1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2011-2013 Solarflare Communications Inc. 5 */ 6 7 /* Theory of operation: 8 * 9 * PTP support is assisted by firmware running on the MC, which provides 10 * the hardware timestamping capabilities. Both transmitted and received 11 * PTP event packets are queued onto internal queues for subsequent processing; 12 * this is because the MC operations are relatively long and would block 13 * block NAPI/interrupt operation. 14 * 15 * Receive event processing: 16 * The event contains the packet's UUID and sequence number, together 17 * with the hardware timestamp. The PTP receive packet queue is searched 18 * for this UUID/sequence number and, if found, put on a pending queue. 19 * Packets not matching are delivered without timestamps (MCDI events will 20 * always arrive after the actual packet). 21 * It is important for the operation of the PTP protocol that the ordering 22 * of packets between the event and general port is maintained. 23 * 24 * Work queue processing: 25 * If work waiting, synchronise host/hardware time 26 * 27 * Transmit: send packet through MC, which returns the transmission time 28 * that is converted to an appropriate timestamp. 29 * 30 * Receive: the packet's reception time is converted to an appropriate 31 * timestamp. 32 */ 33 #include <linux/ip.h> 34 #include <linux/udp.h> 35 #include <linux/time.h> 36 #include <linux/errno.h> 37 #include <linux/ktime.h> 38 #include <linux/module.h> 39 #include <linux/pps_kernel.h> 40 #include <linux/ptp_clock_kernel.h> 41 #include "net_driver.h" 42 #include "efx.h" 43 #include "mcdi.h" 44 #include "mcdi_pcol.h" 45 #include "io.h" 46 #include "farch_regs.h" 47 #include "tx.h" 48 #include "nic.h" /* indirectly includes ptp.h */ 49 #include "efx_channels.h" 50 51 /* Maximum number of events expected to make up a PTP event */ 52 #define MAX_EVENT_FRAGS 3 53 54 /* Maximum delay, ms, to begin synchronisation */ 55 #define MAX_SYNCHRONISE_WAIT_MS 2 56 57 /* How long, at most, to spend synchronising */ 58 #define SYNCHRONISE_PERIOD_NS 250000 59 60 /* How often to update the shared memory time */ 61 #define SYNCHRONISATION_GRANULARITY_NS 200 62 63 /* Minimum permitted length of a (corrected) synchronisation time */ 64 #define DEFAULT_MIN_SYNCHRONISATION_NS 120 65 66 /* Maximum permitted length of a (corrected) synchronisation time */ 67 #define MAX_SYNCHRONISATION_NS 1000 68 69 /* How many (MC) receive events that can be queued */ 70 #define MAX_RECEIVE_EVENTS 8 71 72 /* Length of (modified) moving average. */ 73 #define AVERAGE_LENGTH 16 74 75 /* How long an unmatched event or packet can be held */ 76 #define PKT_EVENT_LIFETIME_MS 10 77 78 /* How long unused unicast filters can be held */ 79 #define UCAST_FILTER_EXPIRY_JIFFIES msecs_to_jiffies(30000) 80 81 /* Offsets into PTP packet for identification. These offsets are from the 82 * start of the IP header, not the MAC header. Note that neither PTP V1 nor 83 * PTP V2 permit the use of IPV4 options. 84 */ 85 #define PTP_DPORT_OFFSET 22 86 87 #define PTP_V1_VERSION_LENGTH 2 88 #define PTP_V1_VERSION_OFFSET 28 89 90 #define PTP_V1_UUID_LENGTH 6 91 #define PTP_V1_UUID_OFFSET 50 92 93 #define PTP_V1_SEQUENCE_LENGTH 2 94 #define PTP_V1_SEQUENCE_OFFSET 58 95 96 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: 97 * includes IP header. 98 */ 99 #define PTP_V1_MIN_LENGTH 64 100 101 #define PTP_V2_VERSION_LENGTH 1 102 #define PTP_V2_VERSION_OFFSET 29 103 104 #define PTP_V2_UUID_LENGTH 8 105 #define PTP_V2_UUID_OFFSET 48 106 107 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2), 108 * the MC only captures the last six bytes of the clock identity. These values 109 * reflect those, not the ones used in the standard. The standard permits 110 * mapping of V1 UUIDs to V2 UUIDs with these same values. 111 */ 112 #define PTP_V2_MC_UUID_LENGTH 6 113 #define PTP_V2_MC_UUID_OFFSET 50 114 115 #define PTP_V2_SEQUENCE_LENGTH 2 116 #define PTP_V2_SEQUENCE_OFFSET 58 117 118 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: 119 * includes IP header. 120 */ 121 #define PTP_V2_MIN_LENGTH 63 122 123 #define PTP_MIN_LENGTH 63 124 125 #define PTP_ADDR_IPV4 0xe0000181 /* 224.0.1.129 */ 126 #define PTP_ADDR_IPV6 {0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 127 0, 0x01, 0x81} /* ff0e::181 */ 128 #define PTP_EVENT_PORT 319 129 #define PTP_GENERAL_PORT 320 130 #define PTP_ADDR_ETHER {0x01, 0x1b, 0x19, 0, 0, 0} /* 01-1B-19-00-00-00 */ 131 132 /* Annoyingly the format of the version numbers are different between 133 * versions 1 and 2 so it isn't possible to simply look for 1 or 2. 134 */ 135 #define PTP_VERSION_V1 1 136 137 #define PTP_VERSION_V2 2 138 #define PTP_VERSION_V2_MASK 0x0f 139 140 enum ptp_packet_state { 141 PTP_PACKET_STATE_UNMATCHED = 0, 142 PTP_PACKET_STATE_MATCHED, 143 PTP_PACKET_STATE_TIMED_OUT, 144 PTP_PACKET_STATE_MATCH_UNWANTED 145 }; 146 147 /* NIC synchronised with single word of time only comprising 148 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. 149 */ 150 #define MC_NANOSECOND_BITS 30 151 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) 152 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) 153 154 /* Maximum parts-per-billion adjustment that is acceptable */ 155 #define MAX_PPB 1000000 156 157 /* Precalculate scale word to avoid long long division at runtime */ 158 /* This is equivalent to 2^66 / 10^9. */ 159 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL) 160 161 /* How much to shift down after scaling to convert to FP40 */ 162 #define PPB_SHIFT_FP40 26 163 /* ... and FP44. */ 164 #define PPB_SHIFT_FP44 22 165 166 #define PTP_SYNC_ATTEMPTS 4 167 168 /** 169 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. 170 * @words: UUID and (partial) sequence number 171 * @expiry: Time after which the packet should be delivered irrespective of 172 * event arrival. 173 * @state: The state of the packet - whether it is ready for processing or 174 * whether that is of no interest. 175 */ 176 struct efx_ptp_match { 177 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)]; 178 unsigned long expiry; 179 enum ptp_packet_state state; 180 }; 181 182 /** 183 * struct efx_ptp_event_rx - A PTP receive event (from MC) 184 * @link: list of events 185 * @seq0: First part of (PTP) UUID 186 * @seq1: Second part of (PTP) UUID and sequence number 187 * @hwtimestamp: Event timestamp 188 * @expiry: Time which the packet arrived 189 */ 190 struct efx_ptp_event_rx { 191 struct list_head link; 192 u32 seq0; 193 u32 seq1; 194 ktime_t hwtimestamp; 195 unsigned long expiry; 196 }; 197 198 /** 199 * struct efx_ptp_timeset - Synchronisation between host and MC 200 * @host_start: Host time immediately before hardware timestamp taken 201 * @major: Hardware timestamp, major 202 * @minor: Hardware timestamp, minor 203 * @host_end: Host time immediately after hardware timestamp taken 204 * @wait: Number of NIC clock ticks between hardware timestamp being read and 205 * host end time being seen 206 * @window: Difference of host_end and host_start 207 * @valid: Whether this timeset is valid 208 */ 209 struct efx_ptp_timeset { 210 u32 host_start; 211 u32 major; 212 u32 minor; 213 u32 host_end; 214 u32 wait; 215 u32 window; /* Derived: end - start, allowing for wrap */ 216 }; 217 218 /** 219 * struct efx_ptp_rxfilter - Filter for PTP packets 220 * @list: Node of the list where the filter is added 221 * @ether_type: Network protocol of the filter (ETHER_P_IP / ETHER_P_IPV6) 222 * @loc_port: UDP port of the filter (PTP_EVENT_PORT / PTP_GENERAL_PORT) 223 * @loc_host: IPv4/v6 address of the filter 224 * @expiry: time when the filter expires, in jiffies 225 * @handle: Handle ID for the MCDI filters table 226 */ 227 struct efx_ptp_rxfilter { 228 struct list_head list; 229 __be16 ether_type; 230 __be16 loc_port; 231 __be32 loc_host[4]; 232 unsigned long expiry; 233 int handle; 234 }; 235 236 /** 237 * struct efx_ptp_data - Precision Time Protocol (PTP) state 238 * @efx: The NIC context 239 * @channel: The PTP channel (Siena only) 240 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are 241 * separate events) 242 * @rxq: Receive SKB queue (awaiting timestamps) 243 * @txq: Transmit SKB queue 244 * @evt_list: List of MC receive events awaiting packets 245 * @evt_free_list: List of free events 246 * @evt_lock: Lock for manipulating evt_list and evt_free_list 247 * @rx_evts: Instantiated events (on evt_list and evt_free_list) 248 * @workwq: Work queue for processing pending PTP operations 249 * @work: Work task 250 * @cleanup_work: Work task for periodic cleanup 251 * @reset_required: A serious error has occurred and the PTP task needs to be 252 * reset (disable, enable). 253 * @rxfilters_mcast: Receive filters for multicast PTP packets 254 * @rxfilters_ucast: Receive filters for unicast PTP packets 255 * @config: Current timestamp configuration 256 * @enabled: PTP operation enabled 257 * @mode: Mode in which PTP operating (PTP version) 258 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time 259 * @nic_to_kernel_time: Function to convert from NIC to kernel time 260 * @nic_time: contains time details 261 * @nic_time.minor_max: Wrap point for NIC minor times 262 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time 263 * in packet prefix and last MCDI time sync event i.e. how much earlier than 264 * the last sync event time a packet timestamp can be. 265 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time 266 * in packet prefix and last MCDI time sync event i.e. how much later than 267 * the last sync event time a packet timestamp can be. 268 * @nic_time.sync_event_minor_shift: Shift required to make minor time from 269 * field in MCDI time sync event. 