1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2006-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #ifndef EFX_NIC_H 12 #define EFX_NIC_H 13 14 #include <linux/net_tstamp.h> 15 #include <linux/i2c-algo-bit.h> 16 #include "net_driver.h" 17 #include "efx.h" 18 #include "mcdi.h" 19 20 enum { 21 /* Revisions 0-2 were Falcon A0, A1 and B0 respectively. 22 * They are not supported by this driver but these revision numbers 23 * form part of the ethtool API for register dumping. 24 */ 25 EFX_REV_SIENA_A0 = 3, 26 EFX_REV_HUNT_A0 = 4, 27 }; 28 29 static inline int efx_nic_rev(struct efx_nic *efx) 30 { 31 return efx->type->revision; 32 } 33 34 u32 efx_farch_fpga_ver(struct efx_nic *efx); 35 36 /* Read the current event from the event queue */ 37 static inline efx_qword_t *efx_event(struct efx_channel *channel, 38 unsigned int index) 39 { 40 return ((efx_qword_t *) (channel->eventq.buf.addr)) + 41 (index & channel->eventq_mask); 42 } 43 44 /* See if an event is present 45 * 46 * We check both the high and low dword of the event for all ones. We 47 * wrote all ones when we cleared the event, and no valid event can 48 * have all ones in either its high or low dwords. This approach is 49 * robust against reordering. 50 * 51 * Note that using a single 64-bit comparison is incorrect; even 52 * though the CPU read will be atomic, the DMA write may not be. 53 */ 54 static inline int efx_event_present(efx_qword_t *event) 55 { 56 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | 57 EFX_DWORD_IS_ALL_ONES(event->dword[1])); 58 } 59 60 /* Returns a pointer to the specified transmit descriptor in the TX 61 * descriptor queue belonging to the specified channel. 62 */ 63 static inline efx_qword_t * 64 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) 65 { 66 return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index; 67 } 68 69 /* Get partner of a TX queue, seen as part of the same net core queue */ 70 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue) 71 { 72 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) 73 return tx_queue - EFX_TXQ_TYPE_OFFLOAD; 74 else 75 return tx_queue + EFX_TXQ_TYPE_OFFLOAD; 76 } 77 78 /* Report whether this TX queue would be empty for the given write_count. 79 * May return false negative. 80 */ 81 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue, 82 unsigned int write_count) 83 { 84 unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count); 85 86 if (empty_read_count == 0) 87 return false; 88 89 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0; 90 } 91 92 /* Report whether the NIC considers this TX queue empty, using 93 * packet_write_count (the write count recorded for the last completable 94 * doorbell push). May return false negative. EF10 only, which is OK 95 * because only EF10 supports PIO. 96 */ 97 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue) 98 { 99 EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors); 100 return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count); 101 } 102 103 /* Decide whether we can use TX PIO, ie. write packet data directly into 104 * a buffer on the device. This can reduce latency at the expense of 105 * throughput, so we only do this if both hardware and software TX rings 106 * are empty. This also ensures that only one packet at a time can be 107 * using the PIO buffer. 