xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.h (revision e4d112e4)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13 
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19 
20 enum {
21 	EFX_REV_FALCON_A0 = 0,
22 	EFX_REV_FALCON_A1 = 1,
23 	EFX_REV_FALCON_B0 = 2,
24 	EFX_REV_SIENA_A0 = 3,
25 	EFX_REV_HUNT_A0 = 4,
26 };
27 
28 static inline int efx_nic_rev(struct efx_nic *efx)
29 {
30 	return efx->type->revision;
31 }
32 
33 u32 efx_farch_fpga_ver(struct efx_nic *efx);
34 
35 /* NIC has two interlinked PCI functions for the same port. */
36 static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
37 {
38 	return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
39 }
40 
41 /* Read the current event from the event queue */
42 static inline efx_qword_t *efx_event(struct efx_channel *channel,
43 				     unsigned int index)
44 {
45 	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
46 		(index & channel->eventq_mask);
47 }
48 
49 /* See if an event is present
50  *
51  * We check both the high and low dword of the event for all ones.  We
52  * wrote all ones when we cleared the event, and no valid event can
53  * have all ones in either its high or low dwords.  This approach is
54  * robust against reordering.
55  *
56  * Note that using a single 64-bit comparison is incorrect; even
57  * though the CPU read will be atomic, the DMA write may not be.
58  */
59 static inline int efx_event_present(efx_qword_t *event)
60 {
61 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
62 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
63 }
64 
65 /* Returns a pointer to the specified transmit descriptor in the TX
66  * descriptor queue belonging to the specified channel.
67  */
68 static inline efx_qword_t *
69 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
70 {
71 	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
72 }
73 
74 /* Report whether the NIC considers this TX queue empty, given the
75  * write_count used for the last doorbell push.  May return false
76  * negative.
77  */
78 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
79 					 unsigned int write_count)
80 {
81 	unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
82 
83 	if (empty_read_count == 0)
84 		return false;
85 
86 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
87 }
88 
89 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
90 {
91 	return __efx_nic_tx_is_empty(tx_queue, tx_queue->write_count);
92 }
93 
94 /* Decide whether to push a TX descriptor to the NIC vs merely writing
95  * the doorbell.  This can reduce latency when we are adding a single
96  * descriptor to an empty queue, but is otherwise pointless.  Further,
97  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
98  * triggered if we don't check this.
99  */
100 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
101 					    unsigned int write_count)
102 {
103 	bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
104 
105 	tx_queue->empty_read_count = 0;
106 	return was_empty && tx_queue->write_count - write_count == 1;
107 }
108 
109 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
110 static inline efx_qword_t *
111 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
112 {
113 	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
114 }
115 
116 enum {
117 	PHY_TYPE_NONE = 0,
118 	PHY_TYPE_TXC43128 = 1,
119 	PHY_TYPE_88E1111 = 2,
120 	PHY_TYPE_SFX7101 = 3,
121 	PHY_TYPE_QT2022C2 = 4,
122 	PHY_TYPE_PM8358 = 6,
123 	PHY_TYPE_SFT9001A = 8,
124 	PHY_TYPE_QT2025C = 9,
125 	PHY_TYPE_SFT9001B = 10,
126 };
127 
128 #define FALCON_XMAC_LOOPBACKS			\
129 	((1 << LOOPBACK_XGMII) |		\
130 	 (1 << LOOPBACK_XGXS) |			\
131 	 (1 << LOOPBACK_XAUI))
132 
133 /* Alignment of PCIe DMA boundaries (4KB) */
134 #define EFX_PAGE_SIZE	4096
135 /* Size and alignment of buffer table entries (same) */
136 #define EFX_BUF_SIZE	EFX_PAGE_SIZE
137 
138 /* NIC-generic software stats */
139 enum {
140 	GENERIC_STAT_rx_noskb_drops,
141 	GENERIC_STAT_rx_nodesc_trunc,
142 	GENERIC_STAT_COUNT
143 };
144 
145 /**
146  * struct falcon_board_type - board operations and type information
147  * @id: Board type id, as found in NVRAM
148  * @init: Allocate resources and initialise peripheral hardware
149  * @init_phy: Do board-specific PHY initialisation
150  * @fini: Shut down hardware and free resources
151  * @set_id_led: Set state of identifying LED or revert to automatic function
152  * @monitor: Board-specific health check function
153  */
154 struct falcon_board_type {
155 	u8 id;
156 	int (*init) (struct efx_nic *nic);
157 	void (*init_phy) (struct efx_nic *efx);
158 	void (*fini) (struct efx_nic *nic);
159 	void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
160 	int (*monitor) (struct efx_nic *nic);
161 };
162 
163 /**
164  * struct falcon_board - board information
165  * @type: Type of board
166  * @major: Major rev. ('A', 'B' ...)
