1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2011-2013 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 /* Theory of operation: 11 * 12 * PTP support is assisted by firmware running on the MC, which provides 13 * the hardware timestamping capabilities. Both transmitted and received 14 * PTP event packets are queued onto internal queues for subsequent processing; 15 * this is because the MC operations are relatively long and would block 16 * block NAPI/interrupt operation. 17 * 18 * Receive event processing: 19 * The event contains the packet's UUID and sequence number, together 20 * with the hardware timestamp. The PTP receive packet queue is searched 21 * for this UUID/sequence number and, if found, put on a pending queue. 22 * Packets not matching are delivered without timestamps (MCDI events will 23 * always arrive after the actual packet). 24 * It is important for the operation of the PTP protocol that the ordering 25 * of packets between the event and general port is maintained. 26 * 27 * Work queue processing: 28 * If work waiting, synchronise host/hardware time 29 * 30 * Transmit: send packet through MC, which returns the transmission time 31 * that is converted to an appropriate timestamp. 32 * 33 * Receive: the packet's reception time is converted to an appropriate 34 * timestamp. 35 */ 36 #include <linux/ip.h> 37 #include <linux/udp.h> 38 #include <linux/time.h> 39 #include <linux/ktime.h> 40 #include <linux/module.h> 41 #include <linux/net_tstamp.h> 42 #include <linux/pps_kernel.h> 43 #include <linux/ptp_clock_kernel.h> 44 #include "net_driver.h" 45 #include "efx.h" 46 #include "mcdi.h" 47 #include "mcdi_pcol.h" 48 #include "io.h" 49 #include "farch_regs.h" 50 #include "nic.h" 51 52 /* Maximum number of events expected to make up a PTP event */ 53 #define MAX_EVENT_FRAGS 3 54 55 /* Maximum delay, ms, to begin synchronisation */ 56 #define MAX_SYNCHRONISE_WAIT_MS 2 57 58 /* How long, at most, to spend synchronising */ 59 #define SYNCHRONISE_PERIOD_NS 250000 60 61 /* How often to update the shared memory time */ 62 #define SYNCHRONISATION_GRANULARITY_NS 200 63 64 /* Minimum permitted length of a (corrected) synchronisation time */ 65 #define DEFAULT_MIN_SYNCHRONISATION_NS 120 66 67 /* Maximum permitted length of a (corrected) synchronisation time */ 68 #define MAX_SYNCHRONISATION_NS 1000 69 70 /* How many (MC) receive events that can be queued */ 71 #define MAX_RECEIVE_EVENTS 8 72 73 /* Length of (modified) moving average. */ 74 #define AVERAGE_LENGTH 16 75 76 /* How long an unmatched event or packet can be held */ 77 #define PKT_EVENT_LIFETIME_MS 10 78 79 /* Offsets into PTP packet for identification. These offsets are from the 80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor 81 * PTP V2 permit the use of IPV4 options. 82 */ 83 #define PTP_DPORT_OFFSET 22 84 85 #define PTP_V1_VERSION_LENGTH 2 86 #define PTP_V1_VERSION_OFFSET 28 87 88 #define PTP_V1_UUID_LENGTH 6 89 #define PTP_V1_UUID_OFFSET 50 90 91 #define PTP_V1_SEQUENCE_LENGTH 2 92 #define PTP_V1_SEQUENCE_OFFSET 58 93 94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: 95 * includes IP header. 96 */ 97 #define PTP_V1_MIN_LENGTH 64 98 99 #define PTP_V2_VERSION_LENGTH 1 100 #define PTP_V2_VERSION_OFFSET 29 101 102 #define PTP_V2_UUID_LENGTH 8 103 #define PTP_V2_UUID_OFFSET 48 104 105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2), 106 * the MC only captures the last six bytes of the clock identity. These values 107 * reflect those, not the ones used in the standard. The standard permits 108 * mapping of V1 UUIDs to V2 UUIDs with these same values. 109 */ 110 #define PTP_V2_MC_UUID_LENGTH 6 111 #define PTP_V2_MC_UUID_OFFSET 50 112 113 #define PTP_V2_SEQUENCE_LENGTH 2 114 #define PTP_V2_SEQUENCE_OFFSET 58 115 116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: 117 * includes IP header. 118 */ 119 #define PTP_V2_MIN_LENGTH 63 120 121 #define PTP_MIN_LENGTH 63 122 123 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */ 124 #define PTP_EVENT_PORT 319 125 #define PTP_GENERAL_PORT 320 126 127 /* Annoyingly the format of the version numbers are different between 128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2. 129 */ 130 #define PTP_VERSION_V1 1 131 132 #define PTP_VERSION_V2 2 133 #define PTP_VERSION_V2_MASK 0x0f 134 135 enum ptp_packet_state { 136 PTP_PACKET_STATE_UNMATCHED = 0, 137 PTP_PACKET_STATE_MATCHED, 138 PTP_PACKET_STATE_TIMED_OUT, 139 PTP_PACKET_STATE_MATCH_UNWANTED 140 }; 141 142 /* NIC synchronised with single word of time only comprising 143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. 144 */ 145 #define MC_NANOSECOND_BITS 30 146 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) 147 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) 148 149 /* Maximum parts-per-billion adjustment that is acceptable */ 150 #define MAX_PPB 1000000 151 152 /* Number of bits required to hold the above */ 153 #define MAX_PPB_BITS 20 154 155 /* Number of extra bits allowed when calculating fractional ns. 156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should 157 * be less than 63. 158 */ 159 #define PPB_EXTRA_BITS 2 160 161 /* Precalculate scale word to avoid long long division at runtime */ 162 #define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\ 163 MAX_PPB_BITS)) / 1000000000LL) 164 165 #define PTP_SYNC_ATTEMPTS 4 166 167 /** 168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. 169 * @words: UUID and (partial) sequence number 170 * @expiry: Time after which the packet should be delivered irrespective of 171 * event arrival. 172 * @state: The state of the packet - whether it is ready for processing or 173 * whether that is of no interest. 174 */ 175 struct efx_ptp_match { 176 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)]; 177 unsigned long expiry; 178 enum ptp_packet_state state; 179 }; 180 181 /** 182 * struct efx_ptp_event_rx - A PTP receive event (from MC) 183 * @seq0: First part of (PTP) UUID 184 * @seq1: Second part of (PTP) UUID and sequence number 185 * @hwtimestamp: Event timestamp 186 */ 187 struct efx_ptp_event_rx { 188 struct list_head link; 189 u32 seq0; 190 u32 seq1; 191 ktime_t hwtimestamp; 192 unsigned long expiry; 193 }; 194 195 /** 196 * struct efx_ptp_timeset - Synchronisation between host and MC 197 * @host_start: Host time immediately before hardware timestamp taken 198 * @major: Hardware timestamp, major 199 * @minor: Hardware timestamp, minor 200 * @host_end: Host time immediately after hardware timestamp taken 201 * @wait: Number of NIC clock ticks between hardware timestamp being read and 202 * host end time being seen 203 * @window: Difference of host_end and host_start 204 * @valid: Whether this timeset is valid 205 */ 206 struct efx_ptp_timeset { 207 u32 host_start; 208 u32 major; 209 u32 minor; 210 u32 host_end; 211 u32 wait; 212 u32 window; /* Derived: end - start, allowing for wrap */ 213 }; 214 215 /** 216 * struct efx_ptp_data - Precision Time Protocol (PTP) state 217 * @efx: The NIC context 218 * @channel: The PTP channel (Siena only) 219 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are 220 * separate events) 221 * @rxq: Receive queue (awaiting timestamps) 222 * @txq: Transmit queue 223 * @evt_list: List of MC receive events awaiting packets 224 * @evt_free_list: List of free events 225 * @evt_lock: Lock for manipulating evt_list and evt_free_list 226 * @rx_evts: Instantiated events (on evt_list and evt_free_list) 227 * @workwq: Work queue for processing pending PTP operations 228 * @work: Work task 229 * @reset_required: A serious error has occurred and the PTP task needs to be 230 * reset (disable, enable). 