108 */ 109 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue) 110 { 111 struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue); 112 113 return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) && 114 efx_nic_tx_is_empty(partner); 115 } 116 117 /* Decide whether to push a TX descriptor to the NIC vs merely writing 118 * the doorbell. This can reduce latency when we are adding a single 119 * descriptor to an empty queue, but is otherwise pointless. Further, 120 * Falcon and Siena have hardware bugs (SF bug 33851) that may be 121 * triggered if we don't check this. 122 * We use the write_count used for the last doorbell push, to get the 123 * NIC's view of the tx queue. 124 */ 125 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue, 126 unsigned int write_count) 127 { 128 bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count); 129 130 tx_queue->empty_read_count = 0; 131 return was_empty && tx_queue->write_count - write_count == 1; 132 } 133 134 /* Returns a pointer to the specified descriptor in the RX descriptor queue */ 135 static inline efx_qword_t * 136 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) 137 { 138 return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index; 139 } 140 141 enum { 142 PHY_TYPE_NONE = 0, 143 PHY_TYPE_TXC43128 = 1, 144 PHY_TYPE_88E1111 = 2, 145 PHY_TYPE_SFX7101 = 3, 146 PHY_TYPE_QT2022C2 = 4, 147 PHY_TYPE_PM8358 = 6, 148 PHY_TYPE_SFT9001A = 8, 149 PHY_TYPE_QT2025C = 9, 150 PHY_TYPE_SFT9001B = 10, 151 }; 152 153 /* Alignment of PCIe DMA boundaries (4KB) */ 154 #define EFX_PAGE_SIZE 4096 155 /* Size and alignment of buffer table entries (same) */ 156 #define EFX_BUF_SIZE EFX_PAGE_SIZE 157 158 /* NIC-generic software stats */ 159 enum { 160 GENERIC_STAT_rx_noskb_drops, 161 GENERIC_STAT_rx_nodesc_trunc, 162 GENERIC_STAT_COUNT 163 }; 164 165 enum { 166 SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT, 167 SIENA_STAT_tx_good_bytes, 168 SIENA_STAT_tx_bad_bytes, 169 SIENA_STAT_tx_packets, 170 SIENA_STAT_tx_bad, 171 SIENA_STAT_tx_pause, 172 SIENA_STAT_tx_control, 173 SIENA_STAT_tx_unicast, 174 SIENA_STAT_tx_multicast, 175 SIENA_STAT_tx_broadcast, 176 SIENA_STAT_tx_lt64, 177 SIENA_STAT_tx_64, 178 SIENA_STAT_tx_65_to_127, 179 SIENA_STAT_tx_128_to_255, 180 SIENA_STAT_tx_256_to_511, 181 SIENA_STAT_tx_512_to_1023, 182 SIENA_STAT_tx_1024_to_15xx, 183 SIENA_STAT_tx_15xx_to_jumbo, 184 SIENA_STAT_tx_gtjumbo, 185 SIENA_STAT_tx_collision, 186 SIENA_STAT_tx_single_collision, 187 SIENA_STAT_tx_multiple_collision, 188 SIENA_STAT_tx_excessive_collision, 189 SIENA_STAT_tx_deferred, 190 SIENA_STAT_tx_late_collision, 191 SIENA_STAT_tx_excessive_deferred, 192 SIENA_STAT_tx_non_tcpudp, 193 SIENA_STAT_tx_mac_src_error, 194 SIENA_STAT_tx_ip_src_error, 195 SIENA_STAT_rx_bytes, 196 SIENA_STAT_rx_good_bytes, 197 SIENA_STAT_rx_bad_bytes, 198 SIENA_STAT_rx_packets, 199 SIENA_STAT_rx_good, 200 SIENA_STAT_rx_bad, 201 SIENA_STAT_rx_pause, 202 SIENA_STAT_rx_control, 203 SIENA_STAT_rx_unicast, 204 SIENA_STAT_rx_multicast, 205 SIENA_STAT_rx_broadcast, 206 SIENA_STAT_rx_lt64, 207 SIENA_STAT_rx_64, 208 SIENA_STAT_rx_65_to_127, 209 SIENA_STAT_rx_128_to_255, 210 SIENA_STAT_rx_256_to_511, 211 SIENA_STAT_rx_512_to_1023, 212 SIENA_STAT_rx_1024_to_15xx, 213 SIENA_STAT_rx_15xx_to_jumbo, 214 SIENA_STAT_rx_gtjumbo, 215 SIENA_STAT_rx_bad_gtjumbo, 216 SIENA_STAT_rx_overflow, 217 SIENA_STAT_rx_false_carrier, 218 SIENA_STAT_rx_symbol_error, 219 SIENA_STAT_rx_align_error, 220 SIENA_STAT_rx_length_error, 221 SIENA_STAT_rx_internal_error, 222 SIENA_STAT_rx_nodesc_drop_cnt, 223 SIENA_STAT_COUNT 224 }; 225 226 /** 227 * struct siena_nic_data - Siena NIC state 228 * @efx: Pointer back to main interface structure 229 * @wol_filter_id: Wake-on-LAN packet filter id 230 * @stats: Hardware statistics 231 * @vf: Array of &struct siena_vf objects 232 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues. 233 * @vfdi_status: Common VFDI status page to be dmad to VF address space. 