167  * @minor: Minor rev. (0, 1, ...)
168  * @i2c_adap: I2C adapter for on-board peripherals
169  * @i2c_data: Data for bit-banging algorithm
170  * @hwmon_client: I2C client for hardware monitor
171  * @ioexp_client: I2C client for power/port control
172  */
173 struct falcon_board {
174 	const struct falcon_board_type *type;
175 	int major;
176 	int minor;
177 	struct i2c_adapter i2c_adap;
178 	struct i2c_algo_bit_data i2c_data;
179 	struct i2c_client *hwmon_client, *ioexp_client;
180 };
181 
182 /**
183  * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
184  * @device_id:		Controller's id for the device
185  * @size:		Size (in bytes)
186  * @addr_len:		Number of address bytes in read/write commands
187  * @munge_address:	Flag whether addresses should be munged.
188  *	Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
189  *	use bit 3 of the command byte as address bit A8, rather
190  *	than having a two-byte address.  If this flag is set, then
191  *	commands should be munged in this way.
192  * @erase_command:	Erase command (or 0 if sector erase not needed).
193  * @erase_size:		Erase sector size (in bytes)
194  *	Erase commands affect sectors with this size and alignment.
195  *	This must be a power of two.
196  * @block_size:		Write block size (in bytes).
197  *	Write commands are limited to blocks with this size and alignment.
198  */
199 struct falcon_spi_device {
200 	int device_id;
201 	unsigned int size;
202 	unsigned int addr_len;
203 	unsigned int munge_address:1;
204 	u8 erase_command;
205 	unsigned int erase_size;
206 	unsigned int block_size;
207 };
208 
209 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
210 {
211 	return spi->size != 0;
212 }
213 
214 enum {
215 	FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
216 	FALCON_STAT_tx_packets,
217 	FALCON_STAT_tx_pause,
218 	FALCON_STAT_tx_control,
219 	FALCON_STAT_tx_unicast,
220 	FALCON_STAT_tx_multicast,
221 	FALCON_STAT_tx_broadcast,
222 	FALCON_STAT_tx_lt64,
223 	FALCON_STAT_tx_64,
224 	FALCON_STAT_tx_65_to_127,
225 	FALCON_STAT_tx_128_to_255,
226 	FALCON_STAT_tx_256_to_511,
227 	FALCON_STAT_tx_512_to_1023,
228 	FALCON_STAT_tx_1024_to_15xx,
229 	FALCON_STAT_tx_15xx_to_jumbo,
230 	FALCON_STAT_tx_gtjumbo,
231 	FALCON_STAT_tx_non_tcpudp,
232 	FALCON_STAT_tx_mac_src_error,
233 	FALCON_STAT_tx_ip_src_error,
234 	FALCON_STAT_rx_bytes,
235 	FALCON_STAT_rx_good_bytes,
236 	FALCON_STAT_rx_bad_bytes,
237 	FALCON_STAT_rx_packets,
238 	FALCON_STAT_rx_good,
239 	FALCON_STAT_rx_bad,
240 	FALCON_STAT_rx_pause,
241 	FALCON_STAT_rx_control,
242 	FALCON_STAT_rx_unicast,
243 	FALCON_STAT_rx_multicast,
244 	FALCON_STAT_rx_broadcast,
245 	FALCON_STAT_rx_lt64,
246 	FALCON_STAT_rx_64,
247 	FALCON_STAT_rx_65_to_127,
248 	FALCON_STAT_rx_128_to_255,
249 	FALCON_STAT_rx_256_to_511,
250 	FALCON_STAT_rx_512_to_1023,
251 	FALCON_STAT_rx_1024_to_15xx,
252 	FALCON_STAT_rx_15xx_to_jumbo,
253 	FALCON_STAT_rx_gtjumbo,
254 	FALCON_STAT_rx_bad_lt64,
255 	FALCON_STAT_rx_bad_gtjumbo,
256 	FALCON_STAT_rx_overflow,
257 	FALCON_STAT_rx_symbol_error,
258 	FALCON_STAT_rx_align_error,
259 	FALCON_STAT_rx_length_error,
260 	FALCON_STAT_rx_internal_error,
261 	FALCON_STAT_rx_nodesc_drop_cnt,
262 	FALCON_STAT_COUNT
263 };
264 
265 /**
266  * struct falcon_nic_data - Falcon NIC state
267  * @pci_dev2: Secondary function of Falcon A
268  * @board: Board state and functions
269  * @stats: Hardware statistics
270  * @stats_disable_count: Nest count for disabling statistics fetches
271  * @stats_pending: Is there a pending DMA of MAC statistics.
