->txq);
1458 	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1459 	if (!ptp->workwq) {
1460 		rc = -ENOMEM;
1461 		goto fail2;
1462 	}
1463 
1464 	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1465 		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1466 		/* Request sync events on this channel. */
1467 		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1468 	} else {
1469 		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1470 	}
1471 
1472 	INIT_WORK(&ptp->work, efx_ptp_worker);
1473 	ptp->config.flags = 0;
1474 	ptp->config.tx_type = HWTSTAMP_TX_OFF;
1475 	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1476 	INIT_LIST_HEAD(&ptp->evt_list);
1477 	INIT_LIST_HEAD(&ptp->evt_free_list);
1478 	spin_lock_init(&ptp->evt_lock);
1479 	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1480 		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1481 
1482 	/* Get the NIC PTP attributes and set up time conversions */
1483 	rc = efx_ptp_get_attributes(efx);
1484 	if (rc < 0)
1485 		goto fail3;
1486 
1487 	/* Get the timestamp corrections */
1488 	rc = efx_ptp_get_timestamp_corrections(efx);
1489 	if (rc < 0)
1490 		goto fail3;
1491 
1492 	if (efx->mcdi->fn_flags &
1493 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1494 		ptp->phc_clock_info = efx_phc_clock_info;
1495 		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1496 						    &efx->pci_dev->dev);
1497 		if (IS_ERR(ptp->phc_clock)) {
1498 			rc = PTR_ERR(ptp->phc_clock);
1499 			goto fail3;
1500 		} else if (ptp->phc_clock) {
1501 			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1502 			ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1503 			if (!ptp->pps_workwq) {
1504 				rc = -ENOMEM;
1505 				goto fail4;
1506 			}
1507 		}
1508 	}
1509 	ptp->nic_ts_enabled = false;
1510 
1511 	return 0;
1512 fail4:
1513 	ptp_clock_unregister(efx->ptp_data->phc_clock);
1514 
1515 fail3:
1516 	destroy_workqueue(efx->ptp_data->workwq);
1517 
1518 fail2:
1519 	efx_nic_free_buffer(efx, &ptp->start);
1520 
1521 fail1:
1522 	kfree(efx->ptp_data);
1523 	efx->ptp_data = NULL;
1524 
1525 	return rc;
1526 }
1527 
1528 /* Initialise PTP channel.
1529  *
1530  * Setting core_index to zero causes the queue to be initialised and doesn't
1531  * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1532  */
1533 static int efx_ptp_probe_channel(struct efx_channel *channel)
1534 {
1535 	struct efx_nic *efx = channel->efx;
1536 	int rc;
1537 
1538 	channel->irq_moderation_us = 0;
1539 	channel->rx_queue.core_index = 0;
1540 
1541 	rc = efx_ptp_probe(efx, channel);
1542 	/* Failure to probe PTP is not fatal; this channel will just not be
1543 	 * used for anything.
1544 	 * In the case of EPERM, efx_ptp_probe will print its own message (in
1545 	 * efx_ptp_get_attributes()), so we don't need to.
1546 	 */
1547 	if (rc && rc != -EPERM)
1548 		netif_warn(efx, drv, efx->net_dev,
1549 			   "Failed to probe PTP, rc=%d\n", rc);
1550 	return 0;
1551 }
1552 
1553 void efx_ptp_remove(struct efx_nic *efx)
1554 {
1555 	if (!efx->ptp_data)
1556 		return;
1557 
1558 	(void)efx_ptp_disable(efx);
1559 
1560 	cancel_work_sync(&efx->ptp_data->work);
1561 	if (efx->ptp_data->pps_workwq)
1562 		cancel_work_sync(&efx->ptp_data->pps_work);
1563 
1564 	skb_queue_purge(&efx->ptp_data->rxq);
1565 	skb_queue_purge(&efx->ptp_data->txq);
1566 
1567 	if (efx->ptp_data->phc_clock) {
1568 		destroy_workqueue(efx->ptp_data->pps_workwq);
1569 		ptp_clock_unregister(efx->ptp_data->phc_clock);
1570 	}
1571 
1572 	destroy_workqueue(efx->ptp_data->workwq);
1573 
1574 	efx_nic_free_buffer(efx, &efx->ptp_data->start);
1575 	kfree(efx->ptp_data);
1576 	efx->ptp_data = NULL;
1577 }
1578 
1579 static void efx_ptp_remove_channel(struct efx_channel *channel)
1580 {
1581 	efx_ptp_remove(channel->efx);
1582 }
1583 
1584 static void efx_ptp_get_channel_name(struct efx_channel *channel,
1585 				     char *buf, size_t len)
1586 {
1587 	snprintf(buf, len, "%s-ptp", channel->efx->name);
1588 }
1589 
1590 /* Determine whether this packet should be processed by the PTP module
1591  * or transmitted conventionally.