234 * @local_addr_list: List of local addresses. Protected by %local_lock. 235 * @local_page_list: List of DMA addressable pages used to broadcast 236 * %local_addr_list. Protected by %local_lock. 237 * @local_lock: Mutex protecting %local_addr_list and %local_page_list. 238 * @peer_work: Work item to broadcast peer addresses to VMs. 239 */ 240 struct siena_nic_data { 241 struct efx_nic *efx; 242 int wol_filter_id; 243 u64 stats[SIENA_STAT_COUNT]; 244 #ifdef CONFIG_SFC_SRIOV 245 struct siena_vf *vf; 246 struct efx_channel *vfdi_channel; 247 unsigned vf_buftbl_base; 248 struct efx_buffer vfdi_status; 249 struct list_head local_addr_list; 250 struct list_head local_page_list; 251 struct mutex local_lock; 252 struct work_struct peer_work; 253 #endif 254 }; 255 256 enum { 257 EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT, 258 EF10_STAT_port_tx_packets, 259 EF10_STAT_port_tx_pause, 260 EF10_STAT_port_tx_control, 261 EF10_STAT_port_tx_unicast, 262 EF10_STAT_port_tx_multicast, 263 EF10_STAT_port_tx_broadcast, 264 EF10_STAT_port_tx_lt64, 265 EF10_STAT_port_tx_64, 266 EF10_STAT_port_tx_65_to_127, 267 EF10_STAT_port_tx_128_to_255, 268 EF10_STAT_port_tx_256_to_511, 269 EF10_STAT_port_tx_512_to_1023, 270 EF10_STAT_port_tx_1024_to_15xx, 271 EF10_STAT_port_tx_15xx_to_jumbo, 272 EF10_STAT_port_rx_bytes, 273 EF10_STAT_port_rx_bytes_minus_good_bytes, 274 EF10_STAT_port_rx_good_bytes, 275 EF10_STAT_port_rx_bad_bytes, 276 EF10_STAT_port_rx_packets, 277 EF10_STAT_port_rx_good, 278 EF10_STAT_port_rx_bad, 279 EF10_STAT_port_rx_pause, 280 EF10_STAT_port_rx_control, 281 EF10_STAT_port_rx_unicast, 282 EF10_STAT_port_rx_multicast, 283 EF10_STAT_port_rx_broadcast, 284 EF10_STAT_port_rx_lt64, 285 EF10_STAT_port_rx_64, 286 EF10_STAT_port_rx_65_to_127, 287 EF10_STAT_port_rx_128_to_255, 288 EF10_STAT_port_rx_256_to_511, 289 EF10_STAT_port_rx_512_to_1023, 290 EF10_STAT_port_rx_1024_to_15xx, 291 EF10_STAT_port_rx_15xx_to_jumbo, 292 EF10_STAT_port_rx_gtjumbo, 293 EF10_STAT_port_rx_bad_gtjumbo, 294 EF10_STAT_port_rx_overflow, 295 EF10_STAT_port_rx_align_error, 296 EF10_STAT_port_rx_length_error, 297 EF10_STAT_port_rx_nodesc_drops, 298 EF10_STAT_port_rx_pm_trunc_bb_overflow, 299 EF10_STAT_port_rx_pm_discard_bb_overflow, 300 EF10_STAT_port_rx_pm_trunc_vfifo_full, 301 EF10_STAT_port_rx_pm_discard_vfifo_full, 302 EF10_STAT_port_rx_pm_trunc_qbb, 303 EF10_STAT_port_rx_pm_discard_qbb, 304 EF10_STAT_port_rx_pm_discard_mapping, 305 EF10_STAT_port_rx_dp_q_disabled_packets, 306 EF10_STAT_port_rx_dp_di_dropped_packets, 307 EF10_STAT_port_rx_dp_streaming_packets, 308 EF10_STAT_port_rx_dp_hlb_fetch, 309 EF10_STAT_port_rx_dp_hlb_wait, 310 EF10_STAT_rx_unicast, 311 EF10_STAT_rx_unicast_bytes, 312 EF10_STAT_rx_multicast, 313 EF10_STAT_rx_multicast_bytes, 314 EF10_STAT_rx_broadcast, 315 EF10_STAT_rx_broadcast_bytes, 316 EF10_STAT_rx_bad, 317 EF10_STAT_rx_bad_bytes, 318 EF10_STAT_rx_overflow, 319 EF10_STAT_tx_unicast, 320 EF10_STAT_tx_unicast_bytes, 321 EF10_STAT_tx_multicast, 322 EF10_STAT_tx_multicast_bytes, 323 EF10_STAT_tx_broadcast, 324 EF10_STAT_tx_broadcast_bytes, 325 EF10_STAT_tx_bad, 326 EF10_STAT_tx_bad_bytes, 327 EF10_STAT_tx_overflow, 328 EF10_STAT_V1_COUNT, 329 EF10_STAT_fec_uncorrected_errors = EF10_STAT_V1_COUNT, 330 EF10_STAT_fec_corrected_errors, 331 EF10_STAT_fec_corrected_symbols_lane0, 332 EF10_STAT_fec_corrected_symbols_lane1, 333 EF10_STAT_fec_corrected_symbols_lane2, 334 EF10_STAT_fec_corrected_symbols_lane3, 335 EF10_STAT_ctpio_vi_busy_fallback, 