270 * @min_synchronisation_ns: Minimum acceptable corrected sync window 271 * @capabilities: Capabilities flags from the NIC 272 * @ts_corrections: contains corrections details 273 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit 274 * timestamps 275 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive 276 * timestamps 277 * @ts_corrections.pps_out: PPS output error (information only) 278 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps 279 * @ts_corrections.general_tx: Required driver correction of general packet 280 * transmit timestamps 281 * @ts_corrections.general_rx: Required driver correction of general packet 282 * receive timestamps 283 * @evt_frags: Partly assembled PTP events 284 * @evt_frag_idx: Current fragment number 285 * @evt_code: Last event code 286 * @start: Address at which MC indicates ready for synchronisation 287 * @host_time_pps: Host time at last PPS 288 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion 289 * frequency adjustment into a fixed point fractional nanosecond format. 290 * @current_adjfreq: Current ppb adjustment. 291 * @phc_clock: Pointer to registered phc device (if primary function) 292 * @phc_clock_info: Registration structure for phc device 293 * @pps_work: pps work task for handling pps events 294 * @pps_workwq: pps work queue 295 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled 296 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids 297 * allocations in main data path). 298 * @good_syncs: Number of successful synchronisations. 299 * @fast_syncs: Number of synchronisations requiring short delay 300 * @bad_syncs: Number of failed synchronisations. 301 * @sync_timeouts: Number of synchronisation timeouts 302 * @no_time_syncs: Number of synchronisations with no good times. 303 * @invalid_sync_windows: Number of sync windows with bad durations. 304 * @undersize_sync_windows: Number of corrected sync windows that are too small 305 * @oversize_sync_windows: Number of corrected sync windows that are too large 306 * @rx_no_timestamp: Number of packets received without a timestamp. 307 * @timeset: Last set of synchronisation statistics. 308 * @xmit_skb: Transmit SKB function. 309 */ 310 struct efx_ptp_data { 311 struct efx_nic *efx; 312 struct efx_channel *channel; 313 bool rx_ts_inline; 314 struct sk_buff_head rxq; 315 struct sk_buff_head txq; 316 struct list_head evt_list; 317 struct list_head evt_free_list; 318 spinlock_t evt_lock; 319 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS]; 320 struct workqueue_struct *workwq; 321 struct work_struct work; 322 struct delayed_work cleanup_work; 323 bool reset_required; 324 struct list_head rxfilters_mcast; 325 struct list_head rxfilters_ucast; 326 struct hwtstamp_config config; 327 bool enabled; 328 unsigned int mode; 329 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); 330 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, 331 s32 correction); 332 struct { 333 u32 minor_max; 334 u32 sync_event_diff_min; 335 u32 sync_event_diff_max; 336 unsigned int sync_event_minor_shift; 337 } nic_time; 338 unsigned int min_synchronisation_ns; 339 unsigned int capabilities; 340 struct { 341 s32 ptp_tx; 342 s32 ptp_rx; 343 s32 pps_out; 344 s32 pps_in; 345 s32 general_tx; 346 s32 general_rx; 347 } ts_corrections; 348 efx_qword_t evt_frags[MAX_EVENT_FRAGS]; 349 int evt_frag_idx; 350 int evt_code; 351 struct efx_buffer start; 352 struct pps_event_time host_time_pps; 353 unsigned int adjfreq_ppb_shift; 354 s64 current_adjfreq; 355 struct ptp_clock *phc_clock; 356 struct ptp_clock_info phc_clock_info; 357 struct work_struct pps_work; 358 struct workqueue_struct *pps_workwq; 359 bool nic_ts_enabled; 360 efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)]; 361 362 unsigned int good_syncs; 363 unsigned int fast_syncs; 364 unsigned int bad_syncs; 365 unsigned int sync_timeouts; 366 unsigned int no_time_syncs; 367 unsigned int invalid_sync_windows; 368 unsigned int undersize_sync_windows; 369 unsigned int oversize_sync_windows; 370 unsigned int rx_no_timestamp; 371 struct efx_ptp_timeset 372 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; 373 void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb); 374 }; 375 376 static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm); 377 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); 378 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts); 379 static int efx_phc_settime(struct ptp_clock_info *ptp, 380 const struct timespec64 *e_ts); 381 static int efx_phc_enable(struct ptp_clock_info *ptp, 382 struct ptp_clock_request *request, int on); 383 static int efx_ptp_insert_unicast_filter(struct efx_nic *efx, 384 struct sk_buff *skb); 385 386 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx) 387 { 388 return efx_has_cap(efx, TX_MAC_TIMESTAMPING); 389 } 390 391 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues 392 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit. 393 */ 394 static bool efx_ptp_want_txqs(struct efx_channel *channel) 395 { 396 return efx_ptp_use_mac_tx_timestamps(channel->efx); 397 } 398 399 #define PTP_SW_STAT(ext_name, field_name) \ 400 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } 401 #define PTP_MC_STAT(ext_name, mcdi_name) \ 402 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } 403 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { 404 PTP_SW_STAT(ptp_good_syncs, good_syncs), 405 PTP_SW_STAT(ptp_fast_syncs, fast_syncs), 406 PTP_SW_STAT(ptp_bad_syncs, bad_syncs), 407 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), 408 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), 409 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), 410 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), 411 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), 412 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), 413 PTP_MC_STAT(ptp_tx_timestamp_packets, TX), 414 PTP_MC_STAT(ptp_rx_timestamp_packets, RX), 415 PTP_MC_STAT(ptp_timestamp_packets, TS), 416 PTP_MC_STAT(ptp_filter_matches, FM), 417 PTP_MC_STAT(ptp_non_filter_matches, NFM), 418 }; 419 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) 420 static const unsigned long efx_ptp_stat_mask[] = { 421 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, 422 }; 423 424 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings) 425 { 426 if (!efx->ptp_data) 427 return 0; 428 429 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 430 efx_ptp_stat_mask, strings); 431 } 432 433 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats) 434 { 435 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); 436 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); 437 size_t i; 438 int rc; 439 440 if (!efx->ptp_data) 441 return 0; 442 443 /* Copy software statistics */ 444 for (i = 0; i < PTP_STAT_COUNT; i++) { 445 if (efx_ptp_stat_desc[i].dma_width) 446 continue; 447 stats[i] = *(unsigned int *)((char *)efx->ptp_data + 448 efx_ptp_stat_desc[i].offset); 449 } 450 451 /* Fetch MC statistics. We *must* fill in all statistics or 452 * risk leaking kernel memory to userland, so if the MCDI 453 * request fails we pretend we got zeroes. 454 */ 455 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); 456 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 457 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 458 outbuf, sizeof(outbuf), NULL); 459 if (rc) 460 memset(outbuf, 0, sizeof(outbuf)); 461 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 462 efx_ptp_stat_mask, 463 stats, _MCDI_PTR(outbuf, 0), false); 464 465 return PTP_STAT_COUNT; 466 } 467 468 /* For Siena platforms NIC time is s and ns */ 469 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor) 470 { 471 struct timespec64 ts = ns_to_timespec64(ns); 472 *nic_major = (u32)ts.tv_sec; 473 *nic_minor = ts.tv_nsec; 474 } 475 476 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor, 477 s32 correction) 478 { 479 ktime_t kt = ktime_set(nic_major, nic_minor); 480 if (correction >= 0) 481 kt = ktime_add_ns(kt, (u64)correction); 482 else 483 kt = ktime_sub_ns(kt, (u64)-correction); 484 return kt; 485 } 486 487 /* To convert from s27 format to ns we multiply then divide by a power of 2. 488 * For the conversion from ns to s27, the operation is also converted to a 489 * multiply and shift. 490 */ 491 #define S27_TO_NS_SHIFT (27) 492 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) 493 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT) 494 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT) 495 496 /* For Huntington platforms NIC time is in seconds and fractions of a second 497 * where the minor register only uses 27 bits in units of 2^-27s. 498 */ 499 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) 500 { 501 struct timespec64 ts = ns_to_timespec64(ns); 502 u32 maj = (u32)ts.tv_sec; 503 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + 504 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); 505 506 /* The conversion can result in the minor value exceeding the maximum. 507 * In this case, round up to the next second. 508 */ 509 if (min >= S27_MINOR_MAX) { 510 min -= S27_MINOR_MAX; 511 maj++; 512 } 513 514 *nic_major = maj; 515 *nic_minor = min; 516 } 517 518 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) 519 { 520 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + 521 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); 522 return ktime_set(nic_major, ns); 523 } 524 525 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, 526 s32 correction) 527 { 528 /* Apply the correction and deal with carry */ 529 nic_minor += correction; 530 if ((s32)nic_minor < 0) { 531 nic_minor += S27_MINOR_MAX; 532 nic_major--; 533 } else if (nic_minor >= S27_MINOR_MAX) { 534 nic_minor -= S27_MINOR_MAX; 535 nic_major++; 536 } 537 538 return efx_ptp_s27_to_ktime(nic_major, nic_minor); 539 } 540 541 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */ 542 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor) 543 { 544 struct timespec64 ts = ns_to_timespec64(ns); 545 546 *nic_major = (u32)ts.tv_sec; 547 *nic_minor = ts.tv_nsec * 4; 548 } 549 550 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor, 551 s32 correction) 552 { 553 ktime_t kt; 554 555 nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4); 556 correction = DIV_ROUND_CLOSEST(correction, 4); 557 558 kt = ktime_set(nic_major, nic_minor); 559 560 if (correction >= 0) 561 kt = ktime_add_ns(kt, (u64)correction); 562 else 563 kt = ktime_sub_ns(kt, (u64)-correction); 564 return kt; 565 } 566 567 struct efx_channel *efx_ptp_channel(struct efx_nic *efx) 568 { 569 return efx->ptp_data ? efx->ptp_data->channel : NULL; 570 } 571 572 void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel) 573 { 574 if (efx->ptp_data) 575 efx->ptp_data->channel = channel; 576 } 577 578 static u32 last_sync_timestamp_major(struct efx_nic *efx) 579 { 580 struct efx_channel *channel = efx_ptp_channel(efx); 581 u32 major = 0; 582 583 if (channel) 584 major = channel->sync_timestamp_major; 585 return major; 586 } 587 588 /* The 8000 series and later can provide the time from the MAC, which is only 589 * 48 bits long and provides meta-information in the top 2 bits. 590 */ 591 static ktime_t 592 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx, 593 struct efx_ptp_data *ptp, 594 u32 nic_major, u32 nic_minor, 595 s32 correction) 596 { 597 u32 sync_timestamp; 598 ktime_t kt = { 0 }; 599 s16 delta; 600 601 if (!