1592  */
1593 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1594 {
1595 	return efx->ptp_data &&
1596 		efx->ptp_data->enabled &&
1597 		skb->len >= PTP_MIN_LENGTH &&
1598 		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1599 		likely(skb->protocol == htons(ETH_P_IP)) &&
1600 		skb_transport_header_was_set(skb) &&
1601 		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1602 		ip_hdr(skb)->protocol == IPPROTO_UDP &&
1603 		skb_headlen(skb) >=
1604 		skb_transport_offset(skb) + sizeof(struct udphdr) &&
1605 		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1606 }
1607 
1608 /* Receive a PTP packet.  Packets are queued until the arrival of
1609  * the receive timestamp from the MC - this will probably occur after the
1610  * packet arrival because of the processing in the MC.
1611  */
1612 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1613 {
1614 	struct efx_nic *efx = channel->efx;
1615 	struct efx_ptp_data *ptp = efx->ptp_data;
1616 	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1617 	u8 *match_data_012, *match_data_345;
1618 	unsigned int version;
1619 	u8 *data;
1620 
1621 	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1622 
1623 	/* Correct version? */
1624 	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1625 		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1626 			return false;
1627 		}
1628 		data = skb->data;
1629 		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1630 		if (version != PTP_VERSION_V1) {
1631 			return false;
1632 		}
1633 
1634 		/* PTP V1 uses all six bytes of the UUID to match the packet
1635 		 * to the timestamp
1636 		 */
1637 		match_data_012 = data + PTP_V1_UUID_OFFSET;
1638 		match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1639 	} else {
1640 		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1641 			return false;
1642 		}
1643 		data = skb->data;
1644 		version = data[PTP_V2_VERSION_OFFSET];
1645 		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1646 			return false;
1647 		}
1648 
1649 		/* The original V2 implementation uses bytes 2-7 of
1650 		 * the UUID to match the packet to the timestamp. This
1651 		 * discards two of the bytes of the MAC address used
1652 		 * to create the UUID (SF bug 33070).  The PTP V2
1653 		 * enhanced mode fixes this issue and uses bytes 0-2
1654 		 * and byte 5-7 of the UUID.
1655 		 */
1656 		match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1657 		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1658 			match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1659 		} else {
1660 			match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1661 			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1662 		}
1663 	}
1664 
1665 	/* Does this packet require timestamping? */
1666 	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1667 		match->state = PTP_PACKET_STATE_UNMATCHED;
1668 
1669 		/* We expect the sequence number to be in the same position in
1670 		 * the packet for PTP V1 and V2
1671 		 */
1672 		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1673 		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1674 
1675 		/* Extract UUID/Sequence information */
1676 		match->words[0] = (match_data_012[0]         |
1677 				   (match_data_012[1] << 8)  |
1678 				   (match_data_012[2] << 16) |
1679 				   (match_data_345[0] << 24));
1680 		match->words[1] = (match_data_345[1]         |
1681 				   (match_data_345[2] << 8)  |
1682 				   (data[PTP_V1_SEQUENCE_OFFSET +
1683 					 PTP_V1_SEQUENCE_LENGTH - 1] <<
1684 				    16));
1685 	} else {
1686 		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1687 	}
1688 
1689 	skb_queue_tail(&ptp->rxq, skb);
1690 	queue_work(ptp->workwq, &ptp->work);
1691 
1692 	return true;
1693 }
1694 
1695 /* Transmit a PTP packet.  This has to be transmitted by the MC
1696  * itself, through an MCDI call.  MCDI calls aren't permitted
1697  * in the transmit path so defer the actual transmission to a suitable worker.