336 EF10_STAT_ctpio_long_write_success, 337 EF10_STAT_ctpio_missing_dbell_fail, 338 EF10_STAT_ctpio_overflow_fail, 339 EF10_STAT_ctpio_underflow_fail, 340 EF10_STAT_ctpio_timeout_fail, 341 EF10_STAT_ctpio_noncontig_wr_fail, 342 EF10_STAT_ctpio_frm_clobber_fail, 343 EF10_STAT_ctpio_invalid_wr_fail, 344 EF10_STAT_ctpio_vi_clobber_fallback, 345 EF10_STAT_ctpio_unqualified_fallback, 346 EF10_STAT_ctpio_runt_fallback, 347 EF10_STAT_ctpio_success, 348 EF10_STAT_ctpio_fallback, 349 EF10_STAT_ctpio_poison, 350 EF10_STAT_ctpio_erase, 351 EF10_STAT_COUNT 352 }; 353 354 /* Maximum number of TX PIO buffers we may allocate to a function. 355 * This matches the total number of buffers on each SFC9100-family 356 * controller. 357 */ 358 #define EF10_TX_PIOBUF_COUNT 16 359 360 /** 361 * struct efx_ef10_nic_data - EF10 architecture NIC state 362 * @mcdi_buf: DMA buffer for MCDI 363 * @warm_boot_count: Last seen MC warm boot count 364 * @vi_base: Absolute index of first VI in this function 365 * @n_allocated_vis: Number of VIs allocated to this function 366 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot 367 * @must_restore_rss_contexts: Flag: RSS contexts have yet to be restored after 368 * MC reboot 369 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot 370 * @n_piobufs: Number of PIO buffers allocated to this function 371 * @wc_membase: Base address of write-combining mapping of the memory BAR 372 * @pio_write_base: Base address for writing PIO buffers 373 * @pio_write_vi_base: Relative VI number for @pio_write_base 374 * @piobuf_handle: Handle of each PIO buffer allocated 375 * @piobuf_size: size of a single PIO buffer 376 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC 377 * reboot 378 * @rx_rss_context_exclusive: Whether our RSS context is exclusive or shared 379 * @stats: Hardware statistics 380 * @workaround_35388: Flag: firmware supports workaround for bug 35388 381 * @workaround_26807: Flag: firmware supports workaround for bug 26807 382 * @workaround_61265: Flag: firmware supports workaround for bug 61265 383 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated 384 * after MC reboot 385 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of 386 * %MC_CMD_GET_CAPABILITIES response) 387 * @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of 388 * %MC_CMD_GET_CAPABILITIES response) 389 * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU 390 * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU 391 * @vport_id: The function's vport ID, only relevant for PFs 392 * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot 393 * @pf_index: The number for this PF, or the parent PF if this is a VF 394 #ifdef CONFIG_SFC_SRIOV 395 * @vf: Pointer to VF data structure 396 #endif 397 * @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero 398 * @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock. 399 * @vlan_lock: Lock to serialize access to vlan_list. 400 * @udp_tunnels: UDP tunnel port numbers and types. 401 * @udp_tunnels_dirty: flag indicating a reboot occurred while pushing 402 * @udp_tunnels to hardware and thus the push must be re-done. 403 * @udp_tunnels_lock: Serialises writes to @udp_tunnels and @udp_tunnels_dirty. 