(nic_major & 0x80000000)) { 602 WARN_ON_ONCE(nic_major >> 16); 603 604 /* Medford provides 48 bits of timestamp, so we must get the top 605 * 16 bits from the timesync event state. 606 * 607 * We only have the lower 16 bits of the time now, but we do 608 * have a full resolution timestamp at some point in past. As 609 * long as the difference between the (real) now and the sync 610 * is less than 2^15, then we can reconstruct the difference 611 * between those two numbers using only the lower 16 bits of 612 * each. 613 * 614 * Put another way 615 * 616 * a - b = ((a mod k) - b) mod k 617 * 618 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know 619 * (a mod k) and b, so can calculate the delta, a - b. 620 * 621 */ 622 sync_timestamp = last_sync_timestamp_major(efx); 623 624 /* Because delta is s16 this does an implicit mask down to 625 * 16 bits which is what we need, assuming 626 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that 627 * we can deal with the (unlikely) case of sync timestamps 628 * arriving from the future. 629 */ 630 delta = nic_major - sync_timestamp; 631 632 /* Recover the fully specified time now, by applying the offset 633 * to the (fully specified) sync time. 634 */ 635 nic_major = sync_timestamp + delta; 636 637 kt = ptp->nic_to_kernel_time(nic_major, nic_minor, 638 correction); 639 } 640 return kt; 641 } 642 643 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue) 644 { 645 struct efx_nic *efx = tx_queue->efx; 646 struct efx_ptp_data *ptp = efx->ptp_data; 647 ktime_t kt; 648 649 if (efx_ptp_use_mac_tx_timestamps(efx)) 650 kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp, 651 tx_queue->completed_timestamp_major, 652 tx_queue->completed_timestamp_minor, 653 ptp->ts_corrections.general_tx); 654 else 655 kt = ptp->nic_to_kernel_time( 656 tx_queue->completed_timestamp_major, 657 tx_queue->completed_timestamp_minor, 658 ptp->ts_corrections.general_tx); 659 return kt; 660 } 661 662 /* Get PTP attributes and set up time conversions */ 663 static int efx_ptp_get_attributes(struct efx_nic *efx) 664 { 665 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); 666 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); 667 struct efx_ptp_data *ptp = efx->ptp_data; 668 int rc; 669 u32 fmt; 670 size_t out_len; 671 672 /* Get the PTP attributes. If the NIC doesn't support the operation we 673 * use the default format for compatibility with older NICs i.e. 674 * seconds and nanoseconds. 675 */ 676 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); 677 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 678 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 679 outbuf, sizeof(outbuf), &out_len); 680 if (rc == 0) { 681 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); 682 } else if (rc == -EINVAL) { 683 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; 684 } else if (rc == -EPERM) { 685 pci_info(efx->pci_dev, "no PTP support\n"); 686 return rc; 687 } else { 688 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), 689 outbuf, sizeof(outbuf), rc); 690 return rc; 691 } 692 693 switch (fmt) { 694 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION: 695 ptp->ns_to_nic_time = efx_ptp_ns_to_s27; 696 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; 697 ptp->nic_time.minor_max = 1 << 27; 698 ptp->nic_time.sync_event_minor_shift = 19; 699 break; 700 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS: 701 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns; 702 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction; 703 ptp->nic_time.minor_max = 1000000000; 704 ptp->nic_time.sync_event_minor_shift = 22; 705 break; 706 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS: 707 ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns; 708 ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction; 709 ptp->nic_time.minor_max = 4000000000UL; 710 ptp->nic_time.sync_event_minor_shift = 24; 711 break; 712 default: 713 return -ERANGE; 714 } 715 716 /* Precalculate acceptable difference between the minor time in the 717 * packet prefix and the last MCDI time sync event. We expect the 718 * packet prefix timestamp to be after of sync event by up to one 719 * sync event interval (0.25s) but we allow it to exceed this by a 720 * fuzz factor of (0.1s) 721 */ 722 ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max 723 - (ptp->nic_time.minor_max / 10); 724 ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4) 725 + (ptp->nic_time.minor_max / 10); 726 727 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older 728 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return 729 * a value to use for the minimum acceptable corrected synchronization 730 * window and may return further capabilities. 731 * If we have the extra information store it. For older firmware that 732 * does not implement the extended command use the default value. 733 */ 734 if (rc == 0 && 735 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST) 736 ptp->min_synchronisation_ns = 737 MCDI_DWORD(outbuf, 738 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); 739 else 740 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; 741 742 if (rc == 0 && 743 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) 744 ptp->capabilities = MCDI_DWORD(outbuf, 745 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES); 746 else 747 ptp->capabilities = 0; 748 749 /* Set up the shift for conversion between frequency 750 * adjustments in parts-per-billion and the fixed-point 751 * fractional ns format that the adapter uses. 752 */ 753 if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN)) 754 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44; 755 else 756 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40; 757 758 return 0; 759 } 760 761 /* Get PTP timestamp corrections */ 762 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) 763 { 764 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); 765 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN); 766 int rc; 767 size_t out_len; 768 769 /* Get the timestamp corrections from the NIC. If this operation is 770 * not supported (older NICs) then no correction is required. 771 */ 772 MCDI_SET_DWORD(inbuf, PTP_IN_OP, 773 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); 774 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 775 776 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 777 outbuf, sizeof(outbuf), &out_len); 778 if (rc == 0) { 779 efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf, 780 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); 781 efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf, 782 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); 783 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, 784 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); 785 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, 786 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); 787 788 if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) { 789 efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD( 790 outbuf, 791 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX); 792 efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD( 793 outbuf, 794 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX); 795 } else { 796 efx->ptp_data->ts_corrections.general_tx = 797 efx->ptp_data->ts_corrections.ptp_tx; 798 efx->ptp_data->ts_corrections.general_rx = 799 efx->ptp_data->ts_corrections.ptp_rx; 800 } 801 } else if (rc == -EINVAL) { 802 efx->ptp_data->ts_corrections.ptp_tx = 0; 803 efx->ptp_data->ts_corrections.ptp_rx = 0; 804 efx->ptp_data->ts_corrections.pps_out = 0; 805 efx->ptp_data->ts_corrections.pps_in = 0; 806 efx->ptp_data->ts_corrections.general_tx = 0; 807 efx->ptp_data->ts_corrections.general_rx = 0; 808 } else { 809 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, 810 sizeof(outbuf), rc); 811 return rc; 812 } 813 814 return 0; 815 } 816 817 /* Enable MCDI PTP support. */ 818 static int efx_ptp_enable(struct efx_nic *efx) 819 { 820 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); 821 MCDI_DECLARE_BUF_ERR(outbuf); 822 int rc; 823 824 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); 825 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 826 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, 827 efx->ptp_data->channel ? 828 efx->ptp_data->channel->channel : 0); 829 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); 830 831 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 832 outbuf, sizeof(outbuf), NULL); 833 rc = (rc == -EALREADY) ? 0 : rc; 834 if (rc) 835 efx_mcdi_display_error(efx, MC_CMD_PTP, 836 MC_CMD_PTP_IN_ENABLE_LEN, 837 outbuf, sizeof(outbuf), rc); 838 return rc; 839 } 840 841 /* Disable MCDI PTP support. 842 * 843 * Note that this function should never rely on the presence of ptp_data - 844 * may be called before that exists. 845 */ 846 static int efx_ptp_disable(struct efx_nic *efx) 847 { 848 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); 849 MCDI_DECLARE_BUF_ERR(outbuf); 850 int rc; 851 852 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); 853 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 854 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 855 outbuf, sizeof(outbuf), NULL); 856 rc = (rc == -EALREADY) ? 