1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  * Copyright 2019-2020 Xilinx Inc.
7  */
8 
9 #ifndef EFX_NIC_COMMON_H
10 #define EFX_NIC_COMMON_H
11 
12 #include "net_driver.h"
13 #include "efx_common.h"
14 #include "mcdi.h"
15 #include "ptp.h"
16 
17 enum {
18 	/* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
19 	 * They are not supported by this driver but these revision numbers
20 	 * form part of the ethtool API for register dumping.
21 	 */
22 	EFX_REV_SIENA_A0 = 3,
23 	EFX_REV_HUNT_A0 = 4,
24 	EFX_REV_EF100 = 5,
25 };
26 
27 static inline int efx_nic_rev(struct efx_nic *efx)
28 {
29 	return efx->type->revision;
30 }
31 
32 /* Read the current event from the event queue */
33 static inline efx_qword_t *efx_event(struct efx_channel *channel,
34 				     unsigned int index)
35 {
36 	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
37 		(index & channel->eventq_mask);
38 }
39 
40 /* See if an event is present
41  *
42  * We check both the high and low dword of the event for all ones.  We
43  * wrote all ones when we cleared the event, and no valid event can
44  * have all ones in either its high or low dwords.  This approach is
45  * robust against reordering.
46  *
47  * Note that using a single 64-bit comparison is incorrect; even
48  * though the CPU read will be atomic, the DMA write may not be.
49  */
50 static inline int efx_event_present(efx_qword_t *event)
51 {
52 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
53 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
54 }
55 
56 /* Returns a pointer to the specified transmit descriptor in the TX
57  * descriptor queue belonging to the specified channel.
58  */
59 static inline efx_qword_t *
60 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
61 {
62 	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
63 }
64 
65 /* Report whether this TX queue would be empty for the given write_count.
66  * May return false negative.
67  */
68 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
69 					 unsigned int write_count)
70 {
71 	unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
72 
73 	if (empty_read_count == 0)
74 		return false;
75 
76 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
77 }
78 
79 /* Report whether the NIC considers this TX queue empty, using
80  * packet_write_count (the write count recorded for the last completable
81  * doorbell push).  May return false negative.  EF10 only, which is OK
82  * because only EF10 supports PIO.
83  */
84 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
85 {
86 	EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors);
87 	return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count);
88 }
89 
90 /* Get partner of a TX queue, seen as part of the same net core queue */
91 /* XXX is this a thing on EF100? */
92 static inline struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
93 {
94 	if (tx_queue->label & EFX_TXQ_TYPE_OFFLOAD)
95 		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
96 	else
97 		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
98 }
99 
100 /* Decide whether we can use TX PIO, ie. write packet data directly into
101  * a buffer on the device.  This can reduce latency at the expense of
102  * throughput, so we only do this if both hardware and software TX rings
103  * are empty.  This also ensures that only one packet at a time can be
104  * using the PIO buffer.
105  */
106 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
107 {
108 	struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
109 
110 	return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) &&
111 	       efx_nic_tx_is_empty(partner);
112 }
113 
114 int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
115 			bool *data_mapped);
116 
117 /* Decide whether to push a TX descriptor to the NIC vs merely writing
118  * the doorbell.  This can reduce latency when we are adding a single
119  * descriptor to an empty queue, but is otherwise pointless.  Further,
120  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
121  * triggered if we don't check this.
122  * We use the write_count used for the last doorbell push, to get the
123  * NIC's view of the tx queue.