231 * @rxfilter_event: Receive filter when operating 232 * @rxfilter_general: Receive filter when operating 233 * @config: Current timestamp configuration 234 * @enabled: PTP operation enabled 235 * @mode: Mode in which PTP operating (PTP version) 236 * @time_format: Time format supported by this NIC 237 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time 238 * @nic_to_kernel_time: Function to convert from NIC to kernel time 239 * @min_synchronisation_ns: Minimum acceptable corrected sync window 240 * @ts_corrections.tx: Required driver correction of transmit timestamps 241 * @ts_corrections.rx: Required driver correction of receive timestamps 242 * @ts_corrections.pps_out: PPS output error (information only) 243 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps 244 * @evt_frags: Partly assembled PTP events 245 * @evt_frag_idx: Current fragment number 246 * @evt_code: Last event code 247 * @start: Address at which MC indicates ready for synchronisation 248 * @host_time_pps: Host time at last PPS 249 * @current_adjfreq: Current ppb adjustment. 250 * @phc_clock: Pointer to registered phc device (if primary function) 251 * @phc_clock_info: Registration structure for phc device 252 * @pps_work: pps work task for handling pps events 253 * @pps_workwq: pps work queue 254 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled 255 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids 256 * allocations in main data path). 257 * @good_syncs: Number of successful synchronisations. 258 * @fast_syncs: Number of synchronisations requiring short delay 259 * @bad_syncs: Number of failed synchronisations. 260 * @sync_timeouts: Number of synchronisation timeouts 261 * @no_time_syncs: Number of synchronisations with no good times. 262 * @invalid_sync_windows: Number of sync windows with bad durations. 263 * @undersize_sync_windows: Number of corrected sync windows that are too small 264 * @oversize_sync_windows: Number of corrected sync windows that are too large 265 * @rx_no_timestamp: Number of packets received without a timestamp. 266 * @timeset: Last set of synchronisation statistics. 267 */ 268 struct efx_ptp_data { 269 struct efx_nic *efx; 270 struct efx_channel *channel; 271 bool rx_ts_inline; 272 struct sk_buff_head rxq; 273 struct sk_buff_head txq; 274 struct list_head evt_list; 275 struct list_head evt_free_list; 276 spinlock_t evt_lock; 277 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS]; 278 struct workqueue_struct *workwq; 279 struct work_struct work; 280 bool reset_required; 281 u32 rxfilter_event; 282 u32 rxfilter_general; 283 bool rxfilter_installed; 284 struct hwtstamp_config config; 285 bool enabled; 286 unsigned int mode; 287 unsigned int time_format; 288 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); 289 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, 290 s32 correction); 291 unsigned int min_synchronisation_ns; 292 struct { 293 s32 tx; 294 s32 rx; 295 s32 pps_out; 296 s32 pps_in; 297 } ts_corrections; 298 efx_qword_t evt_frags[MAX_EVENT_FRAGS]; 299 int evt_frag_idx; 300 int evt_code; 301 struct efx_buffer start; 302 struct pps_event_time host_time_pps; 303 s64 current_adjfreq; 304 struct ptp_clock *phc_clock; 305 struct ptp_clock_info phc_clock_info; 306 struct work_struct pps_work; 307 struct workqueue_struct *pps_workwq; 308 bool nic_ts_enabled; 309 MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX); 310 311 unsigned int good_syncs; 312 unsigned int fast_syncs; 313 unsigned int bad_syncs; 314 unsigned int sync_timeouts; 315 unsigned int no_time_syncs; 316 unsigned int invalid_sync_windows; 317 unsigned int undersize_sync_windows; 318 unsigned int oversize_sync_windows; 319 unsigned int rx_no_timestamp; 320 struct efx_ptp_timeset 321 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; 322 }; 323 324 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta); 325 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); 326 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts); 327 static int efx_phc_settime(struct ptp_clock_info *ptp, 328 const struct timespec *e_ts); 329 static int efx_phc_enable(struct ptp_clock_info *ptp, 330 struct ptp_clock_request *request, int on); 331 332 #define PTP_SW_STAT(ext_name, field_name) \ 333 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } 334 #define PTP_MC_STAT(ext_name, mcdi_name) \ 335 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } 336 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { 337 PTP_SW_STAT(ptp_good_syncs, good_syncs), 338 PTP_SW_STAT(ptp_fast_syncs, fast_syncs), 339 PTP_SW_STAT(ptp_bad_syncs, bad_syncs), 340 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), 341 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), 342 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), 343 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), 344 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), 345 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), 346 PTP_MC_STAT(ptp_tx_timestamp_packets, TX), 347 PTP_MC_STAT(ptp_rx_timestamp_packets, RX), 348 PTP_MC_STAT(ptp_timestamp_packets, TS), 349 PTP_MC_STAT(ptp_filter_matches, FM), 350 PTP_MC_STAT(ptp_non_filter_matches, NFM), 351 }; 352 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) 353 static const unsigned long efx_ptp_stat_mask[] = { 354 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, 355 }; 356 357 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings) 358 { 359 if (!efx->ptp_data) 360 return 0; 361 362 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 363 efx_ptp_stat_mask, strings); 364 } 365 366 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats) 367 { 368 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); 369 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); 370 size_t i; 371 int rc; 372 373 if (!efx->ptp_data) 374 return 0; 375 376 /* Copy software statistics */ 377 for (i = 0; i < PTP_STAT_COUNT; i++) { 378 if (efx_ptp_stat_desc[i].dma_width) 379 continue; 380 stats[i] = *(unsigned int *)((char *)efx->ptp_data + 381 efx_ptp_stat_desc[i].offset); 382 } 383 384 /* Fetch MC statistics. We *must* fill in all statistics or 385 * risk leaking kernel memory to userland, so if the MCDI 386 * request fails we pretend we got zeroes. 387 */ 388 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); 389 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 390 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 391 outbuf, sizeof(outbuf), NULL); 392 if (rc) { 393 netif_err(efx, hw, efx->net_dev, 394 "MC_CMD_PTP_OP_STATUS failed (%d)\n", rc); 395 memset(outbuf, 0, sizeof(outbuf)); 396 } 397 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 398 efx_ptp_stat_mask, 399 stats, _MCDI_PTR(outbuf, 0), false); 400 401 return PTP_STAT_COUNT; 402 } 403 404 /* For Siena platforms NIC time is s and ns */ 405 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor) 406 { 407 struct timespec ts = ns_to_timespec(ns); 408 *nic_major = ts.tv_sec; 409 *nic_minor = ts.tv_nsec; 410 } 411 412 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor, 413 s32 correction) 414 { 415 ktime_t kt = ktime_set(nic_major, nic_minor); 416 if (correction >= 0) 417 kt = ktime_add_ns(kt, (u64)correction); 418 else 419 kt = ktime_sub_ns(kt, (u64)-correction); 420 return kt; 421 } 422 423 /* To convert from s27 format to ns we multiply then divide by a power of 2. 424 * For the conversion from ns to s27, the operation is also converted to a 425 * multiply and shift. 