0 : rc; 857 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function 858 * should only have been called during probe. 859 */ 860 if (rc == -ENOSYS || rc == -EPERM) 861 pci_info(efx->pci_dev, "no PTP support\n"); 862 else if (rc) 863 efx_mcdi_display_error(efx, MC_CMD_PTP, 864 MC_CMD_PTP_IN_DISABLE_LEN, 865 outbuf, sizeof(outbuf), rc); 866 return rc; 867 } 868 869 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) 870 { 871 struct sk_buff *skb; 872 873 while ((skb = skb_dequeue(q))) { 874 local_bh_disable(); 875 netif_receive_skb(skb); 876 local_bh_enable(); 877 } 878 } 879 880 static void efx_ptp_handle_no_channel(struct efx_nic *efx) 881 { 882 netif_err(efx, drv, efx->net_dev, 883 "ERROR: PTP requires MSI-X and 1 additional interrupt" 884 "vector. PTP disabled\n"); 885 } 886 887 /* Repeatedly send the host time to the MC which will capture the hardware 888 * time. 889 */ 890 static void efx_ptp_send_times(struct efx_nic *efx, 891 struct pps_event_time *last_time) 892 { 893 struct pps_event_time now; 894 struct timespec64 limit; 895 struct efx_ptp_data *ptp = efx->ptp_data; 896 int *mc_running = ptp->start.addr; 897 898 pps_get_ts(&now); 899 limit = now.ts_real; 900 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS); 901 902 /* Write host time for specified period or until MC is done */ 903 while ((timespec64_compare(&now.ts_real, &limit) < 0) && 904 READ_ONCE(*mc_running)) { 905 struct timespec64 update_time; 906 unsigned int host_time; 907 908 /* Don't update continuously to avoid saturating the PCIe bus */ 909 update_time = now.ts_real; 910 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); 911 do { 912 pps_get_ts(&now); 913 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) && 914 READ_ONCE(*mc_running)); 915 916 /* Synchronise NIC with single word of time only */ 917 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | 918 now.ts_real.tv_nsec); 919 /* Update host time in NIC memory */ 920 efx->type->ptp_write_host_time(efx, host_time); 921 } 922 *last_time = now; 923 } 924 925 /* Read a timeset from the MC's results and partial process. */ 926 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), 927 struct efx_ptp_timeset *timeset) 928 { 929 unsigned start_ns, end_ns; 930 931 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); 932 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); 933 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); 934 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), 935 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); 936 937 /* Ignore seconds */ 938 start_ns = timeset->host_start & MC_NANOSECOND_MASK; 939 end_ns = timeset->host_end & MC_NANOSECOND_MASK; 940 /* Allow for rollover */ 941 if (end_ns < start_ns) 942 end_ns += NSEC_PER_SEC; 943 /* Determine duration of operation */ 944 timeset->window = end_ns - start_ns; 945 } 946 947 /* Process times received from MC. 948 * 949 * Extract times from returned results, and establish the minimum value 950 * seen. The minimum value represents the "best" possible time and events 951 * too much greater than this are rejected - the machine is, perhaps, too 952 * busy. A number of readings are taken so that, hopefully, at least one good 953 * synchronisation will be seen in the results. 954 */ 955 static int 956 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), 957 size_t response_length, 958 const struct pps_event_time *last_time) 959 { 960 unsigned number_readings = 961 MCDI_VAR_ARRAY_LEN(response_length, 962 PTP_OUT_SYNCHRONIZE_TIMESET); 963 unsigned i; 964 unsigned ngood = 0; 965 unsigned last_good = 0; 966 struct efx_ptp_data *ptp = efx->ptp_data; 967 u32 last_sec; 968 u32 start_sec; 969 struct timespec64 delta; 970 ktime_t mc_time; 971 972 if (number_readings == 0) 973 return -EAGAIN; 974 975 /* Read the set of results and find the last good host-MC 976 * synchronization result. The MC times when it finishes reading the 977 * host time so the corrected window time should be fairly constant 978 * for a given platform. Increment stats for any results that appear 979 * to be erroneous. 980 */ 981 for (i = 0; i < number_readings; i++) { 982 s32 window, corrected; 983 struct timespec64 wait; 984 985 efx_ptp_read_timeset( 986 MCDI_ARRAY_STRUCT_PTR(synch_buf, 987 PTP_OUT_SYNCHRONIZE_TIMESET, i), 988 &ptp->timeset[i]); 989 990 wait = ktime_to_timespec64( 991 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); 992 window = ptp->timeset[i].window; 993 corrected = window - wait.tv_nsec; 994 995 /* We expect the uncorrected synchronization window to be at 996 * least as large as the interval between host start and end 997 * times. If it is smaller than this then this is mostly likely 998 * to be a consequence of the host's time being adjusted. 999 * Check that the corrected sync window is in a reasonable 1000 * range. If it is out of range it is likely to be because an 1001 * interrupt or other delay occurred between reading the system 1002 * time and writing it to MC memory. 1003 */ 1004 if (window < SYNCHRONISATION_GRANULARITY_NS) { 1005 ++ptp->invalid_sync_windows; 1006 } else if (corrected >= MAX_SYNCHRONISATION_NS) { 1007 ++ptp->oversize_sync_windows; 1008 } else if (corrected < ptp->min_synchronisation_ns) { 1009 ++ptp->undersize_sync_windows; 1010 } else { 1011 ngood++; 1012 last_good = i; 1013 } 1014 } 1015 1016 if (ngood == 0) { 1017 netif_warn(efx, drv, efx->net_dev, 1018 "PTP no suitable synchronisations\n"); 1019 return -EAGAIN; 1020 } 1021 1022 /* Calculate delay from last good sync (host time) to last_time. 1023 * It is possible that the seconds rolled over between taking 1024 * the start reading and the last value written by the host. The 1025 * timescales are such that a gap of more than one second is never 1026 * expected. delta is *not* normalised. 1027 */ 1028 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; 1029 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; 1030 if (start_sec != last_sec && 1031 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { 1032 netif_warn(efx, hw, efx->net_dev, 1033 "PTP bad synchronisation seconds\n"); 1034 return -EAGAIN; 1035 } 1036 delta.tv_sec = (last_sec - start_sec) & 1; 1037 delta.tv_nsec = 1038 last_time->ts_real.tv_nsec - 1039 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); 1040 1041 /* Convert the NIC time at last good sync into kernel time. 1042 * No correction is required - this time is the output of a 1043 * firmware process. 1044 */ 1045 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, 1046 ptp->timeset[last_good].minor, 0); 1047 1048 /* Calculate delay from NIC top of second to last_time */ 1049 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec; 1050 1051 /* Set PPS timestamp to match NIC top of second */ 1052 ptp->host_time_pps = *last_time; 1053 pps_sub_ts(&ptp->host_time_pps, delta); 1054 1055 return 0; 1056 } 1057 1058 /* Synchronize times between the host and the MC */ 1059 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) 1060 { 1061 struct efx_ptp_data *ptp = efx->ptp_data; 1062 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); 1063 size_t response_length; 1064 int rc; 1065 unsigned long timeout; 1066 struct pps_event_time last_time = {}; 1067 unsigned int loops = 0; 1068 int *start = ptp->start.addr; 1069 1070 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); 1071 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); 1072 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, 1073 num_readings); 1074 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, 1075 ptp->start.dma_addr); 1076 1077 /* Clear flag that signals MC ready */ 1078 WRITE_ONCE(*start, 0); 1079 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, 1080 MC_CMD_PTP_IN_SYNCHRONIZE_LEN); 1081 EFX_WARN_ON_ONCE_PARANOID(rc); 1082 1083 /* Wait for start from MCDI (or timeout) */ 1084 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); 1085 while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) { 1086 udelay(20); /* Usually start MCDI execution quickly */ 1087 loops++; 1088 } 1089 1090 if (loops <= 1) 1091 ++ptp->fast_syncs; 1092 if (!time_before(jiffies, timeout)) 1093 ++ptp->sync_timeouts; 1094 1095 if (READ_ONCE(*start)) 1096 efx_ptp_send_times(efx, &last_time); 1097 1098 /* Collect results */ 1099 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, 1100 MC_CMD_PTP_IN_SYNCHRONIZE_LEN, 1101 synch_buf, sizeof(synch_buf), 1102 &response_length); 1103 if (rc == 0) { 1104 rc = efx_ptp_process_times(efx, synch_buf, response_length, 1105 &last_time); 1106 if (rc == 0) 1107 ++ptp->good_syncs; 1108 else 1109 ++ptp->no_time_syncs; 1110 } 1111 1112 /* Increment the bad syncs counter if the synchronize fails, whatever 1113 * the reason. 1114 */ 1115 if (rc != 0) 1116 ++ptp->bad_syncs; 1117 1118 return rc; 1119 } 1120 1121 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */ 1122 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb) 1123 { 1124 struct efx_ptp_data *ptp_data = efx->ptp_data; 1125 u8 type = efx_tx_csum_type_skb(skb); 1126 struct efx_tx_queue *tx_queue; 1127 1128 tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type); 1129 if (tx_queue && tx_queue->timestamping) { 1130 skb_get(skb); 1131 1132 /* This code invokes normal driver TX code which is always 1133 * protected from softirqs when called from generic TX code, 1134 * which in turn disables preemption. Look at __dev_queue_xmit 1135 * which uses rcu_read_lock_bh disabling preemption for RCU 1136 * plus disabling softirqs. We do not need RCU reader 1137 * protection here. 1138 * 1139 * Although it is theoretically safe for current PTP TX/RX code 1140 * running without disabling softirqs, there are three good 1141 * reasond for doing so: 1142 * 1143 * 1) The code invoked is mainly implemented for non-PTP 1144 * packets and it is always executed with softirqs 1145 * disabled. 