xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.h (revision 77d84ff8)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13 
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19 
20 enum {
21 	EFX_REV_FALCON_A0 = 0,
22 	EFX_REV_FALCON_A1 = 1,
23 	EFX_REV_FALCON_B0 = 2,
24 	EFX_REV_SIENA_A0 = 3,
25 	EFX_REV_HUNT_A0 = 4,
26 };
27 
28 static inline int efx_nic_rev(struct efx_nic *efx)
29 {
30 	return efx->type->revision;
31 }
32 
33 u32 efx_farch_fpga_ver(struct efx_nic *efx);
34 
35 /* NIC has two interlinked PCI functions for the same port. */
36 static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
37 {
38 	return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
39 }
40 
41 /* Read the current event from the event queue */
42 static inline efx_qword_t *efx_event(struct efx_channel *channel,
43 				     unsigned int index)
44 {
45 	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
46 		(index & channel->eventq_mask);
47 }
48 
49 /* See if an event is present
50  *
51  * We check both the high and low dword of the event for all ones.  We
52  * wrote all ones when we cleared the event, and no valid event can
53  * have all ones in either its high or low dwords.  This approach is
54  * robust against reordering.
55  *
56  * Note that using a single 64-bit comparison is incorrect; even
57  * though the CPU read will be atomic, the DMA write may not be.
58  */
59 static inline int efx_event_present(efx_qword_t *event)
60 {
61 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
62 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
63 }
64 
65 /* Returns a pointer to the specified transmit descriptor in the TX
66  * descriptor queue belonging to the specified channel.
67  */
68 static inline efx_qword_t *
69 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
70 {
71 	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
72 }
73 
74 /* Report whether the NIC considers this TX queue empty, given the
75  * write_count used for the last doorbell push.  May return false
76  * negative.
77  */
78 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
79 					 unsigned int write_count)
80 {
81 	unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
82 
83 	if (empty_read_count == 0)
84 		return false;
85 
86 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
87 }
88 
89 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
90 {
91 	return __efx_nic_tx_is_empty(tx_queue, tx_queue->write_count);
92 }
93 
94 /* Decide whether to push a TX descriptor to the NIC vs merely writing
95  * the doorbell.  This can reduce latency when we are adding a single
96  * descriptor to an empty queue, but is otherwise pointless.  Further,
97  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
98  * triggered if we don't check this.
99  */
100 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
101 					    unsigned int write_count)
102 {
103 	bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
104 
105 	tx_queue->empty_read_count = 0;
106 	return was_empty && tx_queue->write_count - write_count == 1;
107 }
108 
109 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
110 static inline efx_qword_t *
111 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
112 {
113 	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
114 }
115 
116 enum {
117 	PHY_TYPE_NONE = 0,
118 	PHY_TYPE_TXC43128 = 1,
119 	PHY_TYPE_88E1111 = 2,
120 	PHY_TYPE_SFX7101 = 3,
121 	PHY_TYPE_QT2022C2 = 4,
122 	PHY_TYPE_PM8358 = 6,
123 	PHY_TYPE_SFT9001A = 8,
124 	PHY_TYPE_QT2025C = 9,
125 	PHY_TYPE_SFT9001B = 10,
126 };
127 
128 #define FALCON_XMAC_LOOPBACKS			\
129 	((1 << LOOPBACK_XGMII) |		\
130 	 (1 << LOOPBACK_XGXS) |			\
131 	 (1 << LOOPBACK_XAUI))
132 
133 /* Alignment of PCIe DMA boundaries (4KB) */
134 #define EFX_PAGE_SIZE	4096
135 /* Size and alignment of buffer table entries (same) */
136 #define EFX_BUF_SIZE	EFX_PAGE_SIZE
137 
138 /**
139  * struct falcon_board_type - board operations and type information
140  * @id: Board type id, as found in NVRAM
141  * @init: Allocate resources and initialise peripheral hardware
142  * @init_phy: Do board-specific PHY initialisation
143  * @fini: Shut down hardware and free resources
144  * @set_id_led: Set state of identifying LED or revert to automatic function
145  * @monitor: Board-specific health check function
146  */
147 struct falcon_board_type {
148 	u8 id;
149 	int (*init) (struct efx_nic *nic);
150 	void (*init_phy) (struct efx_nic *efx);
151 	void (*fini) (struct efx_nic *nic);
152 	void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
153 	int (*monitor) (struct efx_nic *nic);
154 };
155 
156 /**
157  * struct falcon_board - board information
158  * @type: Type of board
159  * @major: Major rev. ('A', 'B' ...)