426 */ 427 #define S27_TO_NS_SHIFT (27) 428 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) 429 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT) 430 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT) 431 432 /* For Huntington platforms NIC time is in seconds and fractions of a second 433 * where the minor register only uses 27 bits in units of 2^-27s. 434 */ 435 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) 436 { 437 struct timespec ts = ns_to_timespec(ns); 438 u32 maj = ts.tv_sec; 439 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + 440 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); 441 442 /* The conversion can result in the minor value exceeding the maximum. 443 * In this case, round up to the next second. 444 */ 445 if (min >= S27_MINOR_MAX) { 446 min -= S27_MINOR_MAX; 447 maj++; 448 } 449 450 *nic_major = maj; 451 *nic_minor = min; 452 } 453 454 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) 455 { 456 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + 457 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); 458 return ktime_set(nic_major, ns); 459 } 460 461 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, 462 s32 correction) 463 { 464 /* Apply the correction and deal with carry */ 465 nic_minor += correction; 466 if ((s32)nic_minor < 0) { 467 nic_minor += S27_MINOR_MAX; 468 nic_major--; 469 } else if (nic_minor >= S27_MINOR_MAX) { 470 nic_minor -= S27_MINOR_MAX; 471 nic_major++; 472 } 473 474 return efx_ptp_s27_to_ktime(nic_major, nic_minor); 475 } 476 477 /* Get PTP attributes and set up time conversions */ 478 static int efx_ptp_get_attributes(struct efx_nic *efx) 479 { 480 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); 481 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); 482 struct efx_ptp_data *ptp = efx->ptp_data; 483 int rc; 484 u32 fmt; 485 size_t out_len; 486 487 /* Get the PTP attributes. If the NIC doesn't support the operation we 488 * use the default format for compatibility with older NICs i.e. 489 * seconds and nanoseconds. 490 */ 491 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); 492 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 493 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 494 outbuf, sizeof(outbuf), &out_len); 495 if (rc == 0) 496 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); 497 else if (rc == -EINVAL) 498 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; 499 else 500 return rc; 501 502 if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION) { 503 ptp->ns_to_nic_time = efx_ptp_ns_to_s27; 504 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; 505 } else if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS) { 506 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns; 507 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction; 508 } else { 509 return -ERANGE; 510 } 511 512 ptp->time_format = fmt; 513 514 /* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older 515 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value 516 * to use for the minimum acceptable corrected synchronization window. 517 * If we have the extra information store it. For older firmware that 518 * does not implement the extended command use the default value. 519 */ 520 if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) 521 ptp->min_synchronisation_ns = 522 MCDI_DWORD(outbuf, 523 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); 524 else 525 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; 526 527 return 0; 528 } 529 530 /* Get PTP timestamp corrections */ 531 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) 532 { 533 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); 534 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN); 535 int rc; 536 537 /* Get the timestamp corrections from the NIC. If this operation is 538 * not supported (older NICs) then no correction is required. 539 */ 540 MCDI_SET_DWORD(inbuf, PTP_IN_OP, 541 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); 542 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 543 544 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 545 outbuf, sizeof(outbuf), NULL); 546 if (rc == 0) { 547 efx->ptp_data->ts_corrections.tx = MCDI_DWORD(outbuf, 548 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); 549 efx->ptp_data->ts_corrections.rx = MCDI_DWORD(outbuf, 550 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); 551 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, 552 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); 553 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, 554 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); 555 } else if (rc == -EINVAL) { 556 efx->ptp_data->ts_corrections.tx = 0; 557 efx->ptp_data->ts_corrections.rx = 0; 558 efx->ptp_data->ts_corrections.pps_out = 0; 559 efx->ptp_data->ts_corrections.pps_in = 0; 560 } else { 561 return rc; 562 } 563 564 return 0; 565 } 566 567 /* Enable MCDI PTP support. */ 568 static int efx_ptp_enable(struct efx_nic *efx) 569 { 570 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); 571 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0); 572 int rc; 573 574 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); 575 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 576 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, 577 efx->ptp_data->channel ? 578 efx->ptp_data->channel->channel : 0); 579 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); 580 581 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 582 outbuf, sizeof(outbuf), NULL); 583 rc = (rc == -EALREADY) ? 0 : rc; 584 if (rc) 585 efx_mcdi_display_error(efx, MC_CMD_PTP, 586 MC_CMD_PTP_IN_ENABLE_LEN, 587 outbuf, sizeof(outbuf), rc); 588 return rc; 589 } 590 591 /* Disable MCDI PTP support. 592 * 593 * Note that this function should never rely on the presence of ptp_data - 594 * may be called before that exists. 595 */ 596 static int efx_ptp_disable(struct efx_nic *efx) 597 { 598 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); 599 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0); 600 int rc; 601 602 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); 603 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 604 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 605 outbuf, sizeof(outbuf), NULL); 606 rc = (rc == -EALREADY) ? 0 : rc; 607 if (rc) 608 efx_mcdi_display_error(efx, MC_CMD_PTP, 609 MC_CMD_PTP_IN_DISABLE_LEN, 610 outbuf, sizeof(outbuf), rc); 611 return rc; 612 } 613 614 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) 615 { 616 struct sk_buff *skb; 617 618 while ((skb = skb_dequeue(q))) { 619 local_bh_disable(); 620 netif_receive_skb(skb); 621 local_bh_enable(); 622 } 623 } 624 625 static void efx_ptp_handle_no_channel(struct efx_nic *efx) 626 { 627 netif_err(efx, drv, efx->net_dev, 628 "ERROR: PTP requires MSI-X and 1 additional interrupt" 629 "vector. PTP disabled\n"); 630 } 631 632 /* Repeatedly send the host time to the MC which will capture the hardware 633 * time. 634 */ 635 static void efx_ptp_send_times(struct efx_nic *efx, 636 struct pps_event_time *last_time) 637 { 638 struct pps_event_time now; 639 struct timespec limit; 640 struct efx_ptp_data *ptp = efx->ptp_data; 641 struct timespec start; 642 int *mc_running = ptp->start.addr; 643 644 pps_get_ts(&now); 645 start = now.ts_real; 646 limit = now.ts_real; 647 timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS); 648 649 /* Write host time for specified period or until MC is done */ 650 while ((timespec_compare(&now.ts_real, &limit) < 0) && 651 ACCESS_ONCE(*mc_running)) { 652 struct timespec update_time; 653 unsigned int host_time; 654 655 /* Don't update continuously to avoid saturating the PCIe bus */ 656 update_time = now.ts_real; 657 timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); 658 do { 659 pps_get_ts(&now); 660 } while ((timespec_compare(&now.ts_real, &update_time) < 0) && 661 ACCESS_ONCE(*mc_running)); 662 663 /* Synchronise NIC with single word of time only */ 664 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | 665 now.ts_real.tv_nsec); 666 /* Update host time in NIC memory */ 667 efx->type->ptp_write_host_time(efx, host_time); 668 } 669 *last_time = now; 670 } 671 672 /* Read a timeset from the MC's results and partial process. */ 673 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), 674 struct efx_ptp_timeset *timeset) 675 { 676 unsigned start_ns, end_ns; 677 678 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); 679 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); 680 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); 681 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), 682 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); 683 684 /* Ignore seconds */ 685 start_ns = timeset->host_start & MC_NANOSECOND_MASK; 686 end_ns = timeset->host_end & MC_NANOSECOND_MASK; 687 /* Allow for rollover */ 688 if (end_ns < start_ns) 689 end_ns += NSEC_PER_SEC; 690 /* Determine duration of operation */ 691 timeset->window = end_ns - start_ns; 692 } 693 694 /* Process times received from MC. 695 * 696 * Extract times from returned results, and establish the minimum value 697 * seen. The minimum value represents the "best" possible time and events 698 * too much greater than this are rejected - the machine is, perhaps, too 699 * busy. A number of readings are taken so that, hopefully, at least one good 700 * synchronisation will be seen in the results. 701 */ 702 static int 703 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), 704 size_t response_length, 705 const struct pps_event_time *last_time) 706 { 707 unsigned number_readings = 708 MCDI_VAR_ARRAY_LEN(response_length, 709 PTP_OUT_SYNCHRONIZE_TIMESET); 710 unsigned i; 711 unsigned ngood = 0; 712 unsigned last_good = 0; 713 struct efx_ptp_data *ptp = efx->ptp_data; 714 u32 last_sec; 715 u32 start_sec; 716 struct timespec delta; 717 ktime_t mc_time; 718 719 if (number_readings == 0) 720 return -EAGAIN; 721 722 /* Read the set of results and find the last good host-MC 723 * synchronization result. The MC times when it finishes reading the 724 * host time so the corrected window time should be fairly constant 725 * for a given platform. Increment stats for any results that appear 726 * to be erroneous. 727 */ 728 for (i = 0; i < number_readings; i++) { 729 s32 window, corrected; 730 struct timespec wait; 731 732 efx_ptp_read_timeset( 733 MCDI_ARRAY_STRUCT_PTR(synch_buf, 734 PTP_OUT_SYNCHRONIZE_TIMESET, i), 735 &ptp->timeset[i]); 736 737 wait = ktime_to_timespec( 738 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); 739 window = ptp->timeset[i].window; 740 corrected = window - wait.tv_nsec; 741 742 /* We expect the uncorrected synchronization window to be at 743 * least as large as the interval between host start and end 744 * times. If it is smaller than this then this is mostly likely 745 * to be a consequence of the host's time being adjusted. 746 * Check that the corrected sync window is in a reasonable 747 * range. If it is out of range it is likely to be because an 748 * interrupt or other delay occurred between reading the system 749 * time and writing it to MC memory. 750 */ 751 if (window < SYNCHRONISATION_GRANULARITY_NS) { 752 ++ptp->invalid_sync_windows; 753 } else if (corrected >= MAX_SYNCHRONISATION_NS) { 754 ++ptp->oversize_sync_windows; 755 } else if (corrected < ptp->min_synchronisation_ns) { 756 ++ptp->undersize_sync_windows; 757 } else { 758 ngood++; 759 last_good = i; 760 } 761 } 762 763 if (ngood == 0) { 764 netif_warn(efx, drv, efx->net_dev, 765 "PTP no suitable synchronisations\n"); 766 return -EAGAIN; 767 } 768 769 /* Calculate delay from last good sync (host time) to last_time. 770 * It is possible that the seconds rolled over between taking 771 * the start reading and the last value written by the host. The 772 * timescales are such that a gap of more than one second is never 773 * expected. delta is *not* normalised. 774 */ 775 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; 776 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; 777 if (start_sec != last_sec && 778 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { 779 netif_warn(efx, hw, efx->net_dev, 780 "PTP bad synchronisation seconds\n"); 781 return -EAGAIN; 782 } 783 delta.tv_sec = (last_sec - start_sec) & 1; 784 delta.tv_nsec = 785 last_time->ts_real.tv_nsec - 786 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); 787 788 /* Convert the NIC time at last good sync into kernel time. 789 * No correction is required - this time is the output of a 790 * firmware process. 791 */ 792 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, 793 ptp->timeset[last_good].minor, 0); 794 795 /* Calculate delay from NIC top of second to last_time */ 796 delta.tv_nsec += ktime_to_timespec(mc_time).tv_nsec; 797 798 /* Set PPS timestamp to match NIC top of second */ 799 ptp->host_time_pps = *last_time; 800 pps_sub_ts(&ptp->host_time_pps, delta); 801 802 return 0; 803 } 804 805 /* Synchronize times between the host and the MC */ 806 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) 807 { 808 struct efx_ptp_data *ptp = efx->ptp_data; 809 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); 810 size_t response_length; 811 int rc; 812 unsigned long timeout; 813 struct pps_event_time last_time = {}; 814 unsigned int loops = 0; 815 int *start = ptp->start.addr; 816 817 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); 818 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); 819 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, 820 num_readings); 821 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, 822 ptp->start.dma_addr); 823 824 /* Clear flag that signals MC ready */ 825 ACCESS_ONCE(*start) = 0; 826 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, 827 MC_CMD_PTP_IN_SYNCHRONIZE_LEN); 828 EFX_BUG_ON_PARANOID(rc); 829 830 /* Wait for start from MCDI (or timeout) */ 831 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); 832 while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) { 833 udelay(20); /* Usually start MCDI execution quickly */ 834 loops++; 835 } 836 837 if (loops <= 1) 838 ++ptp->fast_syncs; 839 if (!time_before(jiffies, timeout)) 840 ++ptp->sync_timeouts; 841 842 if (ACCESS_ONCE(*start)) 843 efx_ptp_send_times(efx, &last_time); 844 845 /* Collect results */ 846 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, 847 MC_CMD_PTP_IN_SYNCHRONIZE_LEN, 848 synch_buf, sizeof(synch_buf), 849 &response_length); 850 if (rc == 0) { 851 rc = efx_ptp_process_times(efx, synch_buf, response_length, 852 &last_time); 853 if (rc == 0) 854 ++ptp->good_syncs; 855 else 856 ++ptp->no_time_syncs; 857 } 858 859 /* Increment the bad syncs counter if the synchronize fails, whatever 860 * the reason. 