1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2006-2011 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #ifndef EFX_NIC_H 12 #define EFX_NIC_H 13 14 #include <linux/net_tstamp.h> 15 #include <linux/i2c-algo-bit.h> 16 #include "net_driver.h" 17 #include "efx.h" 18 #include "mcdi.h" 19 #include "spi.h" 20 21 /* 22 * Falcon hardware control 23 */ 24 25 enum { 26 EFX_REV_FALCON_A0 = 0, 27 EFX_REV_FALCON_A1 = 1, 28 EFX_REV_FALCON_B0 = 2, 29 EFX_REV_SIENA_A0 = 3, 30 }; 31 32 static inline int efx_nic_rev(struct efx_nic *efx) 33 { 34 return efx->type->revision; 35 } 36 37 extern u32 efx_nic_fpga_ver(struct efx_nic *efx); 38 39 /* NIC has two interlinked PCI functions for the same port. */ 40 static inline bool efx_nic_is_dual_func(struct efx_nic *efx) 41 { 42 return efx_nic_rev(efx) < EFX_REV_FALCON_B0; 43 } 44 45 enum { 46 PHY_TYPE_NONE = 0, 47 PHY_TYPE_TXC43128 = 1, 48 PHY_TYPE_88E1111 = 2, 49 PHY_TYPE_SFX7101 = 3, 50 PHY_TYPE_QT2022C2 = 4, 51 PHY_TYPE_PM8358 = 6, 52 PHY_TYPE_SFT9001A = 8, 53 PHY_TYPE_QT2025C = 9, 54 PHY_TYPE_SFT9001B = 10, 55 }; 56 57 #define FALCON_XMAC_LOOPBACKS \ 58 ((1 << LOOPBACK_XGMII) | \ 59 (1 << LOOPBACK_XGXS) | \ 60 (1 << LOOPBACK_XAUI)) 61 62 #define FALCON_GMAC_LOOPBACKS \ 63 (1 << LOOPBACK_GMAC) 64 65 /* Alignment of PCIe DMA boundaries (4KB) */ 66 #define EFX_PAGE_SIZE 4096 67 /* Size and alignment of buffer table entries (same) */ 68 #define EFX_BUF_SIZE EFX_PAGE_SIZE 69 70 /** 71 * struct falcon_board_type - board operations and type information 72 * @id: Board type id, as found in NVRAM 73 * @init: Allocate resources and initialise peripheral hardware 74 * @init_phy: Do board-specific PHY initialisation 75 * @fini: Shut down hardware and free resources 76 * @set_id_led: Set state of identifying LED or revert to automatic function 77 * @monitor: Board-specific health check function 78 */ 79 struct falcon_board_type { 80 u8 id; 81 int (*init) (struct efx_nic *nic); 82 void (*init_phy) (struct efx_nic *efx); 83 void (*fini) (struct efx_nic *nic); 84 void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode); 85 int (*monitor) (struct efx_nic *nic); 86 }; 87 88 /** 89 * struct falcon_board - board information 90 * @type: Type of board 91 * @major: Major rev. ('A', 'B' ...) 92 * @minor: Minor rev. (0, 1, ...) 93 * @i2c_adap: I2C adapter for on-board peripherals 94 * @i2c_data: Data for bit-banging algorithm 95 * @hwmon_client: I2C client for hardware monitor 96 * @ioexp_client: I2C client for power/port control 97 */ 98 struct falcon_board { 99 const struct falcon_board_type *type; 100 int major; 101 int minor; 102 struct i2c_adapter i2c_adap; 103 struct i2c_algo_bit_data i2c_data; 104 struct i2c_client *hwmon_client, *ioexp_client; 105 }; 106 107 /** 108 * struct falcon_nic_data - Falcon NIC state 109 * @pci_dev2: Secondary function of Falcon A 110 * @board: Board state and functions 111 * @stats_disable_count: Nest count for disabling statistics fetches 112 * @stats_pending: Is there a pending DMA of MAC statistics. 113 * @stats_timer: A timer for regularly fetching MAC statistics. 114 * @stats_dma_done: Pointer to the flag which indicates DMA completion. 115 * @spi_flash: SPI flash device 116 * @spi_eeprom: SPI EEPROM device 117 * @spi_lock: SPI bus lock 118 * @mdio_lock: MDIO bus lock 119 * @xmac_poll_required: XMAC link state needs polling 120 */ 121 struct falcon_nic_data { 122 struct pci_dev *pci_dev2; 123 struct falcon_board board; 124 unsigned int stats_disable_count; 125 bool stats_pending; 126 struct timer_list stats_timer; 127 u32 *stats_dma_done; 128 struct efx_spi_device spi_flash; 129 struct efx_spi_device spi_eeprom; 130 struct mutex spi_lock; 131 struct mutex mdio_lock; 132 bool xmac_poll_required; 133 }; 134 135 static inline struct falcon_board *falcon_board(struct efx_nic *efx) 136 { 137 struct falcon_nic_data *data = efx->nic_data; 138 return &data->board; 139 } 140 141 /** 142 * struct siena_nic_data - Siena NIC state 143 * @mcdi: Management-Controller-to-Driver Interface 144 * @wol_filter_id: Wake-on-LAN packet filter id 145 * @hwmon: Hardware monitor state 146 */ 147 struct siena_nic_data { 148 struct efx_mcdi_iface mcdi; 149 int wol_filter_id; 150 #ifdef CONFIG_SFC_MCDI_MON 151 struct efx_mcdi_mon hwmon; 152 #endif 153 }; 154 155 #ifdef CONFIG_SFC_MCDI_MON 156 static inline struct efx_mcdi_mon *efx_mcdi_mon(struct efx_nic *efx) 157 { 158 struct siena_nic_data *nic_data; 159 EFX_BUG_ON_PARANOID(efx_nic_rev(efx) < EFX_REV_SIENA_A0); 160 nic_data = efx->nic_data; 161 return &nic_data->hwmon; 162 } 163 #endif 164 165 /* 166 * On the SFC9000 family each port is associated with 1 PCI physical 167 * function (PF) handled by sfc and a configurable number of virtual 168 * functions (VFs) that may be handled by some other driver, often in 169 * a VM guest. The queue pointer registers are mapped in both PF and 170 * VF BARs such that an 8K region provides access to a single RX, TX 171 * and event queue (collectively a Virtual Interface, VI or VNIC). 172 * 173 * The PF has access to all 1024 VIs while VFs are mapped to VIs 174 * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered 175 * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE). 176 * The number of VIs and the VI_SCALE value are configurable but must 177 * be established at boot time by firmware. 178 */ 179 180 /* Maximum VI_SCALE parameter supported by Siena */ 181 #define EFX_VI_SCALE_MAX 6 182 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX), 183 * so this is the smallest allowed value. */ 184 #define EFX_VI_BASE 128U 185 /* Maximum number of VFs allowed */ 186 #define EFX_VF_COUNT_MAX 127 187 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */ 188 #define EFX_MAX_VF_EVQ_SIZE 8192UL 189 /* The number of buffer table entries reserved for each VI on a VF */ 190 #define EFX_VF_BUFTBL_PER_VI \ 191 ((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) * \ 192 sizeof(efx_qword_t) / EFX_BUF_SIZE) 193 194 #ifdef CONFIG_SFC_SRIOV 195 196 static inline bool efx_sriov_wanted(struct efx_nic *efx) 197 { 198 return efx->vf_count != 0; 199 } 200 static inline bool efx_sriov_enabled(struct efx_nic *efx) 201 { 202 return efx->vf_init_count != 0; 203 } 204 static inline unsigned int efx_vf_size(struct efx_nic *efx) 205 { 206 return 1 << efx->vi_scale; 207 } 208 209 extern int efx_init_sriov(void); 210 extern void efx_sriov_probe(struct efx_nic *efx); 211 extern int efx_sriov_init(struct efx_nic *efx); 212 extern void efx_sriov_mac_address_changed(struct efx_nic *efx); 213 extern void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event); 214 extern void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event); 215 extern void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event); 216 extern void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq); 217 extern void efx_sriov_flr(struct efx_nic *efx, unsigned flr); 218 extern void efx_sriov_reset(struct efx_nic *efx); 219 extern void efx_sriov_fini(struct efx_nic *efx); 220 extern void efx_fini_sriov(void); 221 222 #else 223 224 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; } 225 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; } 226 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; } 227 228 static inline int efx_init_sriov(void) { return 0; } 229 static inline void efx_sriov_probe(struct efx_nic *efx) {} 230 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; } 231 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {} 232 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx, 233 