272  * @stats_timer: A timer for regularly fetching MAC statistics.
273  * @spi_flash: SPI flash device
274  * @spi_eeprom: SPI EEPROM device
275  * @spi_lock: SPI bus lock
276  * @mdio_lock: MDIO bus lock
277  * @xmac_poll_required: XMAC link state needs polling
278  */
279 struct falcon_nic_data {
280 	struct pci_dev *pci_dev2;
281 	struct falcon_board board;
282 	u64 stats[FALCON_STAT_COUNT];
283 	unsigned int stats_disable_count;
284 	bool stats_pending;
285 	struct timer_list stats_timer;
286 	struct falcon_spi_device spi_flash;
287 	struct falcon_spi_device spi_eeprom;
288 	struct mutex spi_lock;
289 	struct mutex mdio_lock;
290 	bool xmac_poll_required;
291 };
292 
293 static inline struct falcon_board *falcon_board(struct efx_nic *efx)
294 {
295 	struct falcon_nic_data *data = efx->nic_data;
296 	return &data->board;
297 }
298 
299 enum {
300 	SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
301 	SIENA_STAT_tx_good_bytes,
302 	SIENA_STAT_tx_bad_bytes,
303 	SIENA_STAT_tx_packets,
304 	SIENA_STAT_tx_bad,
305 	SIENA_STAT_tx_pause,
306 	SIENA_STAT_tx_control,
307 	SIENA_STAT_tx_unicast,
308 	SIENA_STAT_tx_multicast,
309 	SIENA_STAT_tx_broadcast,
310 	SIENA_STAT_tx_lt64,
311 	SIENA_STAT_tx_64,
312 	SIENA_STAT_tx_65_to_127,
313 	SIENA_STAT_tx_128_to_255,
314 	SIENA_STAT_tx_256_to_511,
315 	SIENA_STAT_tx_512_to_1023,
316 	SIENA_STAT_tx_1024_to_15xx,
317 	SIENA_STAT_tx_15xx_to_jumbo,
318 	SIENA_STAT_tx_gtjumbo,
319 	SIENA_STAT_tx_collision,
320 	SIENA_STAT_tx_single_collision,
321 	SIENA_STAT_tx_multiple_collision,
322 	SIENA_STAT_tx_excessive_collision,
323 	SIENA_STAT_tx_deferred,
324 	SIENA_STAT_tx_late_collision,
325 	SIENA_STAT_tx_excessive_deferred,
326 	SIENA_STAT_tx_non_tcpudp,
327 	SIENA_STAT_tx_mac_src_error,
328 	SIENA_STAT_tx_ip_src_error,
329 	SIENA_STAT_rx_bytes,
330 	SIENA_STAT_rx_good_bytes,
331 	SIENA_STAT_rx_bad_bytes,
332 	SIENA_STAT_rx_packets,
333 	SIENA_STAT_rx_good,
334 	SIENA_STAT_rx_bad,
335 	SIENA_STAT_rx_pause,
336 	SIENA_STAT_rx_control,
337 	SIENA_STAT_rx_unicast,
338 	SIENA_STAT_rx_multicast,
339 	SIENA_STAT_rx_broadcast,
340 	SIENA_STAT_rx_lt64,
341 	SIENA_STAT_rx_64,
342 	SIENA_STAT_rx_65_to_127,
343 	SIENA_STAT_rx_128_to_255,
344 	SIENA_STAT_rx_256_to_511,
345 	SIENA_STAT_rx_512_to_1023,
346 	SIENA_STAT_rx_1024_to_15xx,
347 	SIENA_STAT_rx_15xx_to_jumbo,
