xref: /openbmc/linux/drivers/net/ethernet/sfc/nic.h (revision 4da722ca)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13 
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19 
20 enum {
21 	/* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
22 	 * They are not supported by this driver but these revision numbers
23 	 * form part of the ethtool API for register dumping.
24 	 */
25 	EFX_REV_SIENA_A0 = 3,
26 	EFX_REV_HUNT_A0 = 4,
27 };
28 
29 static inline int efx_nic_rev(struct efx_nic *efx)
30 {
31 	return efx->type->revision;
32 }
33 
34 u32 efx_farch_fpga_ver(struct efx_nic *efx);
35 
36 /* Read the current event from the event queue */
37 static inline efx_qword_t *efx_event(struct efx_channel *channel,
38 				     unsigned int index)
39 {
40 	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
41 		(index & channel->eventq_mask);
42 }
43 
44 /* See if an event is present
45  *
46  * We check both the high and low dword of the event for all ones.  We
47  * wrote all ones when we cleared the event, and no valid event can
48  * have all ones in either its high or low dwords.  This approach is
49  * robust against reordering.
50  *
51  * Note that using a single 64-bit comparison is incorrect; even
52  * though the CPU read will be atomic, the DMA write may not be.
53  */
54 static inline int efx_event_present(efx_qword_t *event)
55 {
56 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
57 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
58 }
59 
60 /* Returns a pointer to the specified transmit descriptor in the TX
61  * descriptor queue belonging to the specified channel.
62  */
63 static inline efx_qword_t *
64 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
65 {
66 	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
67 }
68 
69 /* Get partner of a TX queue, seen as part of the same net core queue */
70 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
71 {
72 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
73 		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
74 	else
75 		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
76 }
77 
78 /* Report whether this TX queue would be empty for the given write_count.
79  * May return false negative.
80  */
81 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
82 					 unsigned int write_count)
83 {
84 	unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
85 
86 	if (empty_read_count == 0)
87 		return false;
88 
89 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
90 }
91 
92 /* Report whether the NIC considers this TX queue empty, using
93  * packet_write_count (the write count recorded for the last completable
94  * doorbell push).  May return false negative.  EF10 only, which is OK
95  * because only EF10 supports PIO.
96  */
97 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
98 {
99 	EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors);
100 	return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count);
101 }
102 
103 /* Decide whether we can use TX PIO, ie. write packet data directly into
104  * a buffer on the device.  This can reduce latency at the expense of
105  * throughput, so we only do this if both hardware and software TX rings
106  * are empty.  This also ensures that only one packet at a time can be
107  * using the PIO buffer.
108  */
109 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
110 {
111 	struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
112 
113 	return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) &&
114 	       efx_nic_tx_is_empty(partner);
115 }
116 
117 /* Decide whether to push a TX descriptor to the NIC vs merely writing
118  * the doorbell.  This can reduce latency when we are adding a single
119  * descriptor to an empty queue, but is otherwise pointless.  Further,
120  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
121  * triggered if we don't check this.
122  * We use the write_count used for the last doorbell push, to get the
123  * NIC's view of the tx queue.