404 */ 405 struct efx_ef10_nic_data { 406 struct efx_buffer mcdi_buf; 407 u16 warm_boot_count; 408 unsigned int vi_base; 409 unsigned int n_allocated_vis; 410 bool must_realloc_vis; 411 bool must_restore_rss_contexts; 412 bool must_restore_filters; 413 unsigned int n_piobufs; 414 void __iomem *wc_membase, *pio_write_base; 415 unsigned int pio_write_vi_base; 416 unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT]; 417 u16 piobuf_size; 418 bool must_restore_piobufs; 419 bool rx_rss_context_exclusive; 420 u64 stats[EF10_STAT_COUNT]; 421 bool workaround_35388; 422 bool workaround_26807; 423 bool workaround_61265; 424 bool must_check_datapath_caps; 425 u32 datapath_caps; 426 u32 datapath_caps2; 427 unsigned int rx_dpcpu_fw_id; 428 unsigned int tx_dpcpu_fw_id; 429 unsigned int vport_id; 430 bool must_probe_vswitching; 431 unsigned int pf_index; 432 u8 port_id[ETH_ALEN]; 433 #ifdef CONFIG_SFC_SRIOV 434 unsigned int vf_index; 435 struct ef10_vf *vf; 436 #endif 437 u8 vport_mac[ETH_ALEN]; 438 struct list_head vlan_list; 439 struct mutex vlan_lock; 440 struct efx_udp_tunnel udp_tunnels[16]; 441 bool udp_tunnels_dirty; 442 struct mutex udp_tunnels_lock; 443 u64 licensed_features; 444 }; 445 446 int efx_init_sriov(void); 447 void efx_fini_sriov(void); 448 449 struct ethtool_ts_info; 450 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel); 451 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx); 452 struct efx_channel *efx_ptp_channel(struct efx_nic *efx); 453 void efx_ptp_remove(struct efx_nic *efx); 454 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr); 455 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr); 456 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info); 457 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb); 458 int efx_ptp_get_mode(struct efx_nic *efx); 459 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, 460 unsigned int new_mode); 461 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb); 462 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev); 463 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings); 464 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats); 465 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev); 466 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, 467 struct sk_buff *skb); 468 static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel, 469 struct sk_buff *skb) 470 { 471 if (channel->sync_events_state == SYNC_EVENTS_VALID) 472 __efx_rx_skb_attach_timestamp(channel, skb); 473 } 474 void efx_ptp_start_datapath(struct efx_nic *efx); 475 void efx_ptp_stop_datapath(struct efx_nic *efx); 476 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx); 477 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue); 478 479 extern const struct efx_nic_type falcon_a1_nic_type; 480 extern const struct efx_nic_type falcon_b0_nic_type; 481 extern const struct efx_nic_type siena_a0_nic_type; 482 extern const struct efx_nic_type efx_hunt_a0_nic_type; 483 extern const struct efx_nic_type efx_hunt_a0_vf_nic_type; 484 485 /************************************************************************** 486 * 487 * Externs 488 * 489 ************************************************************************** 490 */ 491 492 int falcon_probe_board(struct efx_nic *efx, u16 revision_info); 493 494 /* TX data path */ 495 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) 496 { 497 return tx_queue->efx->type->tx_probe(tx_queue); 498 } 499 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue) 500 { 501 tx_queue->efx->type->tx_init(tx_queue); 502 } 503 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) 504 { 505 tx_queue->efx->type->tx_remove(tx_queue); 506 } 507 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) 508 { 509 tx_queue->efx->type->tx_write(tx_queue); 510 } 511 512 /* RX data path */ 513 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) 514 { 515 return rx_queue->efx->type->rx_probe(rx_queue); 516 } 517 