efx_qword_t *event) {} 234 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx, 235 efx_qword_t *event) {} 236 static inline void efx_sriov_event(struct efx_channel *channel, 237 efx_qword_t *event) {} 238 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {} 239 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {} 240 static inline void efx_sriov_reset(struct efx_nic *efx) {} 241 static inline void efx_sriov_fini(struct efx_nic *efx) {} 242 static inline void efx_fini_sriov(void) {} 243 244 #endif 245 246 extern int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac); 247 extern int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, 248 u16 vlan, u8 qos); 249 extern int efx_sriov_get_vf_config(struct net_device *dev, int vf, 250 struct ifla_vf_info *ivf); 251 extern int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf, 252 bool spoofchk); 253 254 struct ethtool_ts_info; 255 extern void efx_ptp_probe(struct efx_nic *efx); 256 extern int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd); 257 extern void efx_ptp_get_ts_info(struct efx_nic *efx, 258 struct ethtool_ts_info *ts_info); 259 extern bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb); 260 extern int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb); 261 extern void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev); 262 263 extern const struct efx_nic_type falcon_a1_nic_type; 264 extern const struct efx_nic_type falcon_b0_nic_type; 265 extern const struct efx_nic_type siena_a0_nic_type; 266 267 /************************************************************************** 268 * 269 * Externs 270 * 271 ************************************************************************** 272 */ 273 274 extern int falcon_probe_board(struct efx_nic *efx, u16 revision_info); 275 276 /* TX data path */ 277 extern int efx_nic_probe_tx(struct efx_tx_queue *tx_queue); 278 extern void efx_nic_init_tx(struct efx_tx_queue *tx_queue); 279 extern void efx_nic_fini_tx(struct efx_tx_queue *tx_queue); 280 extern void efx_nic_remove_tx(struct efx_tx_queue *tx_queue); 281 extern void efx_nic_push_buffers(struct efx_tx_queue *tx_queue); 282 283 /* RX data path */ 284 extern int efx_nic_probe_rx(struct efx_rx_queue *rx_queue); 285 extern void efx_nic_init_rx(struct efx_rx_queue *rx_queue); 286 extern void efx_nic_fini_rx(struct efx_rx_queue *rx_queue); 287 extern void efx_nic_remove_rx(struct efx_rx_queue *rx_queue); 288 extern void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue); 289 extern void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue); 290 291 /* Event data path */ 292 extern int efx_nic_probe_eventq(struct efx_channel *channel); 293 extern void efx_nic_init_eventq(struct efx_channel *channel); 294 extern void efx_nic_fini_eventq(struct efx_channel *channel); 295 extern void efx_nic_remove_eventq(struct efx_channel *channel); 296 extern int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota); 297 extern void efx_nic_eventq_read_ack(struct efx_channel *channel); 298 extern bool efx_nic_event_present(struct efx_channel *channel); 299 300 /* MAC/PHY */ 301 extern void falcon_drain_tx_fifo(struct efx_nic *efx); 302 extern void falcon_reconfigure_mac_wrapper(struct efx_nic *efx); 303 extern bool falcon_xmac_check_fault(struct efx_nic *efx); 304 extern int falcon_reconfigure_xmac(struct efx_nic *efx); 305 extern void falcon_update_stats_xmac(struct efx_nic *efx); 306 307 /* Some statistics are computed as A - B where A and B each increase 308 * linearly with some hardware counter(s) and the counters are read 309 * asynchronously. If the counters contributing to B are always read 310 * after those contributing to A, the computed value may be lower than 311 * the true value by some variable amount, and may decrease between 312 * subsequent computations. 