124  */
125 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
126 					    unsigned int write_count)
127 {
128 	bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
129 
130 	tx_queue->empty_read_count = 0;
131 	return was_empty && tx_queue->write_count - write_count == 1;
132 }
133 
134 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
135 static inline efx_qword_t *
136 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
137 {
138 	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
139 }
140 
141 enum {
142 	PHY_TYPE_NONE = 0,
143 	PHY_TYPE_TXC43128 = 1,
144 	PHY_TYPE_88E1111 = 2,
145 	PHY_TYPE_SFX7101 = 3,
146 	PHY_TYPE_QT2022C2 = 4,
147 	PHY_TYPE_PM8358 = 6,
148 	PHY_TYPE_SFT9001A = 8,
149 	PHY_TYPE_QT2025C = 9,
150 	PHY_TYPE_SFT9001B = 10,
151 };
152 
153 /* Alignment of PCIe DMA boundaries (4KB) */
154 #define EFX_PAGE_SIZE	4096
155 /* Size and alignment of buffer table entries (same) */
156 #define EFX_BUF_SIZE	EFX_PAGE_SIZE
157 
158 /* NIC-generic software stats */
159 enum {
160 	GENERIC_STAT_rx_noskb_drops,
161 	GENERIC_STAT_rx_nodesc_trunc,
162 	GENERIC_STAT_COUNT
163 };
164 
165 enum {
166 	SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
167 	SIENA_STAT_tx_good_bytes,
168 	SIENA_STAT_tx_bad_bytes,
169 	SIENA_STAT_tx_packets,
170 	SIENA_STAT_tx_bad,
171 	SIENA_STAT_tx_pause,
172 	SIENA_STAT_tx_control,
173 	SIENA_STAT_tx_unicast,
174 	SIENA_STAT_tx_multicast,
175 	SIENA_STAT_tx_broadcast,
176 	SIENA_STAT_tx_lt64,
177 	SIENA_STAT_tx_64,
178 	SIENA_STAT_tx_65_to_127,
179 	SIENA_STAT_tx_128_to_255,
180 	SIENA_STAT_tx_256_to_511,
181 	SIENA_STAT_tx_512_to_1023,
182 	SIENA_STAT_tx_1024_to_15xx,
183 	SIENA_STAT_tx_15xx_to_jumbo,
184 	SIENA_STAT_tx_gtjumbo,
185 	SIENA_STAT_tx_collision,
186 	SIENA_STAT_tx_single_collision,
187 	SIENA_STAT_tx_multiple_collision,
188 	SIENA_STAT_tx_excessive_collision,
189 	SIENA_STAT_tx_deferred,
190 	SIENA_STAT_tx_late_collision,
191 	SIENA_STAT_tx_excessive_deferred,
192 	SIENA_STAT_tx_non_tcpudp,
193 	SIENA_STAT_tx_mac_src_error,
194 	SIENA_STAT_tx_ip_src_error,
195 	SIENA_STAT_rx_bytes,
196 	SIENA_STAT_rx_good_bytes,
197 	SIENA_STAT_rx_bad_bytes,
198 	SIENA_STAT_rx_packets,
199 	SIENA_STAT_rx_good,
200 	SIENA_STAT_rx_bad,
201 	SIENA_STAT_rx_pause,
202 	SIENA_STAT_rx_control,
203 	SIENA_STAT_rx_unicast,
204 	SIENA_STAT_rx_multicast,
205 	SIENA_STAT_rx_broadcast,
206 	SIENA_STAT_rx_lt64,
207 	SIENA_STAT_rx_64,
208 	SIENA_STAT_rx_65_to_127,
209 	SIENA_STAT_rx_128_to_255,
210 	SIENA_STAT_rx_256_to_511,
211 	SIENA_STAT_rx_512_to_1023,
212 	SIENA_STAT_rx_1024_to_15xx,
213 	SIENA_STAT_rx_15xx_to_jumbo,
214 	SIENA_STAT_rx_gtjumbo,
215 	SIENA_STAT_rx_bad_gtjumbo,
216 	SIENA_STAT_rx_overflow,
217 	SIENA_STAT_rx_false_carrier,
218 	SIENA_STAT_rx_symbol_error,
219 	SIENA_STAT_rx_align_error,
220 	SIENA_STAT_rx_length_error,
221 	SIENA_STAT_rx_internal_error,
222 	SIENA_STAT_rx_nodesc_drop_cnt,
223 	SIENA_STAT_COUNT
224 };
225 
226 /**
227  * struct siena_nic_data - Siena NIC state
228  * @efx: Pointer back to main interface structure
229  * @wol_filter_id: Wake-on-LAN packet filter id
230  * @stats: Hardware statistics
231  * @vf: Array of &struct siena_vf objects
232  * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
233  * @vfdi_status: Common VFDI status page to be dmad to VF address space.
234  * @local_addr_list: List of local addresses. Protected by %local_lock.
235  * @local_page_list: List of DMA addressable pages used to broadcast
236  *	%local_addr_list. Protected by %local_lock.
237  * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
238  * @peer_work: Work item to broadcast peer addresses to VMs.