1698  */
1699 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1700 {
1701 	struct efx_ptp_data *ptp = efx->ptp_data;
1702 
1703 	skb_queue_tail(&ptp->txq, skb);
1704 
1705 	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1706 	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1707 		efx_xmit_hwtstamp_pending(skb);
1708 	queue_work(ptp->workwq, &ptp->work);
1709 
1710 	return NETDEV_TX_OK;
1711 }
1712 
1713 int efx_ptp_get_mode(struct efx_nic *efx)
1714 {
1715 	return efx->ptp_data->mode;
1716 }
1717 
1718 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1719 			unsigned int new_mode)
1720 {
1721 	if ((enable_wanted != efx->ptp_data->enabled) ||
1722 	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1723 		int rc = 0;
1724 
1725 		if (enable_wanted) {
1726 			/* Change of mode requires disable */
1727 			if (efx->ptp_data->enabled &&
1728 			    (efx->ptp_data->mode != new_mode)) {
1729 				efx->ptp_data->enabled = false;
1730 				rc = efx_ptp_stop(efx);
1731 				if (rc != 0)
1732 					return rc;
1733 			}
1734 
1735 			/* Set new operating mode and establish
1736 			 * baseline synchronisation, which must
1737 			 * succeed.
1738 			 */
1739 			efx->ptp_data->mode = new_mode;
1740 			if (netif_running(efx->net_dev))
1741 				rc = efx_ptp_start(efx);
1742 			if (rc == 0) {
1743 				rc = efx_ptp_synchronize(efx,
1744 							 PTP_SYNC_ATTEMPTS * 2);
1745 				if (rc != 0)
1746 					efx_ptp_stop(efx);
1747 			}
1748 		} else {
1749 			rc = efx_ptp_stop(efx);
1750 		}
1751 
1752 		if (rc != 0)
1753 			return rc;
1754 
1755 		efx->ptp_data->enabled = enable_wanted;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1762 {
1763 	int rc;
1764 
1765 	if (init->flags)
1766 		return -EINVAL;
1767 
1768 	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1769 	    (init->tx_type != HWTSTAMP_TX_ON))
1770 		return -ERANGE;
1771 
1772 	rc = efx->type->ptp_set_ts_config(efx, init);
1773 	if (rc)
1774 		return rc;
1775 
1776 	efx->ptp_data->config = *init;
1777 	return 0;
1778 }
1779 
1780 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1781 {
1782 	struct efx_ptp_data *ptp = efx->ptp_data;
1783 	struct efx_nic *primary = efx->primary;
1784 
1785 	ASSERT_RTNL();
1786 
1787 	if (!ptp)
1788 		return;
1789 
1790 	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1791 				     SOF_TIMESTAMPING_RX_HARDWARE |
1792 				     SOF_TIMESTAMPING_RAW_HARDWARE);
1793 	/* Check licensed features.  If we don't have the license for TX
1794 	 * timestamps, the NIC will not support them.
1795 	 */
1796 	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1797 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1798 
1799 		if (!(nic_data->licensed_features &
1800 		      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1801 			ts_info->so_timestamping &=
1802 				~SOF_TIMESTAMPING_TX_HARDWARE;
1803 	}
1804 	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1805 		ts_info->phc_index =
1806 			ptp_clock_index(primary->ptp_data->phc_clock);
1807 	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1808 	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1809 }
1810 
1811 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1812 {
1813 	struct hwtstamp_config config;
1814 	int rc;
1815 
1816 	/* Not a PTP enabled port */
1817 	if (!efx->ptp_data)
1818 		return -EOPNOTSUPP;
1819 
1820 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1821 		return -EFAULT;
1822 
1823 	rc = efx_ptp_ts_init(efx, &config);
1824 	if (rc != 0)
1825 		return rc;
1826 
1827 	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1828 		? -EFAULT : 0;
1829 }
1830 
1831 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1832 {
1833 	if (!efx->ptp_data)
1834 		return -EOPNOTSUPP;
1835 
1836 	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1837 			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1838 }
1839 
1840 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1841 {
1842 	struct efx_ptp_data *ptp = efx->ptp_data;
1843 
1844 	netif_err(efx, hw, efx->net_dev,
1845 		"PTP unexpected event length: got %d expected %d\n",
1846 		ptp->evt_frag_idx, expected_frag_len);
1847 	ptp->reset_required = true;
1848 	queue_work(ptp->workwq, &ptp->work);
1849 }
1850 
1851 /* Process a completed receive event.  Put it on the event queue and
1852  * start worker thread.  This is required because event and their
1853  * correspoding packets may come in either order.