160  * @minor: Minor rev. (0, 1, ...)
161  * @i2c_adap: I2C adapter for on-board peripherals
162  * @i2c_data: Data for bit-banging algorithm
163  * @hwmon_client: I2C client for hardware monitor
164  * @ioexp_client: I2C client for power/port control
165  */
166 struct falcon_board {
167 	const struct falcon_board_type *type;
168 	int major;
169 	int minor;
170 	struct i2c_adapter i2c_adap;
171 	struct i2c_algo_bit_data i2c_data;
172 	struct i2c_client *hwmon_client, *ioexp_client;
173 };
174 
175 /**
176  * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
177  * @device_id:		Controller's id for the device
178  * @size:		Size (in bytes)
179  * @addr_len:		Number of address bytes in read/write commands
180  * @munge_address:	Flag whether addresses should be munged.
181  *	Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
182  *	use bit 3 of the command byte as address bit A8, rather
183  *	than having a two-byte address.  If this flag is set, then
184  *	commands should be munged in this way.
185  * @erase_command:	Erase command (or 0 if sector erase not needed).
186  * @erase_size:		Erase sector size (in bytes)
187  *	Erase commands affect sectors with this size and alignment.
188  *	This must be a power of two.
189  * @block_size:		Write block size (in bytes).
190  *	Write commands are limited to blocks with this size and alignment.
191  */
192 struct falcon_spi_device {
193 	int device_id;
194 	unsigned int size;
195 	unsigned int addr_len;
196 	unsigned int munge_address:1;
197 	u8 erase_command;
198 	unsigned int erase_size;
199 	unsigned int block_size;
200 };
201 
202 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
203 {
204 	return spi->size != 0;
205 }
206 
207 enum {
208 	FALCON_STAT_tx_bytes,
209 	FALCON_STAT_tx_packets,
210 	FALCON_STAT_tx_pause,
211 	FALCON_STAT_tx_control,
212 	FALCON_STAT_tx_unicast,
213 	FALCON_STAT_tx_multicast,
214 	FALCON_STAT_tx_broadcast,
215 	FALCON_STAT_tx_lt64,
216 	FALCON_STAT_tx_64,
217 	FALCON_STAT_tx_65_to_127,
218 	FALCON_STAT_tx_128_to_255,
219 	FALCON_STAT_tx_256_to_511,
220 	FALCON_STAT_tx_512_to_1023,
221 	FALCON_STAT_tx_1024_to_15xx,
222 	FALCON_STAT_tx_15xx_to_jumbo,
223 	FALCON_STAT_tx_gtjumbo,
224 	FALCON_STAT_tx_non_tcpudp,
225 	FALCON_STAT_tx_mac_src_error,
226 	FALCON_STAT_tx_ip_src_error,
227 	FALCON_STAT_rx_bytes,
228 	FALCON_STAT_rx_good_bytes,
229 	FALCON_STAT_rx_bad_bytes,
230 	FALCON_STAT_rx_packets,
231 	FALCON_STAT_rx_good,
232 	FALCON_STAT_rx_bad,
233 	FALCON_STAT_rx_pause,
234 	FALCON_STAT_rx_control,
235 	FALCON_STAT_rx_unicast,
236 	FALCON_STAT_rx_multicast,
237 	FALCON_STAT_rx_broadcast,
238 	FALCON_STAT_rx_lt64,
239 	FALCON_STAT_rx_64,
240 	FALCON_STAT_rx_65_to_127,
241 	FALCON_STAT_rx_128_to_255,
242 	FALCON_STAT_rx_256_to_511,
243 	FALCON_STAT_rx_512_to_1023,
244 	FALCON_STAT_rx_1024_to_15xx,
245 	FALCON_STAT_rx_15xx_to_jumbo,
246 	FALCON_STAT_rx_gtjumbo,
247 	FALCON_STAT_rx_bad_lt64,
248 	FALCON_STAT_rx_bad_gtjumbo,
249 	FALCON_STAT_rx_overflow,
250 	FALCON_STAT_rx_symbol_error,
251 	FALCON_STAT_rx_align_error,
252 	FALCON_STAT_rx_length_error,
253 	FALCON_STAT_rx_internal_error,
254 	FALCON_STAT_rx_nodesc_drop_cnt,
255 	FALCON_STAT_COUNT
256 };
257 
258 /**
259  * struct falcon_nic_data - Falcon NIC state
260  * @pci_dev2: Secondary function of Falcon A
261  * @board: Board state and functions
262  * @stats: Hardware statistics
263  * @stats_disable_count: Nest count for disabling statistics fetches
264  * @stats_pending: Is there a pending DMA of MAC statistics.