348 	SIENA_STAT_rx_gtjumbo,
349 	SIENA_STAT_rx_bad_gtjumbo,
350 	SIENA_STAT_rx_overflow,
351 	SIENA_STAT_rx_false_carrier,
352 	SIENA_STAT_rx_symbol_error,
353 	SIENA_STAT_rx_align_error,
354 	SIENA_STAT_rx_length_error,
355 	SIENA_STAT_rx_internal_error,
356 	SIENA_STAT_rx_nodesc_drop_cnt,
357 	SIENA_STAT_COUNT
358 };
359 
360 /**
361  * struct siena_nic_data - Siena NIC state
362  * @wol_filter_id: Wake-on-LAN packet filter id
363  * @stats: Hardware statistics
364  */
365 struct siena_nic_data {
366 	int wol_filter_id;
367 	u64 stats[SIENA_STAT_COUNT];
368 };
369 
370 enum {
371 	EF10_STAT_tx_bytes = GENERIC_STAT_COUNT,
372 	EF10_STAT_tx_packets,
373 	EF10_STAT_tx_pause,
374 	EF10_STAT_tx_control,
375 	EF10_STAT_tx_unicast,
376 	EF10_STAT_tx_multicast,
377 	EF10_STAT_tx_broadcast,
378 	EF10_STAT_tx_lt64,
379 	EF10_STAT_tx_64,
380 	EF10_STAT_tx_65_to_127,
381 	EF10_STAT_tx_128_to_255,
382 	EF10_STAT_tx_256_to_511,
383 	EF10_STAT_tx_512_to_1023,
384 	EF10_STAT_tx_1024_to_15xx,
385 	EF10_STAT_tx_15xx_to_jumbo,
386 	EF10_STAT_rx_bytes,
387 	EF10_STAT_rx_bytes_minus_good_bytes,
388 	EF10_STAT_rx_good_bytes,
389 	EF10_STAT_rx_bad_bytes,
390 	EF10_STAT_rx_packets,
391 	EF10_STAT_rx_good,
392 	EF10_STAT_rx_bad,
393 	EF10_STAT_rx_pause,
394 	EF10_STAT_rx_control,
395 	EF10_STAT_rx_unicast,
396 	EF10_STAT_rx_multicast,
397 	EF10_STAT_rx_broadcast,
398 	EF10_STAT_rx_lt64,
399 	EF10_STAT_rx_64,
400 	EF10_STAT_rx_65_to_127,
401 	EF10_STAT_rx_128_to_255,
402 	EF10_STAT_rx_256_to_511,
403 	EF10_STAT_rx_512_to_1023,
404 	EF10_STAT_rx_1024_to_15xx,
405 	EF10_STAT_rx_15xx_to_jumbo,
406 	EF10_STAT_rx_gtjumbo,
407 	EF10_STAT_rx_bad_gtjumbo,
408 	EF10_STAT_rx_overflow,
409 	EF10_STAT_rx_align_error,
410 	EF10_STAT_rx_length_error,
411 	EF10_STAT_rx_nodesc_drops,
412 	EF10_STAT_rx_pm_trunc_bb_overflow,
413 	EF10_STAT_rx_pm_discard_bb_overflow,
414 	EF10_STAT_rx_pm_trunc_vfifo_full,
415 	EF10_STAT_rx_pm_discard_vfifo_full,
416 	EF10_STAT_rx_pm_trunc_qbb,
417 	EF10_STAT_rx_pm_discard_qbb,
418 	EF10_STAT_rx_pm_discard_mapping,
419 	EF10_STAT_rx_dp_q_disabled_packets,
420 	EF10_STAT_rx_dp_di_dropped_packets,
421 	EF10_STAT_rx_dp_streaming_packets,
422 	EF10_STAT_rx_dp_hlb_fetch,
423 	EF10_STAT_rx_dp_hlb_wait,
424 	EF10_STAT_COUNT
425 };
426 
427 /* Maximum number of TX PIO buffers we may allocate to a function.