239  */
240 struct siena_nic_data {
241 	struct efx_nic *efx;
242 	int wol_filter_id;
243 	u64 stats[SIENA_STAT_COUNT];
244 #ifdef CONFIG_SFC_SRIOV
245 	struct siena_vf *vf;
246 	struct efx_channel *vfdi_channel;
247 	unsigned vf_buftbl_base;
248 	struct efx_buffer vfdi_status;
249 	struct list_head local_addr_list;
250 	struct list_head local_page_list;
251 	struct mutex local_lock;
252 	struct work_struct peer_work;
253 #endif
254 };
255 
256 enum {
257 	EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT,
258 	EF10_STAT_port_tx_packets,
259 	EF10_STAT_port_tx_pause,
260 	EF10_STAT_port_tx_control,
261 	EF10_STAT_port_tx_unicast,
262 	EF10_STAT_port_tx_multicast,
263 	EF10_STAT_port_tx_broadcast,
264 	EF10_STAT_port_tx_lt64,
265 	EF10_STAT_port_tx_64,
266 	EF10_STAT_port_tx_65_to_127,
267 	EF10_STAT_port_tx_128_to_255,
268 	EF10_STAT_port_tx_256_to_511,
269 	EF10_STAT_port_tx_512_to_1023,
270 	EF10_STAT_port_tx_1024_to_15xx,
271 	EF10_STAT_port_tx_15xx_to_jumbo,
272 	EF10_STAT_port_rx_bytes,
273 	EF10_STAT_port_rx_bytes_minus_good_bytes,
274 	EF10_STAT_port_rx_good_bytes,
275 	EF10_STAT_port_rx_bad_bytes,
276 	EF10_STAT_port_rx_packets,
277 	EF10_STAT_port_rx_good,
278 	EF10_STAT_port_rx_bad,
279 	EF10_STAT_port_rx_pause,
280 	EF10_STAT_port_rx_control,
281 	EF10_STAT_port_rx_unicast,
282 	EF10_STAT_port_rx_multicast,
283 	EF10_STAT_port_rx_broadcast,
284 	EF10_STAT_port_rx_lt64,
285 	EF10_STAT_port_rx_64,
286 	EF10_STAT_port_rx_65_to_127,
287 	EF10_STAT_port_rx_128_to_255,
288 	EF10_STAT_port_rx_256_to_511,
289 	EF10_STAT_port_rx_512_to_1023,
290 	EF10_STAT_port_rx_1024_to_15xx,
291 	EF10_STAT_port_rx_15xx_to_jumbo,
292 	EF10_STAT_port_rx_gtjumbo,
293 	EF10_STAT_port_rx_bad_gtjumbo,
294 	EF10_STAT_port_rx_overflow,
295 	EF10_STAT_port_rx_align_error,
296 	EF10_STAT_port_rx_length_error,
297 	EF10_STAT_port_rx_nodesc_drops,
298 	EF10_STAT_port_rx_pm_trunc_bb_overflow,
299 	EF10_STAT_port_rx_pm_discard_bb_overflow,
300 	EF10_STAT_port_rx_pm_trunc_vfifo_full,
301 	EF10_STAT_port_rx_pm_discard_vfifo_full,
302 	EF10_STAT_port_rx_pm_trunc_qbb,
303 	EF10_STAT_port_rx_pm_discard_qbb,
304 	EF10_STAT_port_rx_pm_discard_mapping,
305 	EF10_STAT_port_rx_dp_q_disabled_packets,
306 	EF10_STAT_port_rx_dp_di_dropped_packets,
307 	EF10_STAT_port_rx_dp_streaming_packets,
308 	EF10_STAT_port_rx_dp_hlb_fetch,
309 	EF10_STAT_port_rx_dp_hlb_wait,
310 	EF10_STAT_rx_unicast,
311 	EF10_STAT_rx_unicast_bytes,
312 	EF10_STAT_rx_multicast,
313 	EF10_STAT_rx_multicast_bytes,
314 	EF10_STAT_rx_broadcast,
315 	EF10_STAT_rx_broadcast_bytes,
316 	EF10_STAT_rx_bad,
317 	EF10_STAT_rx_bad_bytes,
318 	EF10_STAT_rx_overflow,
319 	EF10_STAT_tx_unicast,
320 	EF10_STAT_tx_unicast_bytes,
321 	EF10_STAT_tx_multicast,
322 	EF10_STAT_tx_multicast_bytes,
323 	EF10_STAT_tx_broadcast,
324 	EF10_STAT_tx_broadcast_bytes,
325 	EF10_STAT_tx_bad,
326 	EF10_STAT_tx_bad_bytes,
327 	EF10_STAT_tx_overflow,
328 	EF10_STAT_COUNT
329 };
330 
331 /* Maximum number of TX PIO buffers we may allocate to a function.