265  * @stats_timer: A timer for regularly fetching MAC statistics.
266  * @spi_flash: SPI flash device
267  * @spi_eeprom: SPI EEPROM device
268  * @spi_lock: SPI bus lock
269  * @mdio_lock: MDIO bus lock
270  * @xmac_poll_required: XMAC link state needs polling
271  */
272 struct falcon_nic_data {
273 	struct pci_dev *pci_dev2;
274 	struct falcon_board board;
275 	u64 stats[FALCON_STAT_COUNT];
276 	unsigned int stats_disable_count;
277 	bool stats_pending;
278 	struct timer_list stats_timer;
279 	struct falcon_spi_device spi_flash;
280 	struct falcon_spi_device spi_eeprom;
281 	struct mutex spi_lock;
282 	struct mutex mdio_lock;
283 	bool xmac_poll_required;
284 };
285 
286 static inline struct falcon_board *falcon_board(struct efx_nic *efx)
287 {
288 	struct falcon_nic_data *data = efx->nic_data;
289 	return &data->board;
290 }
291 
292 enum {
293 	SIENA_STAT_tx_bytes,
294 	SIENA_STAT_tx_good_bytes,
295 	SIENA_STAT_tx_bad_bytes,
296 	SIENA_STAT_tx_packets,
297 	SIENA_STAT_tx_bad,
298 	SIENA_STAT_tx_pause,
299 	SIENA_STAT_tx_control,
300 	SIENA_STAT_tx_unicast,
301 	SIENA_STAT_tx_multicast,
302 	SIENA_STAT_tx_broadcast,
303 	SIENA_STAT_tx_lt64,
304 	SIENA_STAT_tx_64,
305 	SIENA_STAT_tx_65_to_127,
306 	SIENA_STAT_tx_128_to_255,
307 	SIENA_STAT_tx_256_to_511,
308 	SIENA_STAT_tx_512_to_1023,
309 	SIENA_STAT_tx_1024_to_15xx,
310 	SIENA_STAT_tx_15xx_to_jumbo,
311 	SIENA_STAT_tx_gtjumbo,
312 	SIENA_STAT_tx_collision,
313 	SIENA_STAT_tx_single_collision,
314 	SIENA_STAT_tx_multiple_collision,
315 	SIENA_STAT_tx_excessive_collision,
316 	SIENA_STAT_tx_deferred,
317 	SIENA_STAT_tx_late_collision,
318 	SIENA_STAT_tx_excessive_deferred,
319 	SIENA_STAT_tx_non_tcpudp,
320 	SIENA_STAT_tx_mac_src_error,
321 	SIENA_STAT_tx_ip_src_error,
322 	SIENA_STAT_rx_bytes,
323 	SIENA_STAT_rx_good_bytes,
324 	SIENA_STAT_rx_bad_bytes,
325 	SIENA_STAT_rx_packets,
326 	SIENA_STAT_rx_good,
327 	SIENA_STAT_rx_bad,
328 	SIENA_STAT_rx_pause,
329 	SIENA_STAT_rx_control,
330 	SIENA_STAT_rx_unicast,
331 	SIENA_STAT_rx_multicast,
332 	SIENA_STAT_rx_broadcast,
333 	SIENA_STAT_rx_lt64,
334 	SIENA_STAT_rx_64,
335 	SIENA_STAT_rx_65_to_127,
336 	SIENA_STAT_rx_128_to_255,
337 	SIENA_STAT_rx_256_to_511,
338 	SIENA_STAT_rx_512_to_1023,
339 	SIENA_STAT_rx_1024_to_15xx,
340 	SIENA_STAT_rx_15xx_to_jumbo,