124  */
125 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
126 					    unsigned int write_count)
127 {
128 	bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
129 
130 	tx_queue->empty_read_count = 0;
131 	return was_empty && tx_queue->write_count - write_count == 1;
132 }
133 
134 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
135 static inline efx_qword_t *
136 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
137 {
138 	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
139 }
140 
141 /* Alignment of PCIe DMA boundaries (4KB) */
142 #define EFX_PAGE_SIZE	4096
143 /* Size and alignment of buffer table entries (same) */
144 #define EFX_BUF_SIZE	EFX_PAGE_SIZE
145 
146 /* NIC-generic software stats */
147 enum {
148 	GENERIC_STAT_rx_noskb_drops,
149 	GENERIC_STAT_rx_nodesc_trunc,
150 	GENERIC_STAT_COUNT
151 };
152 
153 #define EFX_GENERIC_SW_STAT(ext_name)				\
154 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
155 
156 /* TX data path */
157 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
158 {
159 	return tx_queue->efx->type->tx_probe(tx_queue);
160 }
161 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
162 {
163 	tx_queue->efx->type->tx_init(tx_queue);
164 }
165 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
166 {
167 	if (tx_queue->efx->type->tx_remove)
168 		tx_queue->efx->type->tx_remove(tx_queue);
169 }
170 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
171 {
172 	tx_queue->efx->type->tx_write(tx_queue);
173 }
174 
175 /* RX data path */
176 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
177 {
178 	return rx_queue->efx->type->rx_probe(rx_queue);
179 }
180 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
181 {
182 	rx_queue->efx->type->rx_init(rx_queue);
183 }
184 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
185 {
186 	rx_queue->efx->type->rx_remove(rx_queue);
187 }
188 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
189 {
190 	rx_queue->efx->type->rx_write(rx_queue);
191 }
192 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
193 {
194 	rx_queue->efx->type->rx_defer_refill(rx_queue);
195 }
196 
197 /* Event data path */
198 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
199 {
200 	return channel->efx->type->ev_probe(channel);
201 }
202 static inline int efx_nic_init_eventq(struct efx_channel *channel)
203 {
204 	return channel->efx->type->ev_init(channel);
205 }
206 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
207 {
208 	channel->efx->type->ev_fini(channel);
209 }
210 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
211 {
212 	channel->efx->type->ev_remove(channel);
213 }
214 static inline int
215 efx_nic_process_eventq(struct efx_channel *channel, int quota)
216 {
217 	return channel->efx->type->ev_process(channel, quota);
218 }
219 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
220 {
221 	channel->efx->type->ev_read_ack(channel);
222 }
223 
224 void efx_nic_event_test_start(struct efx_channel *channel);
225 
226 bool efx_nic_event_present(struct efx_channel *channel);
227 
228 static inline void efx_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
229 {
230 	if (efx->type->sensor_event)
231 		efx->type->sensor_event(efx, ev);
232 }
233 
234 /* Some statistics are computed as A - B where A and B each increase
235  * linearly with some hardware counter(s) and the counters are read
236  * asynchronously.  If the counters contributing to B are always read
237  * after those contributing to A, the computed value may be lower than
238  * the true value by some variable amount, and may decrease between
239  * subsequent computations.
240  *
241  * We should never allow statistics to decrease or to exceed the true
242  * value.  Since the computed value will never be greater than the
243  * true value, we can achieve this by only storing the computed value
244  * when it increases.
245  */
246 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
247 {
248 	if ((s64)(diff - *stat) > 0)
249 		*stat = diff;
250 }
251 
252 /* Interrupts */
253 int efx_nic_init_interrupt(struct efx_nic *efx);
254 int efx_nic_irq_test_start(struct efx_nic *efx);
255 void efx_nic_fini_interrupt(struct efx_nic *efx);
256 
257 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
258 {
259 	return READ_ONCE(channel->event_test_cpu);
260 }
261 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
262 {
263 	return READ_ONCE(efx->last_irq_cpu);
264 }
265 
266 /* Global Resources */
267 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
268 			 unsigned int len, gfp_t gfp_flags);
269 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
270 
271 size_t efx_nic_get_regs_len(struct efx_nic *efx);
272 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
273 
274 #define EFX_MC_STATS_GENERATION_INVALID ((__force __le64)(-1))
275 
276 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
277 			      const unsigned long *mask, u8 *names);
278 int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest);
279 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
280 			  const unsigned long *mask, u64 *stats,
281 			  const void *dma_buf, bool accumulate);
282 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
283 
284 #define EFX_MAX_FLUSH_TIME 5000
285 
286 #endif /* EFX_NIC_COMMON_H */
287