332  * This matches the total number of buffers on each SFC9100-family
333  * controller.
334  */
335 #define EF10_TX_PIOBUF_COUNT 16
336 
337 /**
338  * struct efx_ef10_nic_data - EF10 architecture NIC state
339  * @mcdi_buf: DMA buffer for MCDI
340  * @warm_boot_count: Last seen MC warm boot count
341  * @vi_base: Absolute index of first VI in this function
342  * @n_allocated_vis: Number of VIs allocated to this function
343  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
344  * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
345  * @n_piobufs: Number of PIO buffers allocated to this function
346  * @wc_membase: Base address of write-combining mapping of the memory BAR
347  * @pio_write_base: Base address for writing PIO buffers
348  * @pio_write_vi_base: Relative VI number for @pio_write_base
349  * @piobuf_handle: Handle of each PIO buffer allocated
350  * @piobuf_size: size of a single PIO buffer
351  * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
352  *	reboot
353  * @rx_rss_context: Firmware handle for our RSS context
354  * @rx_rss_context_exclusive: Whether our RSS context is exclusive or shared
355  * @stats: Hardware statistics
356  * @workaround_35388: Flag: firmware supports workaround for bug 35388
357  * @workaround_26807: Flag: firmware supports workaround for bug 26807
358  * @workaround_61265: Flag: firmware supports workaround for bug 61265
359  * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
360  *	after MC reboot
361  * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
362  *	%MC_CMD_GET_CAPABILITIES response)
363  * @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of
364  * %MC_CMD_GET_CAPABILITIES response)
365  * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
366  * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
367  * @vport_id: The function's vport ID, only relevant for PFs
368  * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
369  * @pf_index: The number for this PF, or the parent PF if this is a VF
370 #ifdef CONFIG_SFC_SRIOV
371  * @vf: Pointer to VF data structure
372 #endif
373  * @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero
374  * @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock.
375  * @vlan_lock: Lock to serialize access to vlan_list.
376  * @udp_tunnels: UDP tunnel port numbers and types.
377  * @udp_tunnels_dirty: flag indicating a reboot occurred while pushing
378  *	@udp_tunnels to hardware and thus the push must be re-done.
379  * @udp_tunnels_lock: Serialises writes to @udp_tunnels and @udp_tunnels_dirty.
380  */
381 struct efx_ef10_nic_data {
382 	struct efx_buffer mcdi_buf;
383 	u16 warm_boot_count;
384 	unsigned int vi_base;
385 	unsigned int n_allocated_vis;
386 	bool must_realloc_vis;
387 	bool must_restore_filters;
388 	unsigned int n_piobufs;
389 	void __iomem *wc_membase, *pio_write_base;
390 	unsigned int pio_write_vi_base;
391 	unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
392 	u16 piobuf_size;
393 	bool must_restore_piobufs;
394 	u32 rx_rss_context;
395 	bool rx_rss_context_exclusive;
396 	u64 stats[EF10_STAT_COUNT];
397 	bool workaround_35388;
398 	bool workaround_26807;
399 	bool workaround_61265;
400 	bool must_check_datapath_caps;
401 	u32 datapath_caps;
402 	u32 datapath_caps2;
403 	unsigned int rx_dpcpu_fw_id;
404 	unsigned int tx_dpcpu_fw_id;
405 	unsigned int vport_id;
406 	bool must_probe_vswitching;
407 	unsigned int pf_index;
408 	u8 port_id[ETH_ALEN];
409 #ifdef CONFIG_SFC_SRIOV
410 	unsigned int vf_index;
411 	struct ef10_vf *vf;
412 #endif
413 	u8 vport_mac[ETH_ALEN];
414 	struct list_head vlan_list;
415 	struct mutex vlan_lock;
416 	struct efx_udp_tunnel udp_tunnels[16];
417 	bool udp_tunnels_dirty;
418 	struct mutex udp_tunnels_lock;
419 };
420 
421 int efx_init_sriov(void);
422 void efx_fini_sriov(void);
423 
424 struct ethtool_ts_info;
425 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
426 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
427 void efx_ptp_remove(struct efx_nic *efx);
428 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
429 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
430 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
431 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
432 int efx_ptp_get_mode(struct efx_nic *efx);
433 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
434 			unsigned int new_mode);
435 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
436 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
437 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