341 	SIENA_STAT_rx_gtjumbo,
342 	SIENA_STAT_rx_bad_gtjumbo,
343 	SIENA_STAT_rx_overflow,
344 	SIENA_STAT_rx_false_carrier,
345 	SIENA_STAT_rx_symbol_error,
346 	SIENA_STAT_rx_align_error,
347 	SIENA_STAT_rx_length_error,
348 	SIENA_STAT_rx_internal_error,
349 	SIENA_STAT_rx_nodesc_drop_cnt,
350 	SIENA_STAT_COUNT
351 };
352 
353 /**
354  * struct siena_nic_data - Siena NIC state
355  * @wol_filter_id: Wake-on-LAN packet filter id
356  * @stats: Hardware statistics
357  */
358 struct siena_nic_data {
359 	int wol_filter_id;
360 	u64 stats[SIENA_STAT_COUNT];
361 };
362 
363 enum {
364 	EF10_STAT_tx_bytes,
365 	EF10_STAT_tx_packets,
366 	EF10_STAT_tx_pause,
367 	EF10_STAT_tx_control,
368 	EF10_STAT_tx_unicast,
369 	EF10_STAT_tx_multicast,
370 	EF10_STAT_tx_broadcast,
371 	EF10_STAT_tx_lt64,
372 	EF10_STAT_tx_64,
373 	EF10_STAT_tx_65_to_127,
374 	EF10_STAT_tx_128_to_255,
375 	EF10_STAT_tx_256_to_511,
376 	EF10_STAT_tx_512_to_1023,
377 	EF10_STAT_tx_1024_to_15xx,
378 	EF10_STAT_tx_15xx_to_jumbo,
379 	EF10_STAT_rx_bytes,
380 	EF10_STAT_rx_bytes_minus_good_bytes,
381 	EF10_STAT_rx_good_bytes,
382 	EF10_STAT_rx_bad_bytes,
383 	EF10_STAT_rx_packets,
384 	EF10_STAT_rx_good,
385 	EF10_STAT_rx_bad,
386 	EF10_STAT_rx_pause,
387 	EF10_STAT_rx_control,
388 	EF10_STAT_rx_unicast,
389 	EF10_STAT_rx_multicast,
390 	EF10_STAT_rx_broadcast,
391 	EF10_STAT_rx_lt64,
392 	EF10_STAT_rx_64,
393 	EF10_STAT_rx_65_to_127,
394 	EF10_STAT_rx_128_to_255,
395 	EF10_STAT_rx_256_to_511,
396 	EF10_STAT_rx_512_to_1023,
397 	EF10_STAT_rx_1024_to_15xx,
398 	EF10_STAT_rx_15xx_to_jumbo,
399 	EF10_STAT_rx_gtjumbo,
400 	EF10_STAT_rx_bad_gtjumbo,
401 	EF10_STAT_rx_overflow,
402 	EF10_STAT_rx_align_error,
403 	EF10_STAT_rx_length_error,
404 	EF10_STAT_rx_nodesc_drops,
405 	EF10_STAT_rx_pm_trunc_bb_overflow,
406 	EF10_STAT_rx_pm_discard_bb_overflow,
407 	EF10_STAT_rx_pm_trunc_vfifo_full,
408 	EF10_STAT_rx_pm_discard_vfifo_full,
409 	EF10_STAT_rx_pm_trunc_qbb,
410 	EF10_STAT_rx_pm_discard_qbb,
411 	EF10_STAT_rx_pm_discard_mapping,
412 	EF10_STAT_rx_dp_q_disabled_packets,
413 	EF10_STAT_rx_dp_di_dropped_packets,
414 	EF10_STAT_rx_dp_streaming_packets,
415 	EF10_STAT_rx_dp_emerg_fetch,
416 	EF10_STAT_rx_dp_emerg_wait,
417 	EF10_STAT_COUNT
418 };
419 
420 /* Maximum number of TX PIO buffers we may allocate to a function.