861 */ 862 if (rc != 0) 863 ++ptp->bad_syncs; 864 865 return rc; 866 } 867 868 /* Transmit a PTP packet, via the MCDI interface, to the wire. */ 869 static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb) 870 { 871 struct efx_ptp_data *ptp_data = efx->ptp_data; 872 struct skb_shared_hwtstamps timestamps; 873 int rc = -EIO; 874 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); 875 size_t len; 876 877 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); 878 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); 879 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); 880 if (skb_shinfo(skb)->nr_frags != 0) { 881 rc = skb_linearize(skb); 882 if (rc != 0) 883 goto fail; 884 } 885 886 if (skb->ip_summed == CHECKSUM_PARTIAL) { 887 rc = skb_checksum_help(skb); 888 if (rc != 0) 889 goto fail; 890 } 891 skb_copy_from_linear_data(skb, 892 MCDI_PTR(ptp_data->txbuf, 893 PTP_IN_TRANSMIT_PACKET), 894 skb->len); 895 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, 896 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 897 txtime, sizeof(txtime), &len); 898 if (rc != 0) 899 goto fail; 900 901 memset(×tamps, 0, sizeof(timestamps)); 902 timestamps.hwtstamp = ptp_data->nic_to_kernel_time( 903 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), 904 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), 905 ptp_data->ts_corrections.tx); 906 907 skb_tstamp_tx(skb, ×tamps); 908 909 rc = 0; 910 911 fail: 912 dev_kfree_skb(skb); 913 914 return rc; 915 } 916 917 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx) 918 { 919 struct efx_ptp_data *ptp = efx->ptp_data; 920 struct list_head *cursor; 921 struct list_head *next; 922 923 if (ptp->rx_ts_inline) 924 return; 925 926 /* Drop time-expired events */ 927 spin_lock_bh(&ptp->evt_lock); 928 if (!list_empty(&ptp->evt_list)) { 929 list_for_each_safe(cursor, next, &ptp->evt_list) { 930 struct efx_ptp_event_rx *evt; 931 932 evt = list_entry(cursor, struct efx_ptp_event_rx, 933 link); 934 if (time_after(jiffies, evt->expiry)) { 935 list_move(&evt->link, &ptp->evt_free_list); 936 netif_warn(efx, hw, efx->net_dev, 937 "PTP rx event dropped\n"); 938 } 939 } 940 } 941 spin_unlock_bh(&ptp->evt_lock); 942 } 943 944 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx, 945 struct sk_buff *skb) 946 { 947 struct efx_ptp_data *ptp = efx->ptp_data; 948 bool evts_waiting; 949 struct list_head *cursor; 950 struct list_head *next; 951 struct efx_ptp_match *match; 952 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED; 953 954 WARN_ON_ONCE(ptp->rx_ts_inline); 955 956 spin_lock_bh(&ptp->evt_lock); 957 evts_waiting = !list_empty(&ptp->evt_list); 958 spin_unlock_bh(&ptp->evt_lock); 959 960 if (!evts_waiting) 961 return PTP_PACKET_STATE_UNMATCHED; 962 963 match = (struct efx_ptp_match *)skb->cb; 964 /* Look for a matching timestamp in the event queue */ 965 spin_lock_bh(&ptp->evt_lock); 966 list_for_each_safe(cursor, next, &ptp->evt_list) { 967 struct efx_ptp_event_rx *evt; 968 969 evt = list_entry(cursor, struct efx_ptp_event_rx, link); 970 if ((evt->seq0 == match->words[0]) && 971 (evt->seq1 == match->words[1])) { 972 struct skb_shared_hwtstamps *timestamps; 973 974 /* Match - add in hardware timestamp */ 975 timestamps = skb_hwtstamps(skb); 976 timestamps->hwtstamp = evt->hwtimestamp; 977 978 match->state = PTP_PACKET_STATE_MATCHED; 979 rc = PTP_PACKET_STATE_MATCHED; 980 list_move(&evt->link, &ptp->evt_free_list); 981 break; 982 } 983 } 984 spin_unlock_bh(&ptp->evt_lock); 985 986 return rc; 987 } 988 989 /* Process any queued receive events and corresponding packets 990 * 991 * q is returned with all the packets that are ready for delivery. 992 */ 993 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) 994 { 995 struct efx_ptp_data *ptp = efx->ptp_data; 996 struct sk_buff *skb; 997 998 while ((skb = skb_dequeue(&ptp->rxq))) { 999 struct efx_ptp_match *match; 1000 1001 match = (struct efx_ptp_match *)skb->cb; 1002 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { 1003 __skb_queue_tail(q, skb); 1004 } else if (efx_ptp_match_rx(efx, skb) == 1005 PTP_PACKET_STATE_MATCHED) { 1006 __skb_queue_tail(q, skb); 1007 } else if (time_after(jiffies, match->expiry)) { 1008 match->state = PTP_PACKET_STATE_TIMED_OUT; 1009 ++ptp->rx_no_timestamp; 1010 __skb_queue_tail(q, skb); 1011 } else { 1012 /* Replace unprocessed entry and stop */ 1013 skb_queue_head(&ptp->rxq, skb); 1014 break; 1015 } 1016 } 1017 } 1018 1019 /* Complete processing of a received packet */ 1020 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) 1021 { 1022 local_bh_disable(); 1023 netif_receive_skb(skb); 1024 local_bh_enable(); 1025 } 1026 1027 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx) 1028 { 1029 struct efx_ptp_data *ptp = efx->ptp_data; 1030 1031 if (ptp->rxfilter_installed) { 1032 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1033 ptp->rxfilter_general); 1034 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1035 ptp->rxfilter_event); 1036 ptp->rxfilter_installed = false; 1037 } 1038 } 1039 1040 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) 1041 { 1042 struct efx_ptp_data *ptp = efx->ptp_data; 1043 struct efx_filter_spec rxfilter; 1044 int rc; 1045 1046 if (!ptp->channel || ptp->rxfilter_installed) 1047 return 0; 1048 1049 /* Must filter on both event and general ports to ensure 1050 * that there is no packet re-ordering. 1051 */ 1052 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1053 efx_rx_queue_index( 1054 efx_channel_get_rx_queue(ptp->channel))); 1055 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, 1056 htonl(PTP_ADDRESS), 1057 htons(PTP_EVENT_PORT)); 1058 if (rc != 0) 1059 return rc; 1060 1061 rc = efx_filter_insert_filter(efx, &rxfilter, true); 1062 if (rc < 0) 1063 return rc; 1064 ptp->rxfilter_event = rc; 1065 1066 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1067 efx_rx_queue_index( 1068 efx_channel_get_rx_queue(ptp->channel))); 1069 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, 1070 htonl(PTP_ADDRESS), 1071 htons(PTP_GENERAL_PORT)); 1072 if (rc != 0) 1073 goto fail; 1074 1075 rc = efx_filter_insert_filter(efx, &rxfilter, true); 1076 if (rc < 0) 1077 goto fail; 1078 ptp->rxfilter_general = rc; 1079 1080 ptp->rxfilter_installed = true; 1081 return 0; 1082 1083 fail: 1084 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1085 ptp->rxfilter_event); 1086 return rc; 1087 } 1088 1089 static int efx_ptp_start(struct efx_nic *efx) 1090 { 1091 struct efx_ptp_data *ptp = efx->ptp_data; 1092 int rc; 1093 1094 ptp->reset_required = false; 1095 1096 rc = efx_ptp_insert_multicast_filters(efx); 1097 if (rc) 1098 return rc; 1099 1100 rc = efx_ptp_enable(efx); 1101 if (rc != 0) 1102 goto fail; 1103 1104 ptp->evt_frag_idx = 0; 1105 ptp->current_adjfreq = 0; 1106 1107 return 0; 1108 1109 fail: 1110 efx_ptp_remove_multicast_filters(efx); 1111 return rc; 1112 } 1113 1114 static int efx_ptp_stop(struct efx_nic *efx) 1115 { 1116 struct efx_ptp_data *ptp = efx->ptp_data; 1117 struct list_head *cursor; 1118 struct list_head *next; 1119 int rc; 1120 1121 if (ptp == NULL) 1122 return 0; 1123 1124 rc = efx_ptp_disable(efx); 1125 1126 efx_ptp_remove_multicast_filters(efx); 1127 1128 /* Make sure RX packets are really delivered */ 1129 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); 1130 skb_queue_purge(&efx->ptp_data->txq); 1131 1132 /* Drop any pending receive events */ 1133 spin_lock_bh(&efx->ptp_data->evt_lock); 1134 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) { 1135 list_move(cursor, &efx->ptp_data->evt_free_list); 1136 } 1137 spin_unlock_bh(&efx->ptp_data->evt_lock); 1138 1139 return rc; 1140 } 1141 1142 static int efx_ptp_restart(struct efx_nic *efx) 1143 { 1144 if (efx->ptp_data && efx->ptp_data->enabled) 1145 return efx_ptp_start(efx); 1146 return 0; 1147 } 1148 1149 static void efx_ptp_pps_worker(struct work_struct *work) 1150 { 1151 struct efx_ptp_data *ptp = 1152 container_of(work, struct efx_ptp_data, pps_work); 1153 struct efx_nic *efx = ptp->efx; 1154 struct ptp_clock_event ptp_evt; 1155 1156 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) 1157 return; 1158 1159 ptp_evt.type = PTP_CLOCK_PPSUSR; 1160 ptp_evt.pps_times = ptp->host_time_pps; 1161 ptp_clock_event(ptp->phc_clock, &ptp_evt); 1162 } 1163 1164 static void efx_ptp_worker(struct work_struct *work) 1165 { 1166 struct efx_ptp_data *ptp_data = 1167 container_of(work, struct efx_ptp_data, work); 1168 struct efx_nic *efx = ptp_data->efx; 1169 struct sk_buff *skb; 1170 struct sk_buff_head tempq; 1171 1172 if (ptp_data->reset_required) { 1173 efx_ptp_stop(efx); 1174 efx_ptp_start(efx); 1175 return; 1176 } 1177 1178 efx_ptp_drop_time_expired_events(efx); 1179 1180 __skb_queue_head_init(&tempq); 1181 efx_ptp_process_events(efx, &tempq); 1182 1183 while ((skb = skb_dequeue(&ptp_data->txq))) 1184 efx_ptp_xmit_skb(efx, skb); 1185 1186 while ((skb = __skb_dequeue(&tempq))) 1187 efx_ptp_process_rx(efx, skb); 1188 } 1189 1190 static const struct ptp_clock_info efx_phc_clock_info = { 1191 .owner = THIS_MODULE, 1192 .name = "sfc", 1193 .max_adj = MAX_PPB, 1194 .n_alarm = 0, 1195 .n_ext_ts = 0, 1196 .n_per_out = 0, 1197 .n_pins = 0, 1198 .pps = 1, 1199 .adjfreq = efx_phc_adjfreq, 1200 .adjtime = efx_phc_adjtime, 1201 .gettime = efx_phc_gettime, 1202 .settime = efx_phc_settime, 1203 .enable = efx_phc_enable, 1204 }; 1205 1206 /* Initialise PTP state. */ 1207 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) 1208 { 1209 struct efx_ptp_data *ptp; 1210 int rc = 0; 1211 unsigned int pos; 1212 1213 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); 1214 efx->ptp_data = ptp; 1215 if (!efx->ptp_data) 1216 return -ENOMEM; 1217 1218 ptp->efx = efx; 1219 ptp->channel = channel; 1220 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0; 1221 1222 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); 1223 if (rc != 0) 1224 goto fail1; 1225 1226 skb_queue_head_init(&ptp->rxq); 1227 skb_queue_head_init(&ptp->txq); 1228 ptp->workwq = create_singlethread_workqueue("sfc_ptp"); 1229 if (!ptp->workwq) { 1230 rc = -ENOMEM; 1231 goto fail2; 1232 } 1233 1234 INIT_WORK(&ptp->work, efx_ptp_worker); 1235 ptp->config.flags = 0; 1236 ptp->config.tx_type = HWTSTAMP_TX_OFF; 1237 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; 1238 INIT_LIST_HEAD(&ptp->evt_list); 1239 INIT_LIST_HEAD(&ptp->evt_free_list); 1240 spin_lock_init(&ptp->evt_lock); 1241 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++) 1242 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list); 1243 1244 /* Get the NIC PTP attributes and set up time conversions */ 1245 rc = efx_ptp_get_attributes(efx); 1246 if (rc < 0) 1247 goto fail3; 1248 1249 /* Get the timestamp corrections */ 1250 rc = efx_ptp_get_timestamp_corrections(efx); 1251 if (rc < 0) 1252 goto fail3; 1253 1254 if (efx->mcdi->fn_flags & 1255 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { 1256 ptp->phc_clock_info = efx_phc_clock_info; 1257 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, 1258 &efx->pci_dev->dev); 1259 if (IS_ERR(ptp->phc_clock)) { 1260 rc = PTR_ERR(ptp->phc_clock); 1261 goto fail3; 1262 } 1263 1264 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); 1265 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); 1266 if (!ptp->pps_workwq) { 1267 rc = -ENOMEM; 1268 goto fail4; 1269 } 1270 } 1271 ptp->nic_ts_enabled = false; 1272 1273 return 0; 1274 fail4: 1275 ptp_clock_unregister(efx->ptp_data->phc_clock); 1276 1277 fail3: 1278 destroy_workqueue(efx->ptp_data->workwq); 1279 1280 fail2: 1281 efx_nic_free_buffer(efx, &ptp->start); 1282 1283 fail1: 1284 kfree(efx->ptp_data); 1285 efx->ptp_data = NULL; 1286 1287 return rc; 1288 } 1289 1290 /* Initialise PTP channel. 1291 * 1292 * Setting core_index to zero causes the queue to be initialised and doesn't 1293 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. 1294 */ 1295 static int efx_ptp_probe_channel(struct efx_channel *channel) 1296 { 1297 struct efx_nic *efx = channel->efx; 1298 1299 channel->irq_moderation = 0; 1300 channel->rx_queue.core_index = 0; 1301 1302 return efx_ptp_probe(efx, channel); 1303 } 1304 1305 void efx_ptp_remove(struct efx_nic *efx) 1306 { 1307 if (!efx->ptp_data) 1308 return; 1309 1310 (void)efx_ptp_disable(efx); 1311 1312 cancel_work_sync(&efx->ptp_data->work); 1313 cancel_work_sync(&efx->ptp_data->pps_work); 1314 1315 skb_queue_purge(&efx->ptp_data->rxq); 1316 skb_queue_purge(&efx->ptp_data->txq); 1317 1318 if (efx->ptp_data->phc_clock) { 1319 destroy_workqueue(efx->ptp_data->pps_workwq); 1320 ptp_clock_unregister(efx->ptp_data->phc_clock); 1321 } 1322 1323 destroy_workqueue(efx->ptp_data->workwq); 1324 1325 efx_nic_free_buffer(efx, &efx->ptp_data->start); 1326 kfree(efx->ptp_data); 1327 } 1328 1329 static void efx_ptp_remove_channel(struct efx_channel *channel) 1330 { 1331 efx_ptp_remove(channel->efx); 1332 } 1333 1334 static void efx_ptp_get_channel_name(struct efx_channel *channel, 1335 char *buf, size_t len) 1336 { 1337 snprintf(buf, len, "%s-ptp", channel->efx->name); 1338 } 1339 1340 /* Determine whether this packet should be processed by the PTP module 1341 * or transmitted conventionally. 1342 */ 1343 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1344 { 1345 return efx->ptp_data && 1346 efx->ptp_data->enabled && 1347 skb->len >= PTP_MIN_LENGTH && 1348 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && 1349 likely(skb->protocol == htons(ETH_P_IP)) && 1350 skb_transport_header_was_set(skb) && 1351 skb_network_header_len(skb) >= sizeof(struct iphdr) && 1352 ip_hdr(skb)->protocol == IPPROTO_UDP && 1353 skb_headlen(skb) >= 1354 skb_transport_offset(skb) + sizeof(struct udphdr) && 1355 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); 1356 } 1357 1358 /* Receive a PTP packet. Packets are queued until the arrival of 1359 * the receive timestamp from the MC - this will probably occur after the 1360 * packet arrival because of the processing in the MC. 1361 */ 1362 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) 1363 { 1364 struct efx_nic *efx = channel->efx; 1365 struct efx_ptp_data *ptp = efx->ptp_data; 1366 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; 1367 u8 *match_data_012, *match_data_345; 1368 unsigned int version; 1369 u8 *data; 1370 1371 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1372 1373 /* Correct version? */ 1374 if (ptp->mode == MC_CMD_PTP_MODE_V1) { 1375 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { 1376 return false; 1377 } 1378 data = skb->data; 1379 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); 1380 if (version != PTP_VERSION_V1) { 1381 return false; 1382 } 1383 1384 /* PTP V1 uses all six bytes of the UUID to match the packet 1385 * to the timestamp 1386 */ 1387 match_data_012 = data + PTP_V1_UUID_OFFSET; 1388 match_data_345 = data + PTP_V1_UUID_OFFSET + 3; 1389 } else { 1390 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { 1391 return false; 1392 } 1393 data = skb->data; 1394 version = data[PTP_V2_VERSION_OFFSET]; 1395 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { 1396 return false; 1397 } 1398 1399 /* The original V2 implementation uses bytes 2-7 of 1400 * the UUID to match the packet to the timestamp. This 1401 * discards two of the bytes of the MAC address used 1402 * to create the UUID (SF bug 33070). The PTP V2 1403 * enhanced mode fixes this issue and uses bytes 0-2 1404 * and byte 5-7 of the UUID. 1405 */ 1406 match_data_345 = data + PTP_V2_UUID_OFFSET + 5; 1407 if (ptp->mode == MC_CMD_PTP_MODE_V2) { 1408 match_data_012 = data + PTP_V2_UUID_OFFSET + 2; 1409 } else { 1410 match_data_012 = data + PTP_V2_UUID_OFFSET + 0; 1411 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED); 1412 } 1413 } 1414 1415 /* Does this packet require timestamping? */ 1416 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { 1417 match->state = PTP_PACKET_STATE_UNMATCHED; 1418 1419 /* We expect the sequence number to be in the same position in 1420 * the packet for PTP V1 and V2 1421 */ 1422 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); 1423 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); 1424 1425 /* Extract UUID/Sequence information */ 1426 match->words[0] = (match_data_012[0] | 1427 (match_data_012[1] << 8) | 1428 (match_data_012[2] << 16) | 1429 (match_data_345[0] << 24)); 1430 match->words[1] = (match_data_345[1] | 1431 (match_data_345[2] << 8) | 1432 (data[PTP_V1_SEQUENCE_OFFSET + 1433 PTP_V1_SEQUENCE_LENGTH - 1] << 1434 16)); 1435 } else { 1436 match->state = PTP_PACKET_STATE_MATCH_UNWANTED; 1437 } 1438 1439 skb_queue_tail(&ptp->rxq, skb); 1440 queue_work(ptp->workwq, &ptp->work); 1441 1442 return true; 1443 } 1444 1445 /* Transmit a PTP packet. This has to be transmitted by the MC 1446 * itself, through an MCDI call. MCDI calls aren't permitted 1447 * in the transmit path so defer the actual transmission to a suitable worker. 