1146 * 2) This being a single PTP packet, better to not 1147 * interrupt its processing by softirqs which can lead 1148 * to high latencies. 1149 * 3) netdev_xmit_more checks preemption is disabled and 1150 * triggers a BUG_ON if not. 1151 */ 1152 local_bh_disable(); 1153 efx_enqueue_skb(tx_queue, skb); 1154 local_bh_enable(); 1155 1156 /* We need to add the filters after enqueuing the packet. 1157 * Otherwise, there's high latency in sending back the 1158 * timestamp, causing ptp4l timeouts 1159 */ 1160 efx_ptp_insert_unicast_filter(efx, skb); 1161 dev_consume_skb_any(skb); 1162 } else { 1163 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n"); 1164 dev_kfree_skb_any(skb); 1165 } 1166 } 1167 1168 /* Transmit a PTP packet, via the MCDI interface, to the wire. */ 1169 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb) 1170 { 1171 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); 1172 struct efx_ptp_data *ptp_data = efx->ptp_data; 1173 struct skb_shared_hwtstamps timestamps; 1174 size_t len; 1175 int rc; 1176 1177 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); 1178 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); 1179 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); 1180 if (skb_shinfo(skb)->nr_frags != 0) { 1181 rc = skb_linearize(skb); 1182 if (rc != 0) 1183 goto fail; 1184 } 1185 1186 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1187 rc = skb_checksum_help(skb); 1188 if (rc != 0) 1189 goto fail; 1190 } 1191 skb_copy_from_linear_data(skb, 1192 MCDI_PTR(ptp_data->txbuf, 1193 PTP_IN_TRANSMIT_PACKET), 1194 skb->len); 1195 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, 1196 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 1197 txtime, sizeof(txtime), &len); 1198 if (rc != 0) 1199 goto fail; 1200 1201 memset(×tamps, 0, sizeof(timestamps)); 1202 timestamps.hwtstamp = ptp_data->nic_to_kernel_time( 1203 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), 1204 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), 1205 ptp_data->ts_corrections.ptp_tx); 1206 1207 skb_tstamp_tx(skb, ×tamps); 1208 1209 /* Add the filters after sending back the timestamp to avoid delaying it 1210 * or ptp4l may timeout. 1211 */ 1212 efx_ptp_insert_unicast_filter(efx, skb); 1213 1214 fail: 1215 dev_kfree_skb_any(skb); 1216 1217 return; 1218 } 1219 1220 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx) 1221 { 1222 struct efx_ptp_data *ptp = efx->ptp_data; 1223 struct list_head *cursor; 1224 struct list_head *next; 1225 1226 if (ptp->rx_ts_inline) 1227 return; 1228 1229 /* Drop time-expired events */ 1230 spin_lock_bh(&ptp->evt_lock); 1231 list_for_each_safe(cursor, next, &ptp->evt_list) { 1232 struct efx_ptp_event_rx *evt; 1233 1234 evt = list_entry(cursor, struct efx_ptp_event_rx, 1235 link); 1236 if (time_after(jiffies, evt->expiry)) { 1237 list_move(&evt->link, &ptp->evt_free_list); 1238 netif_warn(efx, hw, efx->net_dev, 1239 "PTP rx event dropped\n"); 1240 } 1241 } 1242 spin_unlock_bh(&ptp->evt_lock); 1243 } 1244 1245 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx, 1246 struct sk_buff *skb) 1247 { 1248 struct efx_ptp_data *ptp = efx->ptp_data; 1249 bool evts_waiting; 1250 struct list_head *cursor; 1251 struct list_head *next; 1252 struct efx_ptp_match *match; 1253 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED; 1254 1255 WARN_ON_ONCE(ptp->rx_ts_inline); 1256 1257 spin_lock_bh(&ptp->evt_lock); 1258 evts_waiting = !list_empty(&ptp->evt_list); 1259 spin_unlock_bh(&ptp->evt_lock); 1260 1261 if (!evts_waiting) 1262 return PTP_PACKET_STATE_UNMATCHED; 1263 1264 match = (struct efx_ptp_match *)skb->cb; 1265 /* Look for a matching timestamp in the event queue */ 1266 spin_lock_bh(&ptp->evt_lock); 1267 list_for_each_safe(cursor, next, &ptp->evt_list) { 1268 struct efx_ptp_event_rx *evt; 1269 1270 evt = list_entry(cursor, struct efx_ptp_event_rx, link); 1271 if ((evt->seq0 == match->words[0]) && 1272 (evt->seq1 == match->words[1])) { 1273 struct skb_shared_hwtstamps *timestamps; 1274 1275 /* Match - add in hardware timestamp */ 1276 timestamps = skb_hwtstamps(skb); 1277 timestamps->hwtstamp = evt->hwtimestamp; 1278 1279 match->state = PTP_PACKET_STATE_MATCHED; 1280 rc = PTP_PACKET_STATE_MATCHED; 1281 list_move(&evt->link, &ptp->evt_free_list); 1282 break; 1283 } 1284 } 1285 spin_unlock_bh(&ptp->evt_lock); 1286 1287 return rc; 1288 } 1289 1290 /* Process any queued receive events and corresponding packets 1291 * 1292 * q is returned with all the packets that are ready for delivery. 1293 */ 1294 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) 1295 { 1296 struct efx_ptp_data *ptp = efx->ptp_data; 1297 struct sk_buff *skb; 1298 1299 while ((skb = skb_dequeue(&ptp->rxq))) { 1300 struct efx_ptp_match *match; 1301 1302 match = (struct efx_ptp_match *)skb->cb; 1303 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { 1304 __skb_queue_tail(q, skb); 1305 } else if (efx_ptp_match_rx(efx, skb) == 1306 PTP_PACKET_STATE_MATCHED) { 1307 __skb_queue_tail(q, skb); 1308 } else if (time_after(jiffies, match->expiry)) { 1309 match->state = PTP_PACKET_STATE_TIMED_OUT; 1310 ++ptp->rx_no_timestamp; 1311 __skb_queue_tail(q, skb); 1312 } else { 1313 /* Replace unprocessed entry and stop */ 1314 skb_queue_head(&ptp->rxq, skb); 1315 break; 1316 } 1317 } 1318 } 1319 1320 /* Complete processing of a received packet */ 1321 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) 1322 { 1323 local_bh_disable(); 1324 netif_receive_skb(skb); 1325 local_bh_enable(); 1326 } 1327 1328 static struct efx_ptp_rxfilter * 1329 efx_ptp_find_filter(struct list_head *filter_list, struct efx_filter_spec *spec) 1330 { 1331 struct efx_ptp_rxfilter *rxfilter; 1332 1333 list_for_each_entry(rxfilter, filter_list, list) { 1334 if (rxfilter->ether_type == spec->ether_type && 1335 rxfilter->loc_port == spec->loc_port && 1336 !memcmp(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host))) 1337 return rxfilter; 1338 } 1339 1340 return NULL; 1341 } 1342 1343 static void efx_ptp_remove_one_filter(struct efx_nic *efx, 1344 struct efx_ptp_rxfilter *rxfilter) 1345 { 1346 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1347 rxfilter->handle); 1348 list_del(&rxfilter->list); 1349 kfree(rxfilter); 1350 } 1351 1352 static void efx_ptp_remove_filters(struct efx_nic *efx, 1353 struct list_head *filter_list) 1354 { 1355 struct efx_ptp_rxfilter *rxfilter, *tmp; 1356 1357 list_for_each_entry_safe(rxfilter, tmp, filter_list, list) 1358 efx_ptp_remove_one_filter(efx, rxfilter); 1359 } 1360 1361 static void efx_ptp_init_filter(struct efx_nic *efx, 1362 struct efx_filter_spec *rxfilter) 1363 { 1364 struct efx_channel *channel = efx->ptp_data->channel; 1365 struct efx_rx_queue *queue = efx_channel_get_rx_queue(channel); 1366 1367 efx_filter_init_rx(rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1368 efx_rx_queue_index(queue)); 1369 } 1370 1371 static int efx_ptp_insert_filter(struct efx_nic *efx, 1372 struct list_head *filter_list, 1373 struct efx_filter_spec *spec, 1374 unsigned long expiry) 1375 { 1376 struct efx_ptp_data *ptp = efx->ptp_data; 1377 struct efx_ptp_rxfilter *rxfilter; 1378 int rc; 1379 1380 rxfilter = efx_ptp_find_filter(filter_list, spec); 1381 if (rxfilter) { 1382 rxfilter->expiry = expiry; 1383 return 0; 1384 } 1385 1386 rxfilter = kzalloc(sizeof(*rxfilter), GFP_KERNEL); 1387 if (!rxfilter) 1388 return -ENOMEM; 1389 1390 rc = efx_filter_insert_filter(efx, spec, true); 1391 if (rc < 0) 1392 goto fail; 1393 1394 rxfilter->handle = rc; 1395 rxfilter->ether_type = spec->ether_type; 1396 rxfilter->loc_port = spec->loc_port; 1397 memcpy(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host)); 1398 rxfilter->expiry = expiry; 1399 list_add(&rxfilter->list, filter_list); 1400 1401 queue_delayed_work(ptp->workwq, &ptp->cleanup_work, 1402 UCAST_FILTER_EXPIRY_JIFFIES + 1); 1403 1404 return 0; 1405 1406 fail: 1407 kfree(rxfilter); 1408 return rc; 1409 } 1410 1411 static int efx_ptp_insert_ipv4_filter(struct efx_nic *efx, 1412 struct list_head *filter_list, 1413 __be32 addr, u16 port, 1414 unsigned long expiry) 1415 { 1416 struct efx_filter_spec spec; 1417 1418 efx_ptp_init_filter(efx, &spec); 1419 efx_filter_set_ipv4_local(&spec, IPPROTO_UDP, addr, htons(port)); 1420 return efx_ptp_insert_filter(efx, filter_list, &spec, expiry); 1421 } 1422 1423 static int efx_ptp_insert_ipv6_filter(struct efx_nic *efx, 1424 struct list_head *filter_list, 1425 struct in6_addr *addr, u16 port, 1426 unsigned long expiry) 1427 { 1428 struct efx_filter_spec spec; 1429 1430 efx_ptp_init_filter(efx, &spec); 1431 efx_filter_set_ipv6_local(&spec, IPPROTO_UDP, addr, htons(port)); 1432 return efx_ptp_insert_filter(efx, filter_list, &spec, expiry); 1433 } 1434 1435 static int efx_ptp_insert_eth_multicast_filter(struct efx_nic *efx) 1436 { 1437 struct efx_ptp_data *ptp = efx->ptp_data; 1438 const u8 addr[ETH_ALEN] = PTP_ADDR_ETHER; 1439 struct efx_filter_spec spec; 1440 1441 efx_ptp_init_filter(efx, &spec); 1442 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, addr); 1443 spec.match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 1444 spec.ether_type = htons(ETH_P_1588); 1445 return efx_ptp_insert_filter(efx, &ptp->rxfilters_mcast, &spec, 0); 1446 } 1447 1448 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) 1449 { 1450 struct efx_ptp_data *ptp = efx->ptp_data; 1451 int rc; 1452 1453 if (!ptp->channel || !list_empty(&ptp->rxfilters_mcast)) 1454 return 0; 1455 1456 /* Must filter on both event and general ports to ensure 1457 * that there is no packet re-ordering. 