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue) 518 { 519 rx_queue->efx->type->rx_init(rx_queue); 520 } 521 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) 522 { 523 rx_queue->efx->type->rx_remove(rx_queue); 524 } 525 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) 526 { 527 rx_queue->efx->type->rx_write(rx_queue); 528 } 529 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue) 530 { 531 rx_queue->efx->type->rx_defer_refill(rx_queue); 532 } 533 534 /* Event data path */ 535 static inline int efx_nic_probe_eventq(struct efx_channel *channel) 536 { 537 return channel->efx->type->ev_probe(channel); 538 } 539 static inline int efx_nic_init_eventq(struct efx_channel *channel) 540 { 541 return channel->efx->type->ev_init(channel); 542 } 543 static inline void efx_nic_fini_eventq(struct efx_channel *channel) 544 { 545 channel->efx->type->ev_fini(channel); 546 } 547 static inline void efx_nic_remove_eventq(struct efx_channel *channel) 548 { 549 channel->efx->type->ev_remove(channel); 550 } 551 static inline int 552 efx_nic_process_eventq(struct efx_channel *channel, int quota) 553 { 554 return channel->efx->type->ev_process(channel, quota); 555 } 556 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel) 557 { 558 channel->efx->type->ev_read_ack(channel); 559 } 560 void efx_nic_event_test_start(struct efx_channel *channel); 561 562 /* Falcon/Siena queue operations */ 563 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue); 564 void efx_farch_tx_init(struct efx_tx_queue *tx_queue); 565 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue); 566 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue); 567 void efx_farch_tx_write(struct efx_tx_queue *tx_queue); 568 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue, 569 dma_addr_t dma_addr, unsigned int len); 570 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue); 571 void efx_farch_rx_init(struct efx_rx_queue *rx_queue); 572 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue); 573 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue); 574 void efx_farch_rx_write(struct efx_rx_queue *rx_queue); 575 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue); 576 int efx_farch_ev_probe(struct efx_channel *channel); 577 int efx_farch_ev_init(struct efx_channel *channel); 578 void efx_farch_ev_fini(struct efx_channel *channel); 579 void efx_farch_ev_remove(struct efx_channel *channel); 580 int efx_farch_ev_process(struct efx_channel *channel, int quota); 581 void efx_farch_ev_read_ack(struct efx_channel *channel); 582 void efx_farch_ev_test_generate(struct efx_channel *channel); 583 584 /* Falcon/Siena filter operations */ 585 int efx_farch_filter_table_probe(struct efx_nic *efx); 586 void efx_farch_filter_table_restore(struct efx_nic *efx); 587 void efx_farch_filter_table_remove(struct efx_nic *efx); 588 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx); 589 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec, 590 bool replace); 591 int efx_farch_filter_remove_safe(struct efx_nic *efx, 592 enum efx_filter_priority priority, 593 u32 filter_id); 594 int efx_farch_filter_get_safe(struct efx_nic *efx, 595 enum efx_filter_priority priority, u32 filter_id, 596 struct efx_filter_spec *); 597 int efx_farch_filter_clear_rx(struct efx_nic *efx, 598 enum efx_filter_priority priority); 599 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx, 600 enum efx_filter_priority priority); 601 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx); 602 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx, 603 enum efx_filter_priority priority, u32 *buf, 604 