428  * This matches the total number of buffers on each SFC9100-family
429  * controller.
430  */
431 #define EF10_TX_PIOBUF_COUNT 16
432 
433 /**
434  * struct efx_ef10_nic_data - EF10 architecture NIC state
435  * @mcdi_buf: DMA buffer for MCDI
436  * @warm_boot_count: Last seen MC warm boot count
437  * @vi_base: Absolute index of first VI in this function
438  * @n_allocated_vis: Number of VIs allocated to this function
439  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
440  * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
441  * @n_piobufs: Number of PIO buffers allocated to this function
442  * @wc_membase: Base address of write-combining mapping of the memory BAR
443  * @pio_write_base: Base address for writing PIO buffers
444  * @pio_write_vi_base: Relative VI number for @pio_write_base
445  * @piobuf_handle: Handle of each PIO buffer allocated
446  * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
447  *	reboot
448  * @rx_rss_context: Firmware handle for our RSS context
449  * @stats: Hardware statistics
450  * @workaround_35388: Flag: firmware supports workaround for bug 35388
451  * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
452  *	after MC reboot
453  * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
454  *	%MC_CMD_GET_CAPABILITIES response)
455  */
456 struct efx_ef10_nic_data {
457 	struct efx_buffer mcdi_buf;
458 	u16 warm_boot_count;
459 	unsigned int vi_base;
460 	unsigned int n_allocated_vis;
461 	bool must_realloc_vis;
462 	bool must_restore_filters;
463 	unsigned int n_piobufs;
464 	void __iomem *wc_membase, *pio_write_base;
465 	unsigned int pio_write_vi_base;
466 	unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
467 	bool must_restore_piobufs;
468 	u32 rx_rss_context;
469 	u64 stats[EF10_STAT_COUNT];
470 	bool workaround_35388;
471 	bool must_check_datapath_caps;
472 	u32 datapath_caps;
473 };
474 
475 /*
476  * On the SFC9000 family each port is associated with 1 PCI physical
477  * function (PF) handled by sfc and a configurable number of virtual
478  * functions (VFs) that may be handled by some other driver, often in
479  * a VM guest.  The queue pointer registers are mapped in both PF and
480  * VF BARs such that an 8K region provides access to a single RX, TX
481  * and event queue (collectively a Virtual Interface, VI or VNIC).
482  *
483  * The PF has access to all 1024 VIs while VFs are mapped to VIs
484  * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
485  * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
486  * The number of VIs and the VI_SCALE value are configurable but must
487  * be established at boot time by firmware.
488  */
489 
490 /* Maximum VI_SCALE parameter supported by Siena */
491 #define EFX_VI_SCALE_MAX 6
492 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
493  * so this is the smallest allowed value. */
494 #define EFX_VI_BASE 128U
495 /* Maximum number of VFs allowed */
496 #define EFX_VF_COUNT_MAX 127
497 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
498 #define EFX_MAX_VF_EVQ_SIZE 8192UL
499 /* The number of buffer table entries reserved for each VI on a VF */
500 #define EFX_VF_BUFTBL_PER_VI					\
501 	((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) *	\
502 	 sizeof(efx_qword_t) / EFX_BUF_SIZE)
503 
504 #ifdef CONFIG_SFC_SRIOV
505 
506 static inline bool efx_sriov_wanted(struct efx_nic *efx)
507 {
508 	return efx->vf_count != 0;
509 }
510 static inline bool efx_sriov_enabled(struct efx_nic *efx)
511 {
512 	return efx->vf_init_count != 0;
513 }
514 static inline unsigned int efx_vf_size(struct efx_nic *efx)
515 {
516 	return 1 << efx->vi_scale;
517 }
518 
519 int efx_init_sriov(void);
520 void efx_sriov_probe(struct efx_nic *efx);
521 int efx_sriov_init(struct efx_nic *efx);
522 void efx_sriov_mac_address_changed(struct efx_nic *efx);
523 void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
524 void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
525 void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
526 void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
527 void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
528 void efx_sriov_reset(struct efx_nic *efx);
529 void efx_sriov_fini(struct efx_nic *efx);
530 void efx_fini_sriov(void);
531 
532 #else
533 
534 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
535 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
536 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
537 
538 static inline int efx_init_sriov(void) { return 0; }
539 static inline void efx_sriov_probe(struct efx_nic *efx) {}
540 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
541 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
542 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
543 					   efx_qword_t *event) {}
544 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
545 					   efx_qword_t *event) {}
546 static inline void efx_sriov_event(struct efx_channel *channel,
547 				   efx_qword_t *event) {}
548 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