1854  */
1855 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1856 {
1857 	struct efx_ptp_event_rx *evt = NULL;
1858 
1859 	if (WARN_ON_ONCE(ptp->rx_ts_inline))
1860 		return;
1861 
1862 	if (ptp->evt_frag_idx != 3) {
1863 		ptp_event_failure(efx, 3);
1864 		return;
1865 	}
1866 
1867 	spin_lock_bh(&ptp->evt_lock);
1868 	if (!list_empty(&ptp->evt_free_list)) {
1869 		evt = list_first_entry(&ptp->evt_free_list,
1870 				       struct efx_ptp_event_rx, link);
1871 		list_del(&evt->link);
1872 
1873 		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1874 		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1875 					     MCDI_EVENT_SRC)        |
1876 			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
1877 					      MCDI_EVENT_SRC) << 8) |
1878 			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
1879 					      MCDI_EVENT_SRC) << 16));
1880 		evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1881 			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1882 			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1883 			ptp->ts_corrections.ptp_rx);
1884 		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1885 		list_add_tail(&evt->link, &ptp->evt_list);
1886 
1887 		queue_work(ptp->workwq, &ptp->work);
1888 	} else if (net_ratelimit()) {
1889 		/* Log a rate-limited warning message. */
1890 		netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1891 	}
1892 	spin_unlock_bh(&ptp->evt_lock);
1893 }
1894 
1895 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1896 {
1897 	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1898 	if (ptp->evt_frag_idx != 1) {
1899 		ptp_event_failure(efx, 1);
1900 		return;
1901 	}
1902 
1903 	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1904 }
1905 
1906 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1907 {
1908 	if (ptp->nic_ts_enabled)
1909 		queue_work(ptp->pps_workwq, &ptp->pps_work);
1910 }
1911 
1912 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1913 {
1914 	struct efx_ptp_data *ptp = efx->ptp_data;
1915 	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1916 
1917 	if (!ptp) {
1918 		if (!efx->ptp_warned) {
1919 			netif_warn(efx, drv, efx->net_dev,
1920 				   "Received PTP event but PTP not set up\n");
1921 			efx->ptp_warned = true;
1922 		}
1923 		return;
1924 	}
1925 
1926 	if (!ptp->enabled)
1927 		return;
1928 
1929 	if (ptp->evt_frag_idx == 0) {
1930 		ptp->evt_code = code;
1931 	} else if (ptp->evt_code != code) {
1932 		netif_err(efx, hw, efx->net_dev,
1933 			  "PTP out of sequence event %d\n", code);
1934 		ptp->evt_frag_idx = 0;
1935 	}
1936 
1937 	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1938 	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1939 		/* Process resulting event */
1940 		switch (code) {
1941 		case MCDI_EVENT_CODE_PTP_RX:
1942 			ptp_event_rx(efx, ptp);
1943 			break;
1944 		case MCDI_EVENT_CODE_PTP_FAULT:
1945 			ptp_event_fault(efx, ptp);
1946 			break;
1947 		case MCDI_EVENT_CODE_PTP_PPS:
1948 			ptp_event_pps(efx, ptp);
1949 			break;
1950 		default:
1951 			netif_err(efx, hw, efx->net_dev,
1952 				  "PTP unknown event %d\n", code);
1953 			break;
1954 		}
1955 		ptp->evt_frag_idx = 0;
1956 	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1957 		netif_err(efx, hw, efx->net_dev,
1958 			  "PTP too many event fragments\n");
1959 		ptp->evt_frag_idx = 0;
1960 	}
1961 }
1962 
1963 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1964 {
1965 	struct efx_nic *efx = channel->efx;
1966 	struct efx_ptp_data *ptp = efx->ptp_data;
1967 
1968 	/* When extracting the sync timestamp minor value, we should discard
1969 	 * the least significant two bits. These are not required in order
1970 	 * to reconstruct full-range timestamps and they are optionally used
1971 	 * to report status depending on the options supplied when subscribing
1972 	 * for sync events.