1448 */ 1449 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1450 { 1451 struct efx_ptp_data *ptp = efx->ptp_data; 1452 1453 skb_queue_tail(&ptp->txq, skb); 1454 1455 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && 1456 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) 1457 efx_xmit_hwtstamp_pending(skb); 1458 queue_work(ptp->workwq, &ptp->work); 1459 1460 return NETDEV_TX_OK; 1461 } 1462 1463 int efx_ptp_get_mode(struct efx_nic *efx) 1464 { 1465 return efx->ptp_data->mode; 1466 } 1467 1468 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, 1469 unsigned int new_mode) 1470 { 1471 if ((enable_wanted != efx->ptp_data->enabled) || 1472 (enable_wanted && (efx->ptp_data->mode != new_mode))) { 1473 int rc = 0; 1474 1475 if (enable_wanted) { 1476 /* Change of mode requires disable */ 1477 if (efx->ptp_data->enabled && 1478 (efx->ptp_data->mode != new_mode)) { 1479 efx->ptp_data->enabled = false; 1480 rc = efx_ptp_stop(efx); 1481 if (rc != 0) 1482 return rc; 1483 } 1484 1485 /* Set new operating mode and establish 1486 * baseline synchronisation, which must 1487 * succeed. 1488 */ 1489 efx->ptp_data->mode = new_mode; 1490 if (netif_running(efx->net_dev)) 1491 rc = efx_ptp_start(efx); 1492 if (rc == 0) { 1493 rc = efx_ptp_synchronize(efx, 1494 PTP_SYNC_ATTEMPTS * 2); 1495 if (rc != 0) 1496 efx_ptp_stop(efx); 1497 } 1498 } else { 1499 rc = efx_ptp_stop(efx); 1500 } 1501 1502 if (rc != 0) 1503 return rc; 1504 1505 efx->ptp_data->enabled = enable_wanted; 1506 } 1507 1508 return 0; 1509 } 1510 1511 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init) 1512 { 1513 int rc; 1514 1515 if (init->flags) 1516 return -EINVAL; 1517 1518 if ((init->tx_type != HWTSTAMP_TX_OFF) && 1519 (init->tx_type != HWTSTAMP_TX_ON)) 1520 return -ERANGE; 1521 1522 rc = efx->type->ptp_set_ts_config(efx, init); 1523 if (rc) 1524 return rc; 1525 1526 efx->ptp_data->config = *init; 1527 return 0; 1528 } 1529 1530 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info) 1531 { 1532 struct efx_ptp_data *ptp = efx->ptp_data; 1533 struct efx_nic *primary = efx->primary; 1534 1535 ASSERT_RTNL(); 1536 1537 if (!ptp) 1538 return; 1539 1540 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 1541 SOF_TIMESTAMPING_RX_HARDWARE | 1542 SOF_TIMESTAMPING_RAW_HARDWARE); 1543 if (primary && primary->ptp_data && primary->ptp_data->phc_clock) 1544 ts_info->phc_index = 1545 ptp_clock_index(primary->ptp_data->phc_clock); 1546 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; 1547 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; 1548 } 1549 1550 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1551 { 1552 struct hwtstamp_config config; 1553 int rc; 1554 1555 /* Not a PTP enabled port */ 1556 if (!efx->ptp_data) 1557 return -EOPNOTSUPP; 1558 1559 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1560 return -EFAULT; 1561 1562 rc = efx_ptp_ts_init(efx, &config); 1563 if (rc != 0) 1564 return rc; 1565 1566 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) 1567 ? -EFAULT : 0; 1568 } 1569 1570 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr) 1571 { 1572 if (!efx->ptp_data) 1573 return -EOPNOTSUPP; 1574 1575 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config, 1576 sizeof(efx->ptp_data->config)) ? -EFAULT : 0; 1577 } 1578 1579 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) 1580 { 1581 struct efx_ptp_data *ptp = efx->ptp_data; 1582 1583 netif_err(efx, hw, efx->net_dev, 1584 "PTP unexpected event length: got %d expected %d\n", 1585 ptp->evt_frag_idx, expected_frag_len); 1586 ptp->reset_required = true; 1587 queue_work(ptp->workwq, &ptp->work); 1588 } 1589 1590 /* Process a completed receive event. Put it on the event queue and 1591 * start worker thread. This is required because event and their 1592 * correspoding packets may come in either order. 1593 */ 1594 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp) 1595 { 1596 struct efx_ptp_event_rx *evt = NULL; 1597 1598 if (WARN_ON_ONCE(ptp->rx_ts_inline)) 1599 return; 1600 1601 if (ptp->evt_frag_idx != 3) { 1602 ptp_event_failure(efx, 3); 1603 return; 1604 } 1605 1606 spin_lock_bh(&ptp->evt_lock); 1607 if (!list_empty(&ptp->evt_free_list)) { 1608 evt = list_first_entry(&ptp->evt_free_list, 1609 struct efx_ptp_event_rx, link); 1610 list_del(&evt->link); 1611 1612 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA); 1613 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2], 1614 MCDI_EVENT_SRC) | 1615 (EFX_QWORD_FIELD(ptp->evt_frags[1], 1616 MCDI_EVENT_SRC) << 8) | 1617 (EFX_QWORD_FIELD(ptp->evt_frags[0], 1618 MCDI_EVENT_SRC) << 16)); 1619 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time( 1620 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA), 1621 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA), 1622 ptp->ts_corrections.rx); 1623 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1624 list_add_tail(&evt->link, &ptp->evt_list); 1625 1626 queue_work(ptp->workwq, &ptp->work); 1627 } else if (net_ratelimit()) { 1628 /* Log a rate-limited warning message. */ 1629 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n"); 1630 } 1631 spin_unlock_bh(&ptp->evt_lock); 1632 } 1633 1634 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) 1635 { 1636 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); 1637 if (ptp->evt_frag_idx != 1) { 1638 ptp_event_failure(efx, 1); 1639 return; 1640 } 1641 1642 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); 1643 } 1644 1645 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) 1646 { 1647 if (ptp->nic_ts_enabled) 1648 queue_work(ptp->pps_workwq, &ptp->pps_work); 1649 } 1650 1651 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) 1652 { 1653 struct efx_ptp_data *ptp = efx->ptp_data; 1654 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); 1655 1656 if (!ptp) { 1657 if (net_ratelimit()) 1658 netif_warn(efx, drv, efx->net_dev, 1659 "Received PTP event but PTP not set up\n"); 1660 return; 1661 } 1662 1663 if (!ptp->enabled) 1664 return; 1665 1666 if (ptp->evt_frag_idx == 0) { 1667 ptp->evt_code = code; 1668 } else if (ptp->evt_code != code) { 1669 netif_err(efx, hw, efx->net_dev, 1670 "PTP out of sequence event %d\n", code); 1671 ptp->evt_frag_idx = 0; 1672 } 1673 1674 ptp->evt_frags[ptp->evt_frag_idx++] = *ev; 1675 if (!MCDI_EVENT_FIELD(*ev, CONT)) { 1676 /* Process resulting event */ 1677 switch (code) { 1678 case MCDI_EVENT_CODE_PTP_RX: 1679 ptp_event_rx(efx, ptp); 1680 break; 1681 case MCDI_EVENT_CODE_PTP_FAULT: 1682 ptp_event_fault(efx, ptp); 1683 break; 1684 case MCDI_EVENT_CODE_PTP_PPS: 1685 ptp_event_pps(efx, ptp); 1686 break; 1687 default: 1688 netif_err(efx, hw, efx->net_dev, 1689 "PTP unknown event %d\n", code); 1690 break; 1691 } 1692 ptp->evt_frag_idx = 0; 1693 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { 1694 netif_err(efx, hw, efx->net_dev, 1695 "PTP too many event fragments\n"); 1696 ptp->evt_frag_idx = 0; 1697 } 1698 } 1699 1700 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) 1701 { 1702 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); 1703 channel->sync_timestamp_minor = 1704 MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_26_19) << 19; 1705 /* if sync events have been disabled then we want to silently ignore 1706 * this event, so throw away result. 1707 */ 1708 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, 1709 SYNC_EVENTS_VALID); 1710 } 1711 1712 /* make some assumptions about the time representation rather than abstract it, 1713 * since we currently only support one type of inline timestamping and only on 1714 * EF10. 