1458 */ 1459 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast, 1460 htonl(PTP_ADDR_IPV4), PTP_EVENT_PORT, 1461 0); 1462 if (rc < 0) 1463 goto fail; 1464 1465 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast, 1466 htonl(PTP_ADDR_IPV4), PTP_GENERAL_PORT, 1467 0); 1468 if (rc < 0) 1469 goto fail; 1470 1471 /* if the NIC supports hw timestamps by the MAC, we can support 1472 * PTP over IPv6 and Ethernet 1473 */ 1474 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1475 struct in6_addr ipv6_addr = {{PTP_ADDR_IPV6}}; 1476 1477 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast, 1478 &ipv6_addr, PTP_EVENT_PORT, 0); 1479 if (rc < 0) 1480 goto fail; 1481 1482 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast, 1483 &ipv6_addr, PTP_GENERAL_PORT, 0); 1484 if (rc < 0) 1485 goto fail; 1486 1487 rc = efx_ptp_insert_eth_multicast_filter(efx); 1488 if (rc < 0) 1489 goto fail; 1490 } 1491 1492 return 0; 1493 1494 fail: 1495 efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); 1496 return rc; 1497 } 1498 1499 static bool efx_ptp_valid_unicast_event_pkt(struct sk_buff *skb) 1500 { 1501 if (skb->protocol == htons(ETH_P_IP)) { 1502 return ip_hdr(skb)->daddr != htonl(PTP_ADDR_IPV4) && 1503 ip_hdr(skb)->protocol == IPPROTO_UDP && 1504 udp_hdr(skb)->source == htons(PTP_EVENT_PORT); 1505 } else if (skb->protocol == htons(ETH_P_IPV6)) { 1506 struct in6_addr mcast_addr = {{PTP_ADDR_IPV6}}; 1507 1508 return !ipv6_addr_equal(&ipv6_hdr(skb)->daddr, &mcast_addr) && 1509 ipv6_hdr(skb)->nexthdr == IPPROTO_UDP && 1510 udp_hdr(skb)->source == htons(PTP_EVENT_PORT); 1511 } 1512 return false; 1513 } 1514 1515 static int efx_ptp_insert_unicast_filter(struct efx_nic *efx, 1516 struct sk_buff *skb) 1517 { 1518 struct efx_ptp_data *ptp = efx->ptp_data; 1519 unsigned long expiry; 1520 int rc; 1521 1522 if (!efx_ptp_valid_unicast_event_pkt(skb)) 1523 return -EINVAL; 1524 1525 expiry = jiffies + UCAST_FILTER_EXPIRY_JIFFIES; 1526 1527 if (skb->protocol == htons(ETH_P_IP)) { 1528 __be32 addr = ip_hdr(skb)->saddr; 1529 1530 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast, 1531 addr, PTP_EVENT_PORT, expiry); 1532 if (rc < 0) 1533 goto out; 1534 1535 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast, 1536 addr, PTP_GENERAL_PORT, expiry); 1537 } else if (efx_ptp_use_mac_tx_timestamps(efx)) { 1538 /* IPv6 PTP only supported by devices with MAC hw timestamp */ 1539 struct in6_addr *addr = &ipv6_hdr(skb)->saddr; 1540 1541 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast, 1542 addr, PTP_EVENT_PORT, expiry); 1543 if (rc < 0) 1544 goto out; 1545 1546 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast, 1547 addr, PTP_GENERAL_PORT, expiry); 1548 } else { 1549 return -EOPNOTSUPP; 1550 } 1551 1552 out: 1553 return rc; 1554 } 1555 1556 static int efx_ptp_start(struct efx_nic *efx) 1557 { 1558 struct efx_ptp_data *ptp = efx->ptp_data; 1559 int rc; 1560 1561 ptp->reset_required = false; 1562 1563 rc = efx_ptp_insert_multicast_filters(efx); 1564 if (rc) 1565 return rc; 1566 1567 rc = efx_ptp_enable(efx); 1568 if (rc != 0) 1569 goto fail; 1570 1571 ptp->evt_frag_idx = 0; 1572 ptp->current_adjfreq = 0; 1573 1574 return 0; 1575 1576 fail: 1577 efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); 1578 return rc; 1579 } 1580 1581 static int efx_ptp_stop(struct efx_nic *efx) 1582 { 1583 struct efx_ptp_data *ptp = efx->ptp_data; 1584 struct list_head *cursor; 1585 struct list_head *next; 1586 int rc; 1587 1588 if (ptp == NULL) 1589 return 0; 1590 1591 rc = efx_ptp_disable(efx); 1592 1593 efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); 1594 efx_ptp_remove_filters(efx, &ptp->rxfilters_ucast); 1595 1596 /* Make sure RX packets are really delivered */ 1597 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); 1598 skb_queue_purge(&efx->ptp_data->txq); 1599 1600 /* Drop any pending receive events */ 1601 spin_lock_bh(&efx->ptp_data->evt_lock); 1602 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) { 1603 list_move(cursor, &efx->ptp_data->evt_free_list); 1604 } 1605 spin_unlock_bh(&efx->ptp_data->evt_lock); 1606 1607 return rc; 1608 } 1609 1610 static int efx_ptp_restart(struct efx_nic *efx) 1611 { 1612 if (efx->ptp_data && efx->ptp_data->enabled) 1613 return efx_ptp_start(efx); 1614 return 0; 1615 } 1616 1617 static void efx_ptp_pps_worker(struct work_struct *work) 1618 { 1619 struct efx_ptp_data *ptp = 1620 container_of(work, struct efx_ptp_data, pps_work); 1621 struct efx_nic *efx = ptp->efx; 1622 struct ptp_clock_event ptp_evt; 1623 1624 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) 1625 return; 1626 1627 ptp_evt.type = PTP_CLOCK_PPSUSR; 1628 ptp_evt.pps_times = ptp->host_time_pps; 1629 ptp_clock_event(ptp->phc_clock, &ptp_evt); 1630 } 1631 1632 static void efx_ptp_worker(struct work_struct *work) 1633 { 1634 struct efx_ptp_data *ptp_data = 1635 container_of(work, struct efx_ptp_data, work); 1636 struct efx_nic *efx = ptp_data->efx; 1637 struct sk_buff *skb; 1638 struct sk_buff_head tempq; 1639 1640 if (ptp_data->reset_required) { 1641 efx_ptp_stop(efx); 1642 efx_ptp_start(efx); 1643 return; 1644 } 1645 1646 efx_ptp_drop_time_expired_events(efx); 1647 1648 __skb_queue_head_init(&tempq); 1649 efx_ptp_process_events(efx, &tempq); 1650 1651 while ((skb = skb_dequeue(&ptp_data->txq))) 1652 ptp_data->xmit_skb(efx, skb); 1653 1654 while ((skb = __skb_dequeue(&tempq))) 1655 efx_ptp_process_rx(efx, skb); 1656 } 1657 1658 static void efx_ptp_cleanup_worker(struct work_struct *work) 1659 { 1660 struct efx_ptp_data *ptp = 1661 container_of(work, struct efx_ptp_data, cleanup_work.work); 1662 struct efx_ptp_rxfilter *rxfilter, *tmp; 1663 1664 list_for_each_entry_safe(rxfilter, tmp, &ptp->rxfilters_ucast, list) { 1665 if (time_is_before_jiffies(rxfilter->expiry)) 1666 efx_ptp_remove_one_filter(ptp->efx, rxfilter); 1667 } 1668 1669 if (!list_empty(&ptp->rxfilters_ucast)) { 1670 queue_delayed_work(ptp->workwq, &ptp->cleanup_work, 1671 UCAST_FILTER_EXPIRY_JIFFIES + 1); 1672 } 1673 } 1674 1675 static const struct ptp_clock_info efx_phc_clock_info = { 1676 .owner = THIS_MODULE, 1677 .name = "sfc", 1678 .max_adj = MAX_PPB, 1679 .n_alarm = 0, 1680 .n_ext_ts = 0, 1681 .n_per_out = 0, 1682 .n_pins = 0, 1683 .pps = 1, 1684 .adjfine = efx_phc_adjfine, 1685 .adjtime = efx_phc_adjtime, 1686 .gettime64 = efx_phc_gettime, 1687 .settime64 = efx_phc_settime, 1688 .enable = efx_phc_enable, 1689 }; 1690 1691 /* Initialise PTP state. */ 1692 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) 1693 { 1694 struct efx_ptp_data *ptp; 1695 int rc = 0; 1696 unsigned int pos; 1697 1698 if (efx->ptp_data) { 1699 efx->ptp_data->channel = channel; 1700 return 0; 1701 } 1702 1703 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); 1704 efx->ptp_data = ptp; 1705 if (!efx->ptp_data) 1706 return -ENOMEM; 1707 1708 ptp->efx = efx; 1709 ptp->channel = channel; 1710 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0; 1711 1712 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); 1713 if (rc != 0) 1714 goto fail1; 1715 1716 skb_queue_head_init(&ptp->rxq); 1717 skb_queue_head_init(&ptp->txq); 1718 ptp->workwq = create_singlethread_workqueue("sfc_ptp"); 1719 if (!ptp->workwq) { 1720 rc = -ENOMEM; 1721 goto fail2; 1722 } 1723 1724 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1725 ptp->xmit_skb = efx_ptp_xmit_skb_queue; 1726 /* Request sync events on this channel. */ 1727 channel->sync_events_state = SYNC_EVENTS_QUIESCENT; 1728 } else { 1729 ptp->xmit_skb = efx_ptp_xmit_skb_mc; 1730 } 1731 1732 INIT_WORK(&ptp->work, efx_ptp_worker); 1733 INIT_DELAYED_WORK(&ptp->cleanup_work, efx_ptp_cleanup_worker); 1734 ptp->config.flags = 0; 1735 ptp->config.tx_type = HWTSTAMP_TX_OFF; 1736 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; 1737 INIT_LIST_HEAD(&ptp->evt_list); 1738 INIT_LIST_HEAD(&ptp->evt_free_list); 1739 spin_lock_init(&ptp->evt_lock); 1740 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++) 1741 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list); 1742 1743 INIT_LIST_HEAD(&ptp->rxfilters_mcast); 1744 INIT_LIST_HEAD(&ptp->rxfilters_ucast); 1745 1746 /* Get the NIC PTP attributes and set up time conversions */ 1747 rc = efx_ptp_get_attributes(efx); 1748 if (rc < 0) 1749 goto fail3; 1750 1751 /* Get the timestamp corrections */ 1752 rc = efx_ptp_get_timestamp_corrections(efx); 1753 if (rc < 0) 1754 goto fail3; 1755 1756 if (efx->mcdi->fn_flags & 1757 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { 1758 ptp->phc_clock_info = efx_phc_clock_info; 1759 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, 1760 &efx->pci_dev->dev); 1761 if (IS_ERR(ptp->phc_clock)) { 1762 rc = PTR_ERR(ptp->phc_clock); 1763 goto fail3; 1764 } else if (ptp->phc_clock) { 1765 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); 1766 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); 1767 if (!ptp->pps_workwq) { 1768 rc = -ENOMEM; 1769 goto fail4; 1770 } 1771 } 1772 } 1773 ptp->nic_ts_enabled = false; 1774 1775 return 0; 1776 fail4: 1777 ptp_clock_unregister(efx->ptp_data->phc_clock); 1778 1779 fail3: 1780 destroy_workqueue(efx->ptp_data->workwq); 1781 1782 fail2: 1783 efx_nic_free_buffer(efx, &ptp->start); 1784 1785 fail1: 1786 kfree(efx->ptp_data); 1787 efx->ptp_data = NULL; 1788 1789 return rc; 1790 } 1791 1792 /* Initialise PTP channel. 1793 * 1794 * Setting core_index to zero causes the queue to be initialised and doesn't 1795 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. 1796 */ 1797 static int efx_ptp_probe_channel(struct efx_channel *channel) 1798 { 1799 struct efx_nic *efx = channel->efx; 1800 int rc; 1801 1802 channel->irq_moderation_us = 0; 1803 channel->rx_queue.core_index = 0; 1804 1805 rc = efx_ptp_probe(efx, channel); 1806 /* Failure to probe PTP is not fatal; this channel will just not be 1807 * used for anything. 1808 * In the case of EPERM, efx_ptp_probe will print its own message (in 1809 * efx_ptp_get_attributes()), so we don't need to. 1810 */ 1811 if (rc && rc != -EPERM) 1812 netif_warn(efx, drv, efx->net_dev, 1813 "Failed to probe PTP, rc=%d\n", rc); 1814 return 0; 1815 } 1816 1817 void efx_ptp_remove(struct efx_nic *efx) 1818 { 1819 if (!efx->ptp_data) 1820 return; 1821 1822 (void)efx_ptp_disable(efx); 1823 1824 cancel_work_sync(&efx->ptp_data->work); 1825 cancel_delayed_work_sync(&efx->ptp_data->cleanup_work); 1826 if (efx->ptp_data->pps_workwq) 1827 cancel_work_sync(&efx->ptp_data->pps_work); 1828 1829 skb_queue_purge(&efx->ptp_data->rxq); 1830 skb_queue_purge(&efx->ptp_data->txq); 1831 1832 if (efx->ptp_data->phc_clock) { 1833 destroy_workqueue(efx->ptp_data->pps_workwq); 1834 ptp_clock_unregister(efx->ptp_data->phc_clock); 1835 } 1836 1837 destroy_workqueue(efx->ptp_data->workwq); 1838 1839 efx_nic_free_buffer(efx, &efx->ptp_data->start); 1840 kfree(efx->ptp_data); 1841 efx->ptp_data = NULL; 1842 } 1843 1844 static void efx_ptp_remove_channel(struct efx_channel *channel) 1845 { 1846 efx_ptp_remove(channel->efx); 1847 } 1848 1849 static void efx_ptp_get_channel_name(struct efx_channel *channel, 1850 char *buf, size_t len) 1851 { 1852 snprintf(buf, len, "%s-ptp", channel->efx->name); 1853 } 1854 1855 /* Determine whether this packet should be processed by the PTP module 1856 * or transmitted conventionally. 