1973 	 */
1974 	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1975 	channel->sync_timestamp_minor =
1976 		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
1977 			<< ptp->nic_time.sync_event_minor_shift;
1978 
1979 	/* if sync events have been disabled then we want to silently ignore
1980 	 * this event, so throw away result.
1981 	 */
1982 	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1983 		       SYNC_EVENTS_VALID);
1984 }
1985 
1986 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1987 {
1988 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1989 	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1990 #else
1991 	const u8 *data = eh + efx->rx_packet_ts_offset;
1992 	return (u32)data[0]       |
1993 	       (u32)data[1] << 8  |
1994 	       (u32)data[2] << 16 |
1995 	       (u32)data[3] << 24;
1996 #endif
1997 }
1998 
1999 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2000 				   struct sk_buff *skb)
2001 {
2002 	struct efx_nic *efx = channel->efx;
2003 	struct efx_ptp_data *ptp = efx->ptp_data;
2004 	u32 pkt_timestamp_major, pkt_timestamp_minor;
2005 	u32 diff, carry;
2006 	struct skb_shared_hwtstamps *timestamps;
2007 
2008 	if (channel->sync_events_state != SYNC_EVENTS_VALID)
2009 		return;
2010 
2011 	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2012 
2013 	/* get the difference between the packet and sync timestamps,
2014 	 * modulo one second
2015 	 */
2016 	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2017 	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2018 		diff += ptp->nic_time.minor_max;
2019 
2020 	/* do we roll over a second boundary and need to carry the one? */
2021 	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2022 		1 : 0;
2023 
2024 	if (diff <= ptp->nic_time.sync_event_diff_max) {
2025 		/* packet is ahead of the sync event by a quarter of a second or
2026 		 * less (allowing for fuzz)
2027 		 */
2028 		pkt_timestamp_major = channel->sync_timestamp_major + carry;
2029 	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
2030 		/* packet is behind the sync event but within the fuzz factor.
2031 		 * This means the RX packet and sync event crossed as they were
2032 		 * placed on the event queue, which can sometimes happen.
2033 		 */
2034 		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2035 	} else {
2036 		/* it's outside tolerance in both directions. this might be
2037 		 * indicative of us missing sync events for some reason, so
2038 		 * we'll call it an error rather than risk giving a bogus
2039 		 * timestamp.
2040 		 */
2041 		netif_vdbg(efx, drv, efx->net_dev,
2042 			  "packet timestamp %x too far from sync event %x:%x\n",
2043 			  pkt_timestamp_minor, channel->sync_timestamp_major,
2044 			  channel->sync_timestamp_minor);
2045 		return;
2046 	}
2047 
2048 	/* attach the timestamps to the skb */
2049 	timestamps = skb_hwtstamps(skb);
2050 	timestamps->hwtstamp =
2051 		ptp->nic_to_kernel_time(pkt_timestamp_major,
2052 					pkt_timestamp_minor,
2053 					ptp->ts_corrections.general_rx);
2054 }
2055 
2056 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2057 {
2058 	struct efx_ptp_data *ptp_data = container_of(ptp,
2059 						     struct efx_ptp_data,
2060 						     phc_clock_info);
2061 	struct efx_nic *efx = ptp_data->efx;
2062 	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2063 	s64 adjustment_ns;
2064 	int rc;
2065 
2066 	if (delta > MAX_PPB)
2067 		delta = MAX_PPB;
2068 	else if (delta < -MAX_PPB)
2069 		delta = -MAX_PPB;
2070 
2071 	/* Convert ppb to fixed point ns taking care to round correctly. */
2072 	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2073 			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2074 			ptp_data->adjfreq_ppb_shift;
2075 
2076 	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2077 	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2078 	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2079 	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2080 	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2081 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2082 			  NULL, 0, NULL);
2083 	if (rc != 0)
2084 		return rc;