421  * This matches the total number of buffers on each SFC9100-family
422  * controller.
423  */
424 #define EF10_TX_PIOBUF_COUNT 16
425 
426 /**
427  * struct efx_ef10_nic_data - EF10 architecture NIC state
428  * @mcdi_buf: DMA buffer for MCDI
429  * @warm_boot_count: Last seen MC warm boot count
430  * @vi_base: Absolute index of first VI in this function
431  * @n_allocated_vis: Number of VIs allocated to this function
432  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
433  * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
434  * @n_piobufs: Number of PIO buffers allocated to this function
435  * @wc_membase: Base address of write-combining mapping of the memory BAR
436  * @pio_write_base: Base address for writing PIO buffers
437  * @pio_write_vi_base: Relative VI number for @pio_write_base
438  * @piobuf_handle: Handle of each PIO buffer allocated
439  * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
440  *	reboot
441  * @rx_rss_context: Firmware handle for our RSS context
442  * @stats: Hardware statistics
443  * @workaround_35388: Flag: firmware supports workaround for bug 35388
444  * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
445  *	after MC reboot
446  * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
447  *	%MC_CMD_GET_CAPABILITIES response)
448  */
449 struct efx_ef10_nic_data {
450 	struct efx_buffer mcdi_buf;
451 	u16 warm_boot_count;
452 	unsigned int vi_base;
453 	unsigned int n_allocated_vis;
454 	bool must_realloc_vis;
455 	bool must_restore_filters;
456 	unsigned int n_piobufs;
457 	void __iomem *wc_membase, *pio_write_base;
458 	unsigned int pio_write_vi_base;
459 	unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
460 	bool must_restore_piobufs;
461 	u32 rx_rss_context;
462 	u64 stats[EF10_STAT_COUNT];
463 	bool workaround_35388;
464 	bool must_check_datapath_caps;
465 	u32 datapath_caps;
466 };
467 
468 /*
469  * On the SFC9000 family each port is associated with 1 PCI physical
470  * function (PF) handled by sfc and a configurable number of virtual
471  * functions (VFs) that may be handled by some other driver, often in
472  * a VM guest.  The queue pointer registers are mapped in both PF and
473  * VF BARs such that an 8K region provides access to a single RX, TX
474  * and event queue (collectively a Virtual Interface, VI or VNIC).
475  *
476  * The PF has access to all 1024 VIs while VFs are mapped to VIs
477  * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
478  * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
479  * The number of VIs and the VI_SCALE value are configurable but must
480  * be established at boot time by firmware.
481  */
482 
483 /* Maximum VI_SCALE parameter supported by Siena */
484 #define EFX_VI_SCALE_MAX 6
485 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
486  * so this is the smallest allowed value. */
487 #define EFX_VI_BASE 128U
488 /* Maximum number of VFs allowed */
489 #define EFX_VF_COUNT_MAX 127
490 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
491 #define EFX_MAX_VF_EVQ_SIZE 8192UL
492 /* The number of buffer table entries reserved for each VI on a VF */
493 #define EFX_VF_BUFTBL_PER_VI					\
494 	((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) *	\
495 	 sizeof(efx_qword_t) / EFX_BUF_SIZE)
496 
497 #ifdef CONFIG_SFC_SRIOV
498 
499 static inline bool efx_sriov_wanted(struct efx_nic *efx)
500 {
501 	return efx->vf_count != 0;
502 }
503 static inline bool efx_sriov_enabled(struct efx_nic *efx)
504 {
505 	return efx->vf_init_count != 0;
506 }
507 static inline unsigned int efx_vf_size(struct efx_nic *efx)
508 {
509 	return 1 << efx->vi_scale;
510 }
511 
512 int efx_init_sriov(void);
513 void efx_sriov_probe(struct efx_nic *efx);
514 int efx_sriov_init(struct efx_nic *efx);
515 void efx_sriov_mac_address_changed(struct efx_nic *efx);
516 void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
517 void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
518 void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
519 void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
520 void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
521 void efx_sriov_reset(struct efx_nic *efx);
522 void efx_sriov_fini(struct efx_nic *efx);
523 void efx_fini_sriov(void);
524 
525 #else
526 
527 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
528 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
529 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
530 
531 static inline int efx_init_sriov(void) { return 0; }
532 static inline void efx_sriov_probe(struct efx_nic *efx) {}
533 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
534 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
535 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
536 					   efx_qword_t *event) {}