1715 */ 1716 #define MINOR_TICKS_PER_SECOND 0x8000000 1717 /* Fuzz factor for sync events to be out of order with RX events */ 1718 #define FUZZ (MINOR_TICKS_PER_SECOND / 10) 1719 #define EXPECTED_SYNC_EVENTS_PER_SECOND 4 1720 1721 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) 1722 { 1723 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 1724 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); 1725 #else 1726 const u8 *data = eh + efx->rx_packet_ts_offset; 1727 return (u32)data[0] | 1728 (u32)data[1] << 8 | 1729 (u32)data[2] << 16 | 1730 (u32)data[3] << 24; 1731 #endif 1732 } 1733 1734 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, 1735 struct sk_buff *skb) 1736 { 1737 struct efx_nic *efx = channel->efx; 1738 u32 pkt_timestamp_major, pkt_timestamp_minor; 1739 u32 diff, carry; 1740 struct skb_shared_hwtstamps *timestamps; 1741 1742 pkt_timestamp_minor = (efx_rx_buf_timestamp_minor(efx, 1743 skb_mac_header(skb)) + 1744 (u32) efx->ptp_data->ts_corrections.rx) & 1745 (MINOR_TICKS_PER_SECOND - 1); 1746 1747 /* get the difference between the packet and sync timestamps, 1748 * modulo one second 1749 */ 1750 diff = (pkt_timestamp_minor - channel->sync_timestamp_minor) & 1751 (MINOR_TICKS_PER_SECOND - 1); 1752 /* do we roll over a second boundary and need to carry the one? */ 1753 carry = channel->sync_timestamp_minor + diff > MINOR_TICKS_PER_SECOND ? 1754 1 : 0; 1755 1756 if (diff <= MINOR_TICKS_PER_SECOND / EXPECTED_SYNC_EVENTS_PER_SECOND + 1757 FUZZ) { 1758 /* packet is ahead of the sync event by a quarter of a second or 1759 * less (allowing for fuzz) 1760 */ 1761 pkt_timestamp_major = channel->sync_timestamp_major + carry; 1762 } else if (diff >= MINOR_TICKS_PER_SECOND - FUZZ) { 1763 /* packet is behind the sync event but within the fuzz factor. 1764 * This means the RX packet and sync event crossed as they were 1765 * placed on the event queue, which can sometimes happen. 1766 */ 1767 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; 1768 } else { 1769 /* it's outside tolerance in both directions. this might be 1770 * indicative of us missing sync events for some reason, so 1771 * we'll call it an error rather than risk giving a bogus 1772 * timestamp. 1773 */ 1774 netif_vdbg(efx, drv, efx->net_dev, 1775 "packet timestamp %x too far from sync event %x:%x\n", 1776 pkt_timestamp_minor, channel->sync_timestamp_major, 1777 channel->sync_timestamp_minor); 1778 return; 1779 } 1780 1781 /* attach the timestamps to the skb */ 1782 timestamps = skb_hwtstamps(skb); 1783 timestamps->hwtstamp = 1784 efx_ptp_s27_to_ktime(pkt_timestamp_major, pkt_timestamp_minor); 1785 } 1786 1787 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta) 1788 { 1789 struct efx_ptp_data *ptp_data = container_of(ptp, 1790 struct efx_ptp_data, 1791 phc_clock_info); 1792 struct efx_nic *efx = ptp_data->efx; 1793 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); 1794 s64 adjustment_ns; 1795 int rc; 1796 1797 if (delta > MAX_PPB) 1798 delta = MAX_PPB; 1799 else if (delta < -MAX_PPB) 1800 delta = -MAX_PPB; 1801 1802 /* Convert ppb to fixed point ns. */ 1803 adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >> 1804 (PPB_EXTRA_BITS + MAX_PPB_BITS)); 1805 1806 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 1807 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); 1808 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); 1809 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); 1810 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); 1811 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), 1812 NULL, 0, NULL); 1813 if (rc != 0) 1814 return rc; 1815 1816 ptp_data->current_adjfreq = adjustment_ns; 1817 return 0; 1818 } 1819 1820 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) 1821 { 1822 u32 nic_major, nic_minor; 1823 struct efx_ptp_data *ptp_data = container_of(ptp, 1824 struct efx_ptp_data, 1825 phc_clock_info); 1826 struct efx_nic *efx = ptp_data->efx; 1827 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); 1828 1829 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); 1830 1831 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 1832 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 1833 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); 1834 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); 1835 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); 1836 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 1837 NULL, 0, NULL); 1838 } 1839 1840 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts) 1841 { 1842 struct efx_ptp_data *ptp_data = container_of(ptp, 1843 struct efx_ptp_data, 1844 phc_clock_info); 1845 struct efx_nic *efx = ptp_data->efx; 1846 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); 1847 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); 1848 int rc; 1849 ktime_t kt; 1850 1851 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); 1852 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 1853 1854 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 1855 outbuf, sizeof(outbuf), NULL); 1856 if (rc != 0) 1857 return rc; 1858 1859 kt = ptp_data->nic_to_kernel_time( 1860 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), 1861 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); 1862 *ts = ktime_to_timespec(kt); 1863 return 0; 1864 } 1865 1866 static int efx_phc_settime(struct ptp_clock_info *ptp, 1867 const struct timespec *e_ts) 1868 { 1869 /* Get the current NIC time, efx_phc_gettime. 1870 * Subtract from the desired time to get the offset 1871 * call efx_phc_adjtime with the offset 1872 */ 1873 int rc; 1874 struct timespec time_now; 1875 struct timespec delta; 1876 1877 rc = efx_phc_gettime(ptp, &time_now); 1878 if (rc != 0) 1879 return rc; 1880 1881 delta = timespec_sub(*e_ts, time_now); 1882 1883 rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta)); 1884 if (rc != 0) 1885 return rc; 1886 1887 return 0; 1888 } 1889 1890 static int efx_phc_enable(struct ptp_clock_info *ptp, 1891 struct ptp_clock_request *request, 1892 int enable) 1893 { 1894 struct efx_ptp_data *ptp_data = container_of(ptp, 1895 struct efx_ptp_data, 1896 phc_clock_info); 1897 if (request->type != PTP_CLK_REQ_PPS) 1898 return -EOPNOTSUPP; 1899 1900 ptp_data->nic_ts_enabled = !!enable; 1901 return 0; 1902 } 1903 1904 static const struct efx_channel_type efx_ptp_channel_type = { 1905 .handle_no_channel = efx_ptp_handle_no_channel, 1906 .pre_probe = efx_ptp_probe_channel, 1907 .post_remove = efx_ptp_remove_channel, 1908 .get_name = efx_ptp_get_channel_name, 1909 /* no copy operation; there is no need to reallocate this channel */ 1910 .receive_skb = efx_ptp_rx, 1911 .keep_eventq = false, 1912 }; 1913 1914 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx) 1915 { 1916 /* Check whether PTP is implemented on this NIC. The DISABLE 1917 * operation will succeed if and only if it is implemented. 1918 */ 1919 if (efx_ptp_disable(efx) == 0) 1920 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = 1921 &efx_ptp_channel_type; 1922 } 1923 1924 void efx_ptp_start_datapath(struct efx_nic *efx) 1925 { 1926 if (efx_ptp_restart(efx)) 1927 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); 1928 /* re-enable timestamping if it was previously enabled */ 1929 if (efx->type->ptp_set_ts_sync_events) 1930 efx->type->ptp_set_ts_sync_events(efx, true, true); 1931 } 1932 1933 void efx_ptp_stop_datapath(struct efx_nic *efx) 1934 { 1935 /* temporarily disable timestamping */ 1936 if (efx->type->ptp_set_ts_sync_events) 1937 efx->type->ptp_set_ts_sync_events(efx, false, true); 1938 efx_ptp_stop(efx); 1939 } 1940