u32 size); 605 #ifdef CONFIG_RFS_ACCEL 606 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id, 607 unsigned int index); 608 #endif 609 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx); 610 611 bool efx_nic_event_present(struct efx_channel *channel); 612 613 /* Some statistics are computed as A - B where A and B each increase 614 * linearly with some hardware counter(s) and the counters are read 615 * asynchronously. If the counters contributing to B are always read 616 * after those contributing to A, the computed value may be lower than 617 * the true value by some variable amount, and may decrease between 618 * subsequent computations. 619 * 620 * We should never allow statistics to decrease or to exceed the true 621 * value. Since the computed value will never be greater than the 622 * true value, we can achieve this by only storing the computed value 623 * when it increases. 624 */ 625 static inline void efx_update_diff_stat(u64 *stat, u64 diff) 626 { 627 if ((s64)(diff - *stat) > 0) 628 *stat = diff; 629 } 630 631 /* Interrupts */ 632 int efx_nic_init_interrupt(struct efx_nic *efx); 633 int efx_nic_irq_test_start(struct efx_nic *efx); 634 void efx_nic_fini_interrupt(struct efx_nic *efx); 635 636 /* Falcon/Siena interrupts */ 637 void efx_farch_irq_enable_master(struct efx_nic *efx); 638 int efx_farch_irq_test_generate(struct efx_nic *efx); 639 void efx_farch_irq_disable_master(struct efx_nic *efx); 640 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id); 641 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id); 642 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx); 643 644 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel) 645 { 646 return READ_ONCE(channel->event_test_cpu); 647 } 648 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx) 649 { 650 return READ_ONCE(efx->last_irq_cpu); 651 } 652 653 /* Global Resources */ 654 int efx_nic_flush_queues(struct efx_nic *efx); 655 void siena_prepare_flush(struct efx_nic *efx); 656 int efx_farch_fini_dmaq(struct efx_nic *efx); 657 void efx_farch_finish_flr(struct efx_nic *efx); 658 void siena_finish_flush(struct efx_nic *efx); 659 void falcon_start_nic_stats(struct efx_nic *efx); 660 void falcon_stop_nic_stats(struct efx_nic *efx); 661 int falcon_reset_xaui(struct efx_nic *efx); 662 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw); 663 void efx_farch_init_common(struct efx_nic *efx); 664 void efx_ef10_handle_drain_event(struct efx_nic *efx); 665 void efx_farch_rx_push_indir_table(struct efx_nic *efx); 666 void efx_farch_rx_pull_indir_table(struct efx_nic *efx); 667 668 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, 669 unsigned int len, gfp_t gfp_flags); 670 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer); 671 672 /* Tests */ 673 struct efx_farch_register_test { 674 unsigned address; 675 efx_oword_t mask; 676 }; 677 int efx_farch_test_registers(struct efx_nic *efx, 678 const struct efx_farch_register_test *regs, 679 size_t n_regs); 680 681 size_t efx_nic_get_regs_len(struct efx_nic *efx); 682 void efx_nic_get_regs(struct efx_nic *efx, void *buf); 683 684 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count, 685 const unsigned long *mask, u8 *names); 686 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count, 687 const unsigned long *mask, u64 *stats, 688 const void *dma_buf, bool accumulate); 689 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat); 690 691 #define EFX_MAX_FLUSH_TIME 5000 692 693 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq, 694 efx_qword_t *event); 695 696 #endif /* EFX_NIC_H */ 697