549 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
550 static inline void efx_sriov_reset(struct efx_nic *efx) {}
551 static inline void efx_sriov_fini(struct efx_nic *efx) {}
552 static inline void efx_fini_sriov(void) {}
553 
554 #endif
555 
556 int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
557 int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos);
558 int efx_sriov_get_vf_config(struct net_device *dev, int vf,
559 			    struct ifla_vf_info *ivf);
560 int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
561 			      bool spoofchk);
562 
563 struct ethtool_ts_info;
564 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
565 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
566 void efx_ptp_remove(struct efx_nic *efx);
567 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
568 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
569 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
570 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
571 int efx_ptp_get_mode(struct efx_nic *efx);
572 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
573 			unsigned int new_mode);
574 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
575 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
576 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
577 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
578 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
579 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
580 				   struct sk_buff *skb);
581 static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
582 					       struct sk_buff *skb)
583 {
584 	if (channel->sync_events_state == SYNC_EVENTS_VALID)
585 		__efx_rx_skb_attach_timestamp(channel, skb);
586 }
587 void efx_ptp_start_datapath(struct efx_nic *efx);
588 void efx_ptp_stop_datapath(struct efx_nic *efx);
589 
590 extern const struct efx_nic_type falcon_a1_nic_type;
591 extern const struct efx_nic_type falcon_b0_nic_type;
592 extern const struct efx_nic_type siena_a0_nic_type;
593 extern const struct efx_nic_type efx_hunt_a0_nic_type;
594 
595 /**************************************************************************
596  *
597  * Externs
598  *
599  **************************************************************************
600  */
601 
602 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
603 
604 /* TX data path */
605 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
606 {
607 	return tx_queue->efx->type->tx_probe(tx_queue);
608 }
609 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
610 {
611 	tx_queue->efx->type->tx_init(tx_queue);
612 }
613 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
614 {
615 	tx_queue->efx->type->tx_remove(tx_queue);
616 }
617 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
618 {
619 	tx_queue->efx->type->tx_write(tx_queue);
620 }
621 
622 /* RX data path */
623 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
624 {
625 	return rx_queue->efx->type->rx_probe(rx_queue);
626 }
627 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
628 {
629 	rx_queue->efx->type->rx_init(rx_queue);
630 }
631 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
632 {
633 	rx_queue->efx->type->rx_remove(rx_queue);
634 }
635 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
636 {
637 	rx_queue->efx->type->rx_write(rx_queue);
638 }
639 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
640 {
641 	rx_queue->efx->type->rx_defer_refill(rx_queue);
642 }
643 
644 /* Event data path */
645 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
646 {
647 	return channel->efx->type->ev_probe(channel);
648 }
649 static inline int efx_nic_init_eventq(struct efx_channel *channel)
650 {
651 	return channel->efx->type->ev_init(channel);
652 }
653 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
654 {
655 	channel->efx->type->ev_fini(channel);
656 }
657 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
658 {
659 	channel->efx->type->ev_remove(channel);
660 }
661 static inline int
662 efx_nic_process_eventq(struct efx_channel *channel, int quota)
663 {
664 	return channel->efx->type->ev_process(channel, quota);
665 }
666 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
667 {
668 	channel->efx->type->ev_read_ack(channel);
669 }
670 void efx_nic_event_test_start(struct efx_channel *channel);
671 
672 /* Falcon/Siena queue operations */
673 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
674 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
675 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
676 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
677 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
678 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
679 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
680 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
681 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
682 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
683 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
684 int efx_farch_ev_probe(struct efx_channel *channel);