2085 
2086 	ptp_data->current_adjfreq = adjustment_ns;
2087 	return 0;
2088 }
2089 
2090 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2091 {
2092 	u32 nic_major, nic_minor;
2093 	struct efx_ptp_data *ptp_data = container_of(ptp,
2094 						     struct efx_ptp_data,
2095 						     phc_clock_info);
2096 	struct efx_nic *efx = ptp_data->efx;
2097 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2098 
2099 	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2100 
2101 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2102 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2103 	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2104 	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2105 	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2106 	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2107 			    NULL, 0, NULL);
2108 }
2109 
2110 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2111 {
2112 	struct efx_ptp_data *ptp_data = container_of(ptp,
2113 						     struct efx_ptp_data,
2114 						     phc_clock_info);
2115 	struct efx_nic *efx = ptp_data->efx;
2116 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2117 	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2118 	int rc;
2119 	ktime_t kt;
2120 
2121 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2122 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2123 
2124 	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2125 			  outbuf, sizeof(outbuf), NULL);
2126 	if (rc != 0)
2127 		return rc;
2128 
2129 	kt = ptp_data->nic_to_kernel_time(
2130 		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2131 		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2132 	*ts = ktime_to_timespec64(kt);
2133 	return 0;
2134 }
2135 
2136 static int efx_phc_settime(struct ptp_clock_info *ptp,
2137 			   const struct timespec64 *e_ts)
2138 {
2139 	/* Get the current NIC time, efx_phc_gettime.
2140 	 * Subtract from the desired time to get the offset
2141 	 * call efx_phc_adjtime with the offset
2142 	 */
2143 	int rc;
2144 	struct timespec64 time_now;
2145 	struct timespec64 delta;
2146 
2147 	rc = efx_phc_gettime(ptp, &time_now);
2148 	if (rc != 0)
2149 		return rc;
2150 
2151 	delta = timespec64_sub(*e_ts, time_now);
2152 
2153 	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2154 	if (rc != 0)
2155 		return rc;
2156 
2157 	return 0;
2158 }
2159 
2160 static int efx_phc_enable(struct ptp_clock_info *ptp,
2161 			  struct ptp_clock_request *request,
2162 			  int enable)
2163 {
2164 	struct efx_ptp_data *ptp_data = container_of(ptp,
2165 						     struct efx_ptp_data,
2166 						     phc_clock_info);
2167 	if (request->type != PTP_CLK_REQ_PPS)
2168 		return -EOPNOTSUPP;
2169 
2170 	ptp_data->nic_ts_enabled = !!enable;
2171 	return 0;
2172 }
2173 
2174 static const struct efx_channel_type efx_ptp_channel_type = {
2175 	.handle_no_channel	= efx_ptp_handle_no_channel,
2176 	.pre_probe		= efx_ptp_probe_channel,
2177 	.post_remove		= efx_ptp_remove_channel,
2178 	.get_name		= efx_ptp_get_channel_name,
2179 	/* no copy operation; there is no need to reallocate this channel */
2180 	.receive_skb		= efx_ptp_rx,
2181 	.want_txqs		= efx_ptp_want_txqs,
2182 	.keep_eventq		= false,
2183 };
2184 
2185 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2186 {
2187 	/* Check whether PTP is implemented on this NIC.  The DISABLE
2188 	 * operation will succeed if and only if it is implemented.
2189 	 */
2190 	if (efx_ptp_disable(efx) == 0)
2191 		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2192 			&efx_ptp_channel_type;
2193 }
2194 
2195 void efx_ptp_start_datapath(struct efx_nic *efx)
2196 {
2197 	if (efx_ptp_restart(efx))
2198 		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2199 	/* re-enable timestamping if it was previously enabled */
2200 	if (efx->type->ptp_set_ts_sync_events)
2201 		efx->type->ptp_set_ts_sync_events(efx, true, true);
2202 }
2203 
2204 void efx_ptp_stop_datapath(struct efx_nic *efx)
2205 {
2206 	/* temporarily disable timestamping */
2207 	if (efx->type->ptp_set_ts_sync_events)
2208 		efx->type->ptp_set_ts_sync_events(efx, false, true);
2209 	efx_ptp_stop(efx);
2210 }
2211