537 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
538 					   efx_qword_t *event) {}
539 static inline void efx_sriov_event(struct efx_channel *channel,
540 				   efx_qword_t *event) {}
541 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
542 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
543 static inline void efx_sriov_reset(struct efx_nic *efx) {}
544 static inline void efx_sriov_fini(struct efx_nic *efx) {}
545 static inline void efx_fini_sriov(void) {}
546 
547 #endif
548 
549 int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
550 int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos);
551 int efx_sriov_get_vf_config(struct net_device *dev, int vf,
552 			    struct ifla_vf_info *ivf);
553 int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
554 			      bool spoofchk);
555 
556 struct ethtool_ts_info;
557 void efx_ptp_probe(struct efx_nic *efx);
558 int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd);
559 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
560 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
561 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
562 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
563 void efx_ptp_start_datapath(struct efx_nic *efx);
564 void efx_ptp_stop_datapath(struct efx_nic *efx);
565 
566 extern const struct efx_nic_type falcon_a1_nic_type;
567 extern const struct efx_nic_type falcon_b0_nic_type;
568 extern const struct efx_nic_type siena_a0_nic_type;
569 extern const struct efx_nic_type efx_hunt_a0_nic_type;
570 
571 /**************************************************************************
572  *
573  * Externs
574  *
575  **************************************************************************
576  */
577 
578 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
579 
580 /* TX data path */
581 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
582 {
583 	return tx_queue->efx->type->tx_probe(tx_queue);
584 }
585 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
586 {
587 	tx_queue->efx->type->tx_init(tx_queue);
588 }
589 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
590 {
591 	tx_queue->efx->type->tx_remove(tx_queue);
592 }
593 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
594 {
595 	tx_queue->efx->type->tx_write(tx_queue);
596 }
597 
598 /* RX data path */
599 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
600 {
601 	return rx_queue->efx->type->rx_probe(rx_queue);
602 }
603 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
604 {
605 	rx_queue->efx->type->rx_init(rx_queue);
606 }
607 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
608 {
609 	rx_queue->efx->type->rx_remove(rx_queue);
610 }
611 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
612 {
613 	rx_queue->efx->type->rx_write(rx_queue);
614 }
615 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
616 {
617 	rx_queue->efx->type->rx_defer_refill(rx_queue);
618 }
619 
620 /* Event data path */
621 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
622 {
623 	return channel->efx->type->ev_probe(channel);
624 }
625 static inline int efx_nic_init_eventq(struct efx_channel *channel)
626 {
627 	return channel->efx->type->ev_init(channel);
628 }
629 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
630 {
631 	channel->efx->type->ev_fini(channel);
632 }
633 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
634 {
635 	channel->efx->type->ev_remove(channel);
636 }
637 static inline int
638 efx_nic_process_eventq(struct efx_channel *channel, int quota)
639 {
640 	return channel->efx->type->ev_process(channel, quota);
641 }
642 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
643 {
644 	channel->efx->type->ev_read_ack(channel);
645 }
646 void efx_nic_event_test_start(struct efx_channel *channel);
647 
648 /* Falcon/Siena queue operations */
649 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
650 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
651 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
652 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
653 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
654 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
655 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
656 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
657 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
658 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
659 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
660 int efx_farch_ev_probe(struct efx_channel *channel);
661 int efx_farch_ev_init(struct efx_channel *channel);
662 void efx_farch_ev_fini(struct efx_channel *channel);
663 void efx_farch_ev_remove(struct efx_channel *channel);
664 int efx_farch_ev_process(struct efx_channel *channel, int quota);
665 void efx_farch_ev_read_ack(struct efx_channel *channel);