313 * 314 * We should never allow statistics to decrease or to exceed the true 315 * value. Since the computed value will never be greater than the 316 * true value, we can achieve this by only storing the computed value 317 * when it increases. 318 */ 319 static inline void efx_update_diff_stat(u64 *stat, u64 diff) 320 { 321 if ((s64)(diff - *stat) > 0) 322 *stat = diff; 323 } 324 325 /* Interrupts and test events */ 326 extern int efx_nic_init_interrupt(struct efx_nic *efx); 327 extern void efx_nic_enable_interrupts(struct efx_nic *efx); 328 extern void efx_nic_event_test_start(struct efx_channel *channel); 329 extern void efx_nic_irq_test_start(struct efx_nic *efx); 330 extern void efx_nic_disable_interrupts(struct efx_nic *efx); 331 extern void efx_nic_fini_interrupt(struct efx_nic *efx); 332 extern irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx); 333 extern irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id); 334 extern void falcon_irq_ack_a1(struct efx_nic *efx); 335 336 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel) 337 { 338 return ACCESS_ONCE(channel->event_test_cpu); 339 } 340 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx) 341 { 342 return ACCESS_ONCE(efx->last_irq_cpu); 343 } 344 345 /* Global Resources */ 346 extern int efx_nic_flush_queues(struct efx_nic *efx); 347 extern void siena_prepare_flush(struct efx_nic *efx); 348 extern void siena_finish_flush(struct efx_nic *efx); 349 extern void falcon_start_nic_stats(struct efx_nic *efx); 350 extern void falcon_stop_nic_stats(struct efx_nic *efx); 351 extern void falcon_setup_xaui(struct efx_nic *efx); 352 extern int falcon_reset_xaui(struct efx_nic *efx); 353 extern void 354 efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw); 355 extern void efx_nic_init_common(struct efx_nic *efx); 356 extern void efx_nic_push_rx_indir_table(struct efx_nic *efx); 357 358 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, 359 unsigned int len); 360 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer); 361 362 /* Tests */ 363 struct efx_nic_register_test { 364 unsigned address; 365 efx_oword_t mask; 366 }; 367 extern int efx_nic_test_registers(struct efx_nic *efx, 368 const struct efx_nic_register_test *regs, 369 size_t n_regs); 370 371 extern size_t efx_nic_get_regs_len(struct efx_nic *efx); 372 extern void efx_nic_get_regs(struct efx_nic *efx, void *buf); 373 374 /************************************************************************** 375 * 376 * Falcon MAC stats 377 * 378 ************************************************************************** 379 */ 380 381 #define FALCON_STAT_OFFSET(falcon_stat) EFX_VAL(falcon_stat, offset) 382 #define FALCON_STAT_WIDTH(falcon_stat) EFX_VAL(falcon_stat, WIDTH) 383 384 /* Retrieve statistic from statistics block */ 385 #define FALCON_STAT(efx, falcon_stat, efx_stat) do { \ 386 if (FALCON_STAT_WIDTH(falcon_stat) == 16) \ 387 (efx)->mac_stats.efx_stat += le16_to_cpu( \ 388 *((__force __le16 *) \ 389 (efx->stats_buffer.addr + \ 390 FALCON_STAT_OFFSET(falcon_stat)))); \ 391 else if (FALCON_STAT_WIDTH(falcon_stat) == 32) \ 392 (efx)->mac_stats.efx_stat += le32_to_cpu( \ 393 *((__force __le32 *) \ 394 (efx->stats_buffer.addr + \ 395 FALCON_STAT_OFFSET(falcon_stat)))); \ 396 else \ 397 (efx)->mac_stats.efx_stat += le64_to_cpu( \ 398 *((__force __le64 *) \ 399 (efx->stats_buffer.addr + \ 400 FALCON_STAT_OFFSET(falcon_stat)))); \ 401 } while (0) 402 403 #define FALCON_MAC_STATS_SIZE 0x100 404 405 #define MAC_DATA_LBN 0 406 #define MAC_DATA_WIDTH 32 407 408 extern void efx_generate_event(struct efx_nic *efx, unsigned int evq, 409 efx_qword_t *event); 410 411 extern void falcon_poll_xmac(struct efx_nic *efx); 412 413 #endif /* EFX_NIC_H */ 414