438 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
439 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
440 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
441 				   struct sk_buff *skb);
442 static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
443 					       struct sk_buff *skb)
444 {
445 	if (channel->sync_events_state == SYNC_EVENTS_VALID)
446 		__efx_rx_skb_attach_timestamp(channel, skb);
447 }
448 void efx_ptp_start_datapath(struct efx_nic *efx);
449 void efx_ptp_stop_datapath(struct efx_nic *efx);
450 
451 extern const struct efx_nic_type falcon_a1_nic_type;
452 extern const struct efx_nic_type falcon_b0_nic_type;
453 extern const struct efx_nic_type siena_a0_nic_type;
454 extern const struct efx_nic_type efx_hunt_a0_nic_type;
455 extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
456 
457 /**************************************************************************
458  *
459  * Externs
460  *
461  **************************************************************************
462  */
463 
464 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
465 
466 /* TX data path */
467 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
468 {
469 	return tx_queue->efx->type->tx_probe(tx_queue);
470 }
471 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
472 {
473 	tx_queue->efx->type->tx_init(tx_queue);
474 }
475 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
476 {
477 	tx_queue->efx->type->tx_remove(tx_queue);
478 }
479 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
480 {
481 	tx_queue->efx->type->tx_write(tx_queue);
482 }
483 
484 /* RX data path */
485 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
486 {
487 	return rx_queue->efx->type->rx_probe(rx_queue);
488 }
489 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
490 {
491 	rx_queue->efx->type->rx_init(rx_queue);
492 }
493 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
494 {
495 	rx_queue->efx->type->rx_remove(rx_queue);
496 }
497 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
498 {
499 	rx_queue->efx->type->rx_write(rx_queue);
500 }
501 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
502 {
503 	rx_queue->efx->type->rx_defer_refill(rx_queue);
504 }
505 
506 /* Event data path */
507 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
508 {
509 	return channel->efx->type->ev_probe(channel);
510 }
511 static inline int efx_nic_init_eventq(struct efx_channel *channel)
512 {
513 	return channel->efx->type->ev_init(channel);
514 }
515 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
516 {
517 	channel->efx->type->ev_fini(channel);
518 }
519 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
520 {
521 	channel->efx->type->ev_remove(channel);
522 }
523 static inline int
524 efx_nic_process_eventq(struct efx_channel *channel, int quota)
525 {
526 	return channel->efx->type->ev_process(channel, quota);
527 }
528 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
529 {
530 	channel->efx->type->ev_read_ack(channel);
531 }
532 void efx_nic_event_test_start(struct efx_channel *channel);
533 
534 /* Falcon/Siena queue operations */
535 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
536 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
537 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
538 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
539 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
540 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
541 				    dma_addr_t dma_addr, unsigned int len);
542 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
543 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
544 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
545 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
546 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
547 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
548 int efx_farch_ev_probe(struct efx_channel *channel);
549 int efx_farch_ev_init(struct efx_channel *channel);
550 void efx_farch_ev_fini(struct efx_channel *channel);
551 void efx_farch_ev_remove(struct efx_channel *channel);
552 int efx_farch_ev_process(struct efx_channel *channel, int quota);
553 void efx_farch_ev_read_ack(struct efx_channel *channel);
554 void efx_farch_ev_test_generate(struct efx_channel *channel);
555 
556 /* Falcon/Siena filter operations */
557 int efx_farch_filter_table_probe(struct efx_nic *efx);
558 void efx_farch_filter_table_restore(struct efx_nic *efx);
559 void efx_farch_filter_table_remove(struct efx_nic *efx);