666 void efx_farch_ev_test_generate(struct efx_channel *channel);
667 
668 /* Falcon/Siena filter operations */
669 int efx_farch_filter_table_probe(struct efx_nic *efx);
670 void efx_farch_filter_table_restore(struct efx_nic *efx);
671 void efx_farch_filter_table_remove(struct efx_nic *efx);
672 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
673 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
674 			    bool replace);
675 int efx_farch_filter_remove_safe(struct efx_nic *efx,
676 				 enum efx_filter_priority priority,
677 				 u32 filter_id);
678 int efx_farch_filter_get_safe(struct efx_nic *efx,
679 			      enum efx_filter_priority priority, u32 filter_id,
680 			      struct efx_filter_spec *);
681 void efx_farch_filter_clear_rx(struct efx_nic *efx,
682 			       enum efx_filter_priority priority);
683 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
684 				   enum efx_filter_priority priority);
685 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
686 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
687 				enum efx_filter_priority priority, u32 *buf,
688 				u32 size);
689 #ifdef CONFIG_RFS_ACCEL
690 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
691 				struct efx_filter_spec *spec);
692 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
693 				     unsigned int index);
694 #endif
695 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
696 
697 bool efx_nic_event_present(struct efx_channel *channel);
698 
699 /* Some statistics are computed as A - B where A and B each increase
700  * linearly with some hardware counter(s) and the counters are read
701  * asynchronously.  If the counters contributing to B are always read
702  * after those contributing to A, the computed value may be lower than
703  * the true value by some variable amount, and may decrease between
704  * subsequent computations.
705  *
706  * We should never allow statistics to decrease or to exceed the true
707  * value.  Since the computed value will never be greater than the
708  * true value, we can achieve this by only storing the computed value
709  * when it increases.
710  */
711 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
712 {
713 	if ((s64)(diff - *stat) > 0)
714 		*stat = diff;
715 }
716 
717 /* Interrupts */
718 int efx_nic_init_interrupt(struct efx_nic *efx);
719 void efx_nic_irq_test_start(struct efx_nic *efx);
720 void efx_nic_fini_interrupt(struct efx_nic *efx);
721 
722 /* Falcon/Siena interrupts */
723 void efx_farch_irq_enable_master(struct efx_nic *efx);
724 void efx_farch_irq_test_generate(struct efx_nic *efx);
725 void efx_farch_irq_disable_master(struct efx_nic *efx);
726 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
727 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
728 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
729 
730 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
731 {
732 	return ACCESS_ONCE(channel->event_test_cpu);
733 }
734 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
735 {
736 	return ACCESS_ONCE(efx->last_irq_cpu);
737 }
738 
739 /* Global Resources */
740 int efx_nic_flush_queues(struct efx_nic *efx);
741 void siena_prepare_flush(struct efx_nic *efx);
742 int efx_farch_fini_dmaq(struct efx_nic *efx);
743 void siena_finish_flush(struct efx_nic *efx);
744 void falcon_start_nic_stats(struct efx_nic *efx);
745 void falcon_stop_nic_stats(struct efx_nic *efx);
746 int falcon_reset_xaui(struct efx_nic *efx);
747 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
748 void efx_farch_init_common(struct efx_nic *efx);
749 void efx_ef10_handle_drain_event(struct efx_nic *efx);
750 static inline void efx_nic_push_rx_indir_table(struct efx_nic *efx)
751 {
752 	efx->type->rx_push_indir_table(efx);
753 }
754 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
755 
756 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
757 			 unsigned int len, gfp_t gfp_flags);
758 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
759 
760 /* Tests */
761 struct efx_farch_register_test {
762 	unsigned address;
763 	efx_oword_t mask;
764 };
765 int efx_farch_test_registers(struct efx_nic *efx,
766 			     const struct efx_farch_register_test *regs,
767 			     size_t n_regs);
768 
769 size_t efx_nic_get_regs_len(struct efx_nic *efx);
770 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
771 
772 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
773 			      const unsigned long *mask, u8 *names);
774 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
775 			  const unsigned long *mask, u64 *stats,
776 			  const void *dma_buf, bool accumulate);
777 
778 #define EFX_MAX_FLUSH_TIME 5000
779 
780 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
781 			      efx_qword_t *event);
782 
783 #endif /* EFX_NIC_H */
784