1857 */ 1858 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1859 { 1860 return efx->ptp_data && 1861 efx->ptp_data->enabled && 1862 skb->len >= PTP_MIN_LENGTH && 1863 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && 1864 likely(skb->protocol == htons(ETH_P_IP)) && 1865 skb_transport_header_was_set(skb) && 1866 skb_network_header_len(skb) >= sizeof(struct iphdr) && 1867 ip_hdr(skb)->protocol == IPPROTO_UDP && 1868 skb_headlen(skb) >= 1869 skb_transport_offset(skb) + sizeof(struct udphdr) && 1870 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); 1871 } 1872 1873 /* Receive a PTP packet. Packets are queued until the arrival of 1874 * the receive timestamp from the MC - this will probably occur after the 1875 * packet arrival because of the processing in the MC. 1876 */ 1877 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) 1878 { 1879 struct efx_nic *efx = channel->efx; 1880 struct efx_ptp_data *ptp = efx->ptp_data; 1881 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; 1882 u8 *match_data_012, *match_data_345; 1883 unsigned int version; 1884 u8 *data; 1885 1886 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1887 1888 /* Correct version? */ 1889 if (ptp->mode == MC_CMD_PTP_MODE_V1) { 1890 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { 1891 return false; 1892 } 1893 data = skb->data; 1894 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); 1895 if (version != PTP_VERSION_V1) { 1896 return false; 1897 } 1898 1899 /* PTP V1 uses all six bytes of the UUID to match the packet 1900 * to the timestamp 1901 */ 1902 match_data_012 = data + PTP_V1_UUID_OFFSET; 1903 match_data_345 = data + PTP_V1_UUID_OFFSET + 3; 1904 } else { 1905 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { 1906 return false; 1907 } 1908 data = skb->data; 1909 version = data[PTP_V2_VERSION_OFFSET]; 1910 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { 1911 return false; 1912 } 1913 1914 /* The original V2 implementation uses bytes 2-7 of 1915 * the UUID to match the packet to the timestamp. This 1916 * discards two of the bytes of the MAC address used 1917 * to create the UUID (SF bug 33070). The PTP V2 1918 * enhanced mode fixes this issue and uses bytes 0-2 1919 * and byte 5-7 of the UUID. 1920 */ 1921 match_data_345 = data + PTP_V2_UUID_OFFSET + 5; 1922 if (ptp->mode == MC_CMD_PTP_MODE_V2) { 1923 match_data_012 = data + PTP_V2_UUID_OFFSET + 2; 1924 } else { 1925 match_data_012 = data + PTP_V2_UUID_OFFSET + 0; 1926 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED); 1927 } 1928 } 1929 1930 /* Does this packet require timestamping? */ 1931 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { 1932 match->state = PTP_PACKET_STATE_UNMATCHED; 1933 1934 /* We expect the sequence number to be in the same position in 1935 * the packet for PTP V1 and V2 1936 */ 1937 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); 1938 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); 1939 1940 /* Extract UUID/Sequence information */ 1941 match->words[0] = (match_data_012[0] | 1942 (match_data_012[1] << 8) | 1943 (match_data_012[2] << 16) | 1944 (match_data_345[0] << 24)); 1945 match->words[1] = (match_data_345[1] | 1946 (match_data_345[2] << 8) | 1947 (data[PTP_V1_SEQUENCE_OFFSET + 1948 PTP_V1_SEQUENCE_LENGTH - 1] << 1949 16)); 1950 } else { 1951 match->state = PTP_PACKET_STATE_MATCH_UNWANTED; 1952 } 1953 1954 skb_queue_tail(&ptp->rxq, skb); 1955 queue_work(ptp->workwq, &ptp->work); 1956 1957 return true; 1958 } 1959 1960 /* Transmit a PTP packet. This has to be transmitted by the MC 1961 * itself, through an MCDI call. MCDI calls aren't permitted 1962 * in the transmit path so defer the actual transmission to a suitable worker. 1963 */ 1964 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1965 { 1966 struct efx_ptp_data *ptp = efx->ptp_data; 1967 1968 skb_queue_tail(&ptp->txq, skb); 1969 1970 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && 1971 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) 1972 efx_xmit_hwtstamp_pending(skb); 1973 queue_work(ptp->workwq, &ptp->work); 1974 1975 return NETDEV_TX_OK; 1976 } 1977 1978 int efx_ptp_get_mode(struct efx_nic *efx) 1979 { 1980 return efx->ptp_data->mode; 1981 } 1982 1983 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, 1984 unsigned int new_mode) 1985 { 1986 if ((enable_wanted != efx->ptp_data->enabled) || 1987 (enable_wanted && (efx->ptp_data->mode != new_mode))) { 1988 int rc = 0; 1989 1990 if (enable_wanted) { 1991 /* Change of mode requires disable */ 1992 if (efx->ptp_data->enabled && 1993 (efx->ptp_data->mode != new_mode)) { 1994 efx->ptp_data->enabled = false; 1995 rc = efx_ptp_stop(efx); 1996 if (rc != 0) 1997 return rc; 1998 } 1999 2000 /* Set new operating mode and establish 2001 * baseline synchronisation, which must 2002 * succeed. 2003 */ 2004 efx->ptp_data->mode = new_mode; 2005 if (netif_running(efx->net_dev)) 2006 rc = efx_ptp_start(efx); 2007 if (rc == 0) { 2008 rc = efx_ptp_synchronize(efx, 2009 PTP_SYNC_ATTEMPTS * 2); 2010 if (rc != 0) 2011 efx_ptp_stop(efx); 2012 } 2013 } else { 2014 rc = efx_ptp_stop(efx); 2015 } 2016 2017 if (rc != 0) 2018 return rc; 2019 2020 efx->ptp_data->enabled = enable_wanted; 2021 } 2022 2023 return 0; 2024 } 2025 2026 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init) 2027 { 2028 int rc; 2029 2030 if ((init->tx_type != HWTSTAMP_TX_OFF) && 2031 (init->tx_type != HWTSTAMP_TX_ON)) 2032 return -ERANGE; 2033 2034 rc = efx->type->ptp_set_ts_config(efx, init); 2035 if (rc) 2036 return rc; 2037 2038 efx->ptp_data->config = *init; 2039 return 0; 2040 } 2041 2042 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info) 2043 { 2044 struct efx_ptp_data *ptp = efx->ptp_data; 2045 struct efx_nic *primary = efx->primary; 2046 2047 ASSERT_RTNL(); 2048 2049 if (!ptp) 2050 return; 2051 2052 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2053 SOF_TIMESTAMPING_RX_HARDWARE | 2054 SOF_TIMESTAMPING_RAW_HARDWARE); 2055 /* Check licensed features. If we don't have the license for TX 2056 * timestamps, the NIC will not support them. 2057 */ 2058 if (efx_ptp_use_mac_tx_timestamps(efx)) { 2059 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2060 2061 if (!(nic_data->licensed_features & 2062 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) 2063 ts_info->so_timestamping &= 2064 ~SOF_TIMESTAMPING_TX_HARDWARE; 2065 } 2066 if (primary && primary->ptp_data && primary->ptp_data->phc_clock) 2067 ts_info->phc_index = 2068 ptp_clock_index(primary->ptp_data->phc_clock); 2069 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; 2070 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; 2071 } 2072 2073 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr) 2074 { 2075 struct hwtstamp_config config; 2076 int rc; 2077 2078 /* Not a PTP enabled port */ 2079 if (!efx->ptp_data) 2080 return -EOPNOTSUPP; 2081 2082 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2083 return -EFAULT; 2084 2085 rc = efx_ptp_ts_init(efx, &config); 2086 if (rc != 0) 2087 return rc; 2088 2089 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) 2090 ? -EFAULT : 0; 2091 } 2092 2093 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr) 2094 { 2095 if (!efx->ptp_data) 2096 return -EOPNOTSUPP; 2097 2098 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config, 2099 sizeof(efx->ptp_data->config)) ? -EFAULT : 0; 2100 } 2101 2102 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) 2103 { 2104 struct efx_ptp_data *ptp = efx->ptp_data; 2105 2106 netif_err(efx, hw, efx->net_dev, 2107 "PTP unexpected event length: got %d expected %d\n", 2108 ptp->evt_frag_idx, expected_frag_len); 2109 ptp->reset_required = true; 2110 queue_work(ptp->workwq, &ptp->work); 2111 } 2112 2113 /* Process a completed receive event. Put it on the event queue and 2114 * start worker thread. This is required because event and their 2115 * correspoding packets may come in either order. 2116 */ 2117 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp) 2118 { 2119 struct efx_ptp_event_rx *evt = NULL; 2120 2121 if (WARN_ON_ONCE(ptp->rx_ts_inline)) 2122 return; 2123 2124 if (ptp->evt_frag_idx != 3) { 2125 ptp_event_failure(efx, 3); 2126 return; 2127 } 2128 2129 spin_lock_bh(&ptp->evt_lock); 2130 if (!list_empty(&ptp->evt_free_list)) { 2131 evt = list_first_entry(&ptp->evt_free_list, 2132 struct efx_ptp_event_rx, link); 2133 list_del(&evt->link); 2134 2135 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA); 2136 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2], 2137 MCDI_EVENT_SRC) | 2138 (EFX_QWORD_FIELD(ptp->evt_frags[1], 2139 MCDI_EVENT_SRC) << 8) | 2140 (EFX_QWORD_FIELD(ptp->evt_frags[0], 2141 MCDI_EVENT_SRC) << 16)); 2142 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time( 2143 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA), 2144 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA), 2145 ptp->ts_corrections.ptp_rx); 2146 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 2147 list_add_tail(&evt->link, &ptp->evt_list); 2148 2149 queue_work(ptp->workwq, &ptp->work); 2150 } else if (net_ratelimit()) { 2151 /* Log a rate-limited warning message. */ 2152 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n"); 2153 } 2154 spin_unlock_bh(&ptp->evt_lock); 2155 } 2156 2157 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) 2158 { 2159 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); 2160 if (ptp->evt_frag_idx != 1) { 2161 ptp_event_failure(efx, 1); 2162 return; 2163 } 2164 