560 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
561 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
562 			    bool replace);
563 int efx_farch_filter_remove_safe(struct efx_nic *efx,
564 				 enum efx_filter_priority priority,
565 				 u32 filter_id);
566 int efx_farch_filter_get_safe(struct efx_nic *efx,
567 			      enum efx_filter_priority priority, u32 filter_id,
568 			      struct efx_filter_spec *);
569 int efx_farch_filter_clear_rx(struct efx_nic *efx,
570 			      enum efx_filter_priority priority);
571 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
572 				   enum efx_filter_priority priority);
573 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
574 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
575 				enum efx_filter_priority priority, u32 *buf,
576 				u32 size);
577 #ifdef CONFIG_RFS_ACCEL
578 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
579 				struct efx_filter_spec *spec);
580 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
581 				     unsigned int index);
582 #endif
583 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
584 
585 bool efx_nic_event_present(struct efx_channel *channel);
586 
587 /* Some statistics are computed as A - B where A and B each increase
588  * linearly with some hardware counter(s) and the counters are read
589  * asynchronously.  If the counters contributing to B are always read
590  * after those contributing to A, the computed value may be lower than
591  * the true value by some variable amount, and may decrease between
592  * subsequent computations.
593  *
594  * We should never allow statistics to decrease or to exceed the true
595  * value.  Since the computed value will never be greater than the
596  * true value, we can achieve this by only storing the computed value
597  * when it increases.
598  */
599 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
600 {
601 	if ((s64)(diff - *stat) > 0)
602 		*stat = diff;
603 }
604 
605 /* Interrupts */
606 int efx_nic_init_interrupt(struct efx_nic *efx);
607 int efx_nic_irq_test_start(struct efx_nic *efx);
608 void efx_nic_fini_interrupt(struct efx_nic *efx);
609 
610 /* Falcon/Siena interrupts */
611 void efx_farch_irq_enable_master(struct efx_nic *efx);
612 int efx_farch_irq_test_generate(struct efx_nic *efx);
613 void efx_farch_irq_disable_master(struct efx_nic *efx);
614 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
615 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
616 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
617 
618 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
619 {
620 	return ACCESS_ONCE(channel->event_test_cpu);
621 }
622 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
623 {
624 	return ACCESS_ONCE(efx->last_irq_cpu);
625 }
626 
627 /* Global Resources */
628 int efx_nic_flush_queues(struct efx_nic *efx);
629 void siena_prepare_flush(struct efx_nic *efx);
630 int efx_farch_fini_dmaq(struct efx_nic *efx);
631 void efx_farch_finish_flr(struct efx_nic *efx);
632 void siena_finish_flush(struct efx_nic *efx);
633 void falcon_start_nic_stats(struct efx_nic *efx);
634 void falcon_stop_nic_stats(struct efx_nic *efx);
635 int falcon_reset_xaui(struct efx_nic *efx);
636 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
637 void efx_farch_init_common(struct efx_nic *efx);
638 void efx_ef10_handle_drain_event(struct efx_nic *efx);
639 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
640 void efx_farch_rx_pull_indir_table(struct efx_nic *efx);
641 
642 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
643 			 unsigned int len, gfp_t gfp_flags);
644 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
645 
646 /* Tests */
647 struct efx_farch_register_test {
648 	unsigned address;
649 	efx_oword_t mask;
650 };
651 int efx_farch_test_registers(struct efx_nic *efx,
652 			     const struct efx_farch_register_test *regs,
653 			     size_t n_regs);
654 
655 size_t efx_nic_get_regs_len(struct efx_nic *efx);
656 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
657 
658 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
659 			      const unsigned long *mask, u8 *names);
660 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
661 			  const unsigned long *mask, u64 *stats,
662 			  const void *dma_buf, bool accumulate);
663 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
664 
665 #define EFX_MAX_FLUSH_TIME 5000
666 
667 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
668 			      efx_qword_t *event);
669 
670 #endif /* EFX_NIC_H */
671