685 int efx_farch_ev_init(struct efx_channel *channel);
686 void efx_farch_ev_fini(struct efx_channel *channel);
687 void efx_farch_ev_remove(struct efx_channel *channel);
688 int efx_farch_ev_process(struct efx_channel *channel, int quota);
689 void efx_farch_ev_read_ack(struct efx_channel *channel);
690 void efx_farch_ev_test_generate(struct efx_channel *channel);
691 
692 /* Falcon/Siena filter operations */
693 int efx_farch_filter_table_probe(struct efx_nic *efx);
694 void efx_farch_filter_table_restore(struct efx_nic *efx);
695 void efx_farch_filter_table_remove(struct efx_nic *efx);
696 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
697 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
698 			    bool replace);
699 int efx_farch_filter_remove_safe(struct efx_nic *efx,
700 				 enum efx_filter_priority priority,
701 				 u32 filter_id);
702 int efx_farch_filter_get_safe(struct efx_nic *efx,
703 			      enum efx_filter_priority priority, u32 filter_id,
704 			      struct efx_filter_spec *);
705 int efx_farch_filter_clear_rx(struct efx_nic *efx,
706 			      enum efx_filter_priority priority);
707 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
708 				   enum efx_filter_priority priority);
709 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
710 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
711 				enum efx_filter_priority priority, u32 *buf,
712 				u32 size);
713 #ifdef CONFIG_RFS_ACCEL
714 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
715 				struct efx_filter_spec *spec);
716 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
717 				     unsigned int index);
718 #endif
719 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
720 
721 bool efx_nic_event_present(struct efx_channel *channel);
722 
723 /* Some statistics are computed as A - B where A and B each increase
724  * linearly with some hardware counter(s) and the counters are read
725  * asynchronously.  If the counters contributing to B are always read
726  * after those contributing to A, the computed value may be lower than
727  * the true value by some variable amount, and may decrease between
728  * subsequent computations.
729  *
730  * We should never allow statistics to decrease or to exceed the true
731  * value.  Since the computed value will never be greater than the
732  * true value, we can achieve this by only storing the computed value
733  * when it increases.
734  */
735 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
736 {
737 	if ((s64)(diff - *stat) > 0)
738 		*stat = diff;
739 }
740 
741 /* Interrupts */
742 int efx_nic_init_interrupt(struct efx_nic *efx);
743 void efx_nic_irq_test_start(struct efx_nic *efx);
744 void efx_nic_fini_interrupt(struct efx_nic *efx);
745 
746 /* Falcon/Siena interrupts */
747 void efx_farch_irq_enable_master(struct efx_nic *efx);
748 void efx_farch_irq_test_generate(struct efx_nic *efx);
749 void efx_farch_irq_disable_master(struct efx_nic *efx);
750 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
751 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
752 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
753 
754 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
755 {
756 	return ACCESS_ONCE(channel->event_test_cpu);
757 }
758 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
759 {
760 	return ACCESS_ONCE(efx->last_irq_cpu);
761 }
762 
763 /* Global Resources */
764 int efx_nic_flush_queues(struct efx_nic *efx);
765 void siena_prepare_flush(struct efx_nic *efx);
766 int efx_farch_fini_dmaq(struct efx_nic *efx);
767 void efx_farch_finish_flr(struct efx_nic *efx);
768 void siena_finish_flush(struct efx_nic *efx);
769 void falcon_start_nic_stats(struct efx_nic *efx);
770 void falcon_stop_nic_stats(struct efx_nic *efx);
771 int falcon_reset_xaui(struct efx_nic *efx);
772 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
773 void efx_farch_init_common(struct efx_nic *efx);
774 void efx_ef10_handle_drain_event(struct efx_nic *efx);
775 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
776 
777 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
778 			 unsigned int len, gfp_t gfp_flags);
779 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
780 
781 /* Tests */
782 struct efx_farch_register_test {
783 	unsigned address;
784 	efx_oword_t mask;
785 };
786 int efx_farch_test_registers(struct efx_nic *efx,
787 			     const struct efx_farch_register_test *regs,
788 			     size_t n_regs);
789 
790 size_t efx_nic_get_regs_len(struct efx_nic *efx);
791 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
792 
793 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
794 			      const unsigned long *mask, u8 *names);
795 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
796 			  const unsigned long *mask, u64 *stats,
797 			  const void *dma_buf, bool accumulate);
798 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
799 
800 #define EFX_MAX_FLUSH_TIME 5000
801 
802 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
803 			      efx_qword_t *event);
804 
805 #endif /* EFX_NIC_H */
806