2165 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); 2166 } 2167 2168 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) 2169 { 2170 if (ptp->nic_ts_enabled) 2171 queue_work(ptp->pps_workwq, &ptp->pps_work); 2172 } 2173 2174 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) 2175 { 2176 struct efx_ptp_data *ptp = efx->ptp_data; 2177 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); 2178 2179 if (!ptp) { 2180 if (!efx->ptp_warned) { 2181 netif_warn(efx, drv, efx->net_dev, 2182 "Received PTP event but PTP not set up\n"); 2183 efx->ptp_warned = true; 2184 } 2185 return; 2186 } 2187 2188 if (!ptp->enabled) 2189 return; 2190 2191 if (ptp->evt_frag_idx == 0) { 2192 ptp->evt_code = code; 2193 } else if (ptp->evt_code != code) { 2194 netif_err(efx, hw, efx->net_dev, 2195 "PTP out of sequence event %d\n", code); 2196 ptp->evt_frag_idx = 0; 2197 } 2198 2199 ptp->evt_frags[ptp->evt_frag_idx++] = *ev; 2200 if (!MCDI_EVENT_FIELD(*ev, CONT)) { 2201 /* Process resulting event */ 2202 switch (code) { 2203 case MCDI_EVENT_CODE_PTP_RX: 2204 ptp_event_rx(efx, ptp); 2205 break; 2206 case MCDI_EVENT_CODE_PTP_FAULT: 2207 ptp_event_fault(efx, ptp); 2208 break; 2209 case MCDI_EVENT_CODE_PTP_PPS: 2210 ptp_event_pps(efx, ptp); 2211 break; 2212 default: 2213 netif_err(efx, hw, efx->net_dev, 2214 "PTP unknown event %d\n", code); 2215 break; 2216 } 2217 ptp->evt_frag_idx = 0; 2218 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { 2219 netif_err(efx, hw, efx->net_dev, 2220 "PTP too many event fragments\n"); 2221 ptp->evt_frag_idx = 0; 2222 } 2223 } 2224 2225 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) 2226 { 2227 struct efx_nic *efx = channel->efx; 2228 struct efx_ptp_data *ptp = efx->ptp_data; 2229 2230 /* When extracting the sync timestamp minor value, we should discard 2231 * the least significant two bits. These are not required in order 2232 * to reconstruct full-range timestamps and they are optionally used 2233 * to report status depending on the options supplied when subscribing 2234 * for sync events. 2235 */ 2236 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); 2237 channel->sync_timestamp_minor = 2238 (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC) 2239 << ptp->nic_time.sync_event_minor_shift; 2240 2241 /* if sync events have been disabled then we want to silently ignore 2242 * this event, so throw away result. 2243 */ 2244 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, 2245 SYNC_EVENTS_VALID); 2246 } 2247 2248 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) 2249 { 2250 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 2251 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); 2252 #else 2253 const u8 *data = eh + efx->rx_packet_ts_offset; 2254 return (u32)data[0] | 2255 (u32)data[1] << 8 | 2256 (u32)data[2] << 16 | 2257 (u32)data[3] << 24; 2258 #endif 2259 } 2260 2261 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, 2262 struct sk_buff *skb) 2263 { 2264 struct efx_nic *efx = channel->efx; 2265 struct efx_ptp_data *ptp = efx->ptp_data; 2266 u32 pkt_timestamp_major, pkt_timestamp_minor; 2267 u32 diff, carry; 2268 struct skb_shared_hwtstamps *timestamps; 2269 2270 if (channel->sync_events_state != SYNC_EVENTS_VALID) 2271 return; 2272 2273 pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb)); 2274 2275 /* get the difference between the packet and sync timestamps, 2276 * modulo one second 2277 */ 2278 diff = pkt_timestamp_minor - channel->sync_timestamp_minor; 2279 if (pkt_timestamp_minor < channel->sync_timestamp_minor) 2280 diff += ptp->nic_time.minor_max; 2281 2282 /* do we roll over a second boundary and need to carry the one? */ 2283 carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ? 2284 1 : 0; 2285 2286 if (diff <= ptp->nic_time.sync_event_diff_max) { 2287 /* packet is ahead of the sync event by a quarter of a second or 2288 * less (allowing for fuzz) 2289 */ 2290 pkt_timestamp_major = channel->sync_timestamp_major + carry; 2291 } else if (diff >= ptp->nic_time.sync_event_diff_min) { 2292 /* packet is behind the sync event but within the fuzz factor. 2293 * This means the RX packet and sync event crossed as they were 2294 * placed on the event queue, which can sometimes happen. 2295 */ 2296 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; 2297 } else { 2298 /* it's outside tolerance in both directions. this might be 2299 * indicative of us missing sync events for some reason, so 2300 * we'll call it an error rather than risk giving a bogus 2301 * timestamp. 2302 */ 2303 netif_vdbg(efx, drv, efx->net_dev, 2304 "packet timestamp %x too far from sync event %x:%x\n", 2305 pkt_timestamp_minor, channel->sync_timestamp_major, 2306 channel->sync_timestamp_minor); 2307 return; 2308 } 2309 2310 /* attach the timestamps to the skb */ 2311 timestamps = skb_hwtstamps(skb); 2312 timestamps->hwtstamp = 2313 ptp->nic_to_kernel_time(pkt_timestamp_major, 2314 pkt_timestamp_minor, 2315 ptp->ts_corrections.general_rx); 2316 } 2317 2318 static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 2319 { 2320 struct efx_ptp_data *ptp_data = container_of(ptp, 2321 struct efx_ptp_data, 2322 phc_clock_info); 2323 s32 delta = scaled_ppm_to_ppb(scaled_ppm); 2324 struct efx_nic *efx = ptp_data->efx; 2325 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); 2326 s64 adjustment_ns; 2327 int rc; 2328 2329 if (delta > MAX_PPB) 2330 delta = MAX_PPB; 2331 else if (delta < -MAX_PPB) 2332 delta = -MAX_PPB; 2333 2334 /* Convert ppb to fixed point ns taking care to round correctly. */ 2335 adjustment_ns = ((s64)delta * PPB_SCALE_WORD + 2336 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >> 2337 ptp_data->adjfreq_ppb_shift; 2338 2339 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2340 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); 2341 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); 2342 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); 2343 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); 2344 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), 2345 NULL, 0, NULL); 2346 if (rc != 0) 2347 return rc; 2348 2349 ptp_data->current_adjfreq = adjustment_ns; 2350 return 0; 2351 } 2352 2353 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) 2354 { 2355 u32 nic_major, nic_minor; 2356 struct efx_ptp_data *ptp_data = container_of(ptp, 2357 struct efx_ptp_data, 2358 phc_clock_info); 2359 struct efx_nic *efx = ptp_data->efx; 2360 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); 2361 2362 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); 2363 2364 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2365 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2366 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); 2367 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); 2368 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); 2369 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2370 NULL, 0, NULL); 2371 } 2372 2373 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 2374 { 2375 struct efx_ptp_data *ptp_data = container_of(ptp, 2376 struct efx_ptp_data, 2377 phc_clock_info); 2378 struct efx_nic *efx = ptp_data->efx; 2379 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); 2380 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); 2381 int rc; 2382 ktime_t kt; 2383 2384 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); 2385 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2386 2387 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2388 outbuf, sizeof(outbuf), NULL); 2389 if (rc != 0) 2390 return rc; 2391 2392 kt = ptp_data->nic_to_kernel_time( 2393 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), 2394 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); 2395 *ts = ktime_to_timespec64(kt); 2396 return 0; 2397 } 2398 2399 static int efx_phc_settime(struct ptp_clock_info *ptp, 2400 const struct timespec64 *e_ts) 2401 { 2402 /* Get the current NIC time, efx_phc_gettime. 2403 * Subtract from the desired time to get the offset 2404 * call efx_phc_adjtime with the offset 2405 */ 2406 int rc; 2407 struct timespec64 time_now; 2408 struct timespec64 delta; 2409 2410 rc = efx_phc_gettime(ptp, &time_now); 2411 if (rc != 0) 2412 return rc; 2413 2414 delta = timespec64_sub(*e_ts, time_now); 2415 2416 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta)); 2417 if (rc != 0) 2418 return rc; 2419 2420 return 0; 2421 } 2422 2423 static int efx_phc_enable(struct ptp_clock_info *ptp, 2424 struct ptp_clock_request *request, 2425 int enable) 2426 { 2427 struct efx_ptp_data *ptp_data = container_of(ptp, 2428 struct efx_ptp_data, 2429 phc_clock_info); 2430 if (request->type != PTP_CLK_REQ_PPS) 2431 return -EOPNOTSUPP; 2432 2433 ptp_data->nic_ts_enabled = !!enable; 2434 return 0; 2435 } 2436 2437 static const struct efx_channel_type efx_ptp_channel_type = { 2438 .handle_no_channel = efx_ptp_handle_no_channel, 2439 .pre_probe = efx_ptp_probe_channel, 2440 .post_remove = efx_ptp_remove_channel, 2441 .get_name = efx_ptp_get_channel_name, 2442 .copy = efx_copy_channel, 2443 .receive_skb = efx_ptp_rx, 2444 .want_txqs = efx_ptp_want_txqs, 2445 .keep_eventq = false, 2446 }; 2447 2448 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx) 2449 { 2450 /* Check whether PTP is implemented on this NIC. The DISABLE 2451 * operation will succeed if and only if it is implemented. 2452 */ 2453 if (efx_ptp_disable(efx) == 0) 2454 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = 2455 &efx_ptp_channel_type; 2456 } 2457 2458 void efx_ptp_start_datapath(struct efx_nic *efx) 2459 { 2460 if (efx_ptp_restart(efx)) 2461 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); 2462 /* re-enable timestamping if it was previously enabled */ 2463 if (efx->type->ptp_set_ts_sync_events) 2464 efx->type->ptp_set_ts_sync_events(efx, true, true); 2465 } 2466 2467 void efx_ptp_stop_datapath(struct efx_nic *efx) 2468 { 2469 /* temporarily disable timestamping */ 2470 if (efx->type->ptp_set_ts_sync_events) 2471 efx->type->ptp_set_ts_sync_events(efx, false, true); 2